Abstract

We design and fabricate a compact silicon photonic integrated circuit (PIC) for polarization diversity heterodyne coherent detection. This PIC integrates two optical gratings for fiber coupling and polarization diversity, two germanium single-ended photodetectors (PDs), and three multimode interferometers (MMIs) for power splitting and optical hybrid. The device is highly compact with a footprint of 0.68mm × 0.9mm. We test this PIC with heterodyne detection experiments of polarization division multiplexed (PDM) 32Gbaud quadrature phase shift keying (QPSK) and 16-ary quadrature amplitude modulation (16QAM) signals. The signal-signal beat interference due to square-law detection is separately mitigated with the Kramers-Kronig (KK) scheme for each of the two orthogonal polarizations. To our best knowledge, we report the first PDM-KK coherent receiver in PIC with a capability of detecting 256Gb/s 16QAM signals, which shows the most compact size among the silicon coherent receivers ever reported.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Monolithic polarization diversity coherent receiver based on 120-degree optical hybrids on silicon

Po Dong, Chongjin Xie, and Lawrence L. Buhl
Opt. Express 22(2) 2119-2125 (2014)

Kramers–Kronig coherent receiver

Antonio Mecozzi, Cristian Antonelli, and Mark Shtaif
Optica 3(11) 1220-1227 (2016)

Bidirectional long-reach PON using Kramers-Kronig-based receiver for Rayleigh Backscattering noise and SSBI interference elimination

Di Li, Quan Yu, Lei Deng, Liang Huo, Songnian Fu, Ming Tang, Mengfan Cheng, Minming Zhang, and Deming Liu
Opt. Express 26(15) 19020-19036 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers-Kronig coherent receiver,” Optica 3(11), 1220–1227 (2016).
    [Crossref]
  2. Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “‘Single Carrier 400G Transmission with Single-ended Heterodyne Detection,” IEEE Photonics Technol. Lett. 29(21), 1788–1791 (2017).
    [Crossref]
  3. X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, A. Mecozzi, M. Shtaif, and P. Winzer, “Kramers–Kronig Receivers for 100-km Datacenter Interconnects,” J. Lightwave Technol. 36(1), 79–89 (2018).
    [Crossref]
  4. C. R. Doerr, P. Winzer, Y. Chen, S. Chandrasekhar, M. S. Rasras, L. Chen, T. Liow, K. Ang, and G. Lo, “Monolithic Polarization and Phase Diversity Coherent Receiver in Silicon,” J. Lightwave Technol. 28(4), 520–525 (2010).
    [Crossref]
  5. P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, Y. Baeyens, and Y. Chen, “224-Gb/s PDM-16-QAM modulator and receiver based on silicon photonic integrated circuits,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (Optical Society of America, 2013), pp. 1–3.
  6. H. Guan, Y. Ma, R. Shi, X. Zhu, R. Younce, Y. Chen, J. Roman, N. Ophir, Y. Liu, R. Ding, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Compact and low loss 90°optical hybrid on a silicon-on-insulator platform,” Opt. Express 25(23), 28957–28968 (2017).
    [Crossref]
  7. A. Melikyan, K. Kim, N. Fontaine, S. Chandrasekhar, Y. K. Chen, and P. Dong, “Inter-polarization mixers for coherent detection of optical signals,” Opt. Express 26(14), 18523–18531 (2018).
    [Crossref] [PubMed]
  8. F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
    [Crossref]
  9. A. Awny, R. Nagulapalli, M. Kroh, J. Hoffmann, P. Runge, D. Micusik, G. Fischer, A. C. Ulusoy, M. Ko, and D. Kissinger, “A linear differential transimpedance amplifier for 100-Gb/s integrated coherent optical fiber receivers,” IEEE Trans. Microw. Theory Tech. 66(2), 973–986 (2018).
    [Crossref]

2018 (3)

2017 (2)

2016 (1)

2010 (2)

Ang, K.

Antonelli, C.

Awny, A.

A. Awny, R. Nagulapalli, M. Kroh, J. Hoffmann, P. Runge, D. Micusik, G. Fischer, A. C. Ulusoy, M. Ko, and D. Kissinger, “A linear differential transimpedance amplifier for 100-Gb/s integrated coherent optical fiber receivers,” IEEE Trans. Microw. Theory Tech. 66(2), 973–986 (2018).
[Crossref]

Baehr-Jones, T.

Bergman, K.

Chandrasekhar, S.

Chang, F.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

Chen, L.

Chen, X.

Chen, Y.

Chen, Y. K.

Ding, R.

Doerr, C. R.

Dong, P.

Fischer, G.

A. Awny, R. Nagulapalli, M. Kroh, J. Hoffmann, P. Runge, D. Micusik, G. Fischer, A. C. Ulusoy, M. Ko, and D. Kissinger, “A linear differential transimpedance amplifier for 100-Gb/s integrated coherent optical fiber receivers,” IEEE Trans. Microw. Theory Tech. 66(2), 973–986 (2018).
[Crossref]

Fontaine, N.

Guan, H.

Hochberg, M.

Hoffmann, J.

A. Awny, R. Nagulapalli, M. Kroh, J. Hoffmann, P. Runge, D. Micusik, G. Fischer, A. C. Ulusoy, M. Ko, and D. Kissinger, “A linear differential transimpedance amplifier for 100-Gb/s integrated coherent optical fiber receivers,” IEEE Trans. Microw. Theory Tech. 66(2), 973–986 (2018).
[Crossref]

Kim, K.

Kissinger, D.

A. Awny, R. Nagulapalli, M. Kroh, J. Hoffmann, P. Runge, D. Micusik, G. Fischer, A. C. Ulusoy, M. Ko, and D. Kissinger, “A linear differential transimpedance amplifier for 100-Gb/s integrated coherent optical fiber receivers,” IEEE Trans. Microw. Theory Tech. 66(2), 973–986 (2018).
[Crossref]

Ko, M.

A. Awny, R. Nagulapalli, M. Kroh, J. Hoffmann, P. Runge, D. Micusik, G. Fischer, A. C. Ulusoy, M. Ko, and D. Kissinger, “A linear differential transimpedance amplifier for 100-Gb/s integrated coherent optical fiber receivers,” IEEE Trans. Microw. Theory Tech. 66(2), 973–986 (2018).
[Crossref]

Kroh, M.

A. Awny, R. Nagulapalli, M. Kroh, J. Hoffmann, P. Runge, D. Micusik, G. Fischer, A. C. Ulusoy, M. Ko, and D. Kissinger, “A linear differential transimpedance amplifier for 100-Gb/s integrated coherent optical fiber receivers,” IEEE Trans. Microw. Theory Tech. 66(2), 973–986 (2018).
[Crossref]

Liow, T.

Liu, Y.

Lo, G.

Ma, Y.

Mecozzi, A.

Melikyan, A.

Micusik, D.

A. Awny, R. Nagulapalli, M. Kroh, J. Hoffmann, P. Runge, D. Micusik, G. Fischer, A. C. Ulusoy, M. Ko, and D. Kissinger, “A linear differential transimpedance amplifier for 100-Gb/s integrated coherent optical fiber receivers,” IEEE Trans. Microw. Theory Tech. 66(2), 973–986 (2018).
[Crossref]

Mizuochi, T.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

Nagulapalli, R.

A. Awny, R. Nagulapalli, M. Kroh, J. Hoffmann, P. Runge, D. Micusik, G. Fischer, A. C. Ulusoy, M. Ko, and D. Kissinger, “A linear differential transimpedance amplifier for 100-Gb/s integrated coherent optical fiber receivers,” IEEE Trans. Microw. Theory Tech. 66(2), 973–986 (2018).
[Crossref]

Onohara, K.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

Ophir, N.

Rasras, M. S.

Raybon, G.

Roman, J.

Ruan, X.

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “‘Single Carrier 400G Transmission with Single-ended Heterodyne Detection,” IEEE Photonics Technol. Lett. 29(21), 1788–1791 (2017).
[Crossref]

Runge, P.

A. Awny, R. Nagulapalli, M. Kroh, J. Hoffmann, P. Runge, D. Micusik, G. Fischer, A. C. Ulusoy, M. Ko, and D. Kissinger, “A linear differential transimpedance amplifier for 100-Gb/s integrated coherent optical fiber receivers,” IEEE Trans. Microw. Theory Tech. 66(2), 973–986 (2018).
[Crossref]

Shi, R.

Shtaif, M.

Ulusoy, A. C.

A. Awny, R. Nagulapalli, M. Kroh, J. Hoffmann, P. Runge, D. Micusik, G. Fischer, A. C. Ulusoy, M. Ko, and D. Kissinger, “A linear differential transimpedance amplifier for 100-Gb/s integrated coherent optical fiber receivers,” IEEE Trans. Microw. Theory Tech. 66(2), 973–986 (2018).
[Crossref]

Winzer, P.

Younce, R.

Zhang, F.

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “‘Single Carrier 400G Transmission with Single-ended Heterodyne Detection,” IEEE Photonics Technol. Lett. 29(21), 1788–1791 (2017).
[Crossref]

Zhu, X.

Zhu, Y.

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “‘Single Carrier 400G Transmission with Single-ended Heterodyne Detection,” IEEE Photonics Technol. Lett. 29(21), 1788–1791 (2017).
[Crossref]

Zou, K.

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “‘Single Carrier 400G Transmission with Single-ended Heterodyne Detection,” IEEE Photonics Technol. Lett. 29(21), 1788–1791 (2017).
[Crossref]

IEEE Commun. Mag. (1)

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “‘Single Carrier 400G Transmission with Single-ended Heterodyne Detection,” IEEE Photonics Technol. Lett. 29(21), 1788–1791 (2017).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

A. Awny, R. Nagulapalli, M. Kroh, J. Hoffmann, P. Runge, D. Micusik, G. Fischer, A. C. Ulusoy, M. Ko, and D. Kissinger, “A linear differential transimpedance amplifier for 100-Gb/s integrated coherent optical fiber receivers,” IEEE Trans. Microw. Theory Tech. 66(2), 973–986 (2018).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (2)

Optica (1)

Other (1)

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, Y. Baeyens, and Y. Chen, “224-Gb/s PDM-16-QAM modulator and receiver based on silicon photonic integrated circuits,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (Optical Society of America, 2013), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Photograph of the PIC (highlighted by the white dashed line). The zoom-in photographs of (b) the single-ended PD; (c) 2 × 2 MMI; (d) 1 × 2 MMI; (e) the 2D grating coupler; (f) the 1D grating coupler. (g) The layout of the PIC.
Fig. 2
Fig. 2 The characteristic of the PIC. (a) Electro-optic response of the photodetector at various reverse bias voltages. (b) Dark current as a function of the reverse bias. (c) Measured fiber-to-PD responsivity.
Fig. 3
Fig. 3 Experimental setup to test the silicon PDM KK receiver.
Fig. 4
Fig. 4 (a) Transmitter-side DSP; (b) Frame structure; (c) Receiver-side DSP.
Fig. 5
Fig. 5 (a) The measured BER as a function of the OSNR for both 32Gbaud QPSK (128Gb/s) and 32Gbaud 16QAM (256Gb/s) signals. Typical constellations with KK detection of (b) X-polarization QPSK; (c) Y-polarization QPSK; (d) X-polarization 16QAM; (e) Y-polarization 16QAM. The OSNR values are both 38.1dB for Figs. 5(b)–5(e).
Fig. 6
Fig. 6 Measured BERs of 16QAM signals for (a) different bit rates at 1550nm; (b) six wavelengths from 1535nm to 1560nm for 32Gbaud 16QAM signals.

Metrics