Abstract

A 2,3,4,6-tetrafluoro-7,7,8,8,-tetracyanoquinodimethane (F4-TCNQ) doping interlayer was developed to improve charge imbalance and the efficiency in indium phosphide (InP)-based quantum dot light-emitting diodes (QLEDs). The doping layer was coated between a hole injecting layer (HIL) and a hole transport layer (HTL) and successfully diffused with thermal annealing. This doping reduces the hole injection barrier and improves the charge balance of InP-based QLEDs, resulting in enhancement of an external quantum efficiency (EQE) of 3.78% (up from 1.6%) and a power efficiency of 6.41 lm/W (up from 2.77 lm/W). This work shows that F4-TCNQ interlayer doping into both HIL and HTL facilitates hole injection and can provide an efficient solution of improving charge balance in QLED for the device efficiency.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering

Qianqian Huang, Jiangyong Pan, Yuning Zhang, Jing Chen, Zhi Tao, Chao He, Kaifeng Zhou, Yan Tu, and Wei Lei
Opt. Express 24(23) 25955-25963 (2016)

ZnMgO:ZnO composite films for fast electron transport and high charge balance in quantum dot light emitting diodes

Qin Zhang, Xiaobing Gu, Qingsong Zhang, Jie Jiang, Xiao Jin, Feng Li, Zhongping Chen, Feng Zhao, and Qinghua Li
Opt. Mater. Express 8(4) 909-918 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP Nanocrystal Syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
    [Crossref]
  2. Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
    [Crossref]
  3. J. S. Steckel, J. Ho, and S. Coe-Sullivan, “QDs Generate Light for Next-Generation Display,” Photonics Spectra. 48(9), 55–61 (2014).
  4. W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic Insights into the Performance of Quantum Dot Light-Emitting Diodes,” MRS Bull. 38(9), 721–730 (2013).
    [Crossref]
  5. H. J. Kim, M. H. Shin, J. Y. Lee, and Y. J. Kim, “Realization of 95% of the Rec. 2020 color gamut in a highly efficient LCD using a patterned quantum dot film,” Opt. Express 25(10), 10724–10734 (2017).
    [Crossref]
  6. M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
    [Crossref]
  7. T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
    [Crossref]
  8. Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
    [Crossref]
  9. J. H. Jo, J. H. Kim, K. H. Lee, C. Y. Han, E. P. Jang, Y. R. Do, and H. Yang, “High-efficiency red electroluminescent device based on multishelled InP quantum dots,” Opt. Lett. 41(17), 3984–3987 (2016).
    [Crossref]
  10. H. Zhang, S. Chen, and X. W. Sun, “Efficient Red/Green/Blue Tandem Quantum-Dot Light-Emitting Diodes with External Quantum Efficiency Exceeding 21%,” ACS Nano 12(1), 697–704 (2018).
    [Crossref]
  11. The European Parliament and The Council of The European Union, “Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment,” Off. J. Eur. Union L'174, 88–110 (2011).
  12. F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, “A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes,” Chem. Mater. 30(21), 8002–8007 (2018).
    [Crossref]
  13. Q. Huang, J. Pan, Y. Zhang, J. Chen, Z. Tao, C. He, K. Zhou, Y. Tu, and W. Lei, “High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering,” Opt. Express 24(23), 25955–25963 (2016).
    [Crossref]
  14. H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
    [Crossref]
  15. W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
    [Crossref]
  16. W. Ji, Y. Lv, P. Jing, H. Zhang, J. Wang, H. Zhang, and J. Zhao, “Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer,” ACS Appl. Mater. Interfaces 7(29), 15955–15960 (2015).
    [Crossref]
  17. Y. L. Shi, F. Liang, Y. Hu, X. D. Wang, Z. K. Wang, and L. S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinylcarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
    [Crossref]
  18. M. D. Ho, D. Kim, N. Kim, S. M. Cho, and H. Chae, “Polymer and Small Molecule Mixture for Organic Hole Transport Layers in Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 5(23), 12369–12374 (2013).
    [Crossref]
  19. S. Nam, N. Oh, Y. Zhai, and M. Shim, “High Efficiency and Optical Anisotropy in Double-Heterojunction Nanorod Light-Emitting Diodes,” ACS Nano 9(1), 878–885 (2015).
    [Crossref]
  20. H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, “Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications,” Adv. Mater. 31, 1804294 (2019).
    [Crossref]
  21. H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
    [Crossref]
  22. J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
    [Crossref]
  23. D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
    [Crossref]
  24. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
    [Crossref]
  25. I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
    [Crossref]
  26. F. Guillain, J. Endres, L. Bourgeois, A. Kahn, L. Vignau, and G. Wantz, “Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(14), 9262–9267 (2016).
    [Crossref]
  27. Y. Y. Ma, X. C. Hua, T. S. Zhai, Y. H. Li, X. Lu, S. Duhm, and M. K. Fung, “Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes,” Org. Electron. 68, 236–241 (2019).
    [Crossref]
  28. H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
    [Crossref]
  29. J. Li, C. W. Rochester, I. E. Jacobs, S. Friedrich, P. Stroeve, M. Riede, and A. J. Moulé, “Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures,” ACS Appl. Mater. Interfaces 7(51), 28420–28428 (2015).
    [Crossref]
  30. H. Zhang, X. Sun, and S. Chen, “Over 100 cdA−1 Efficient Quantum Dot Light-Emitting Diodes with Inverted Tandem Structure,” Adv. Funct. Mater. 27(21), 1700610 (2017).
    [Crossref]
  31. K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
    [Crossref]
  32. S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
    [Crossref]
  33. H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot based Light-Emitting Diodes,” Nano Lett. 15(2), 1211–1216 (2015).
    [Crossref]
  34. Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, “Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence,” J. Am. Chem. Soc. 141(16), 6448–6452 (2019).
    [Crossref]
  35. Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
    [Crossref]
  36. J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, “Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 10(4), 3865–3873 (2018).
    [Crossref]
  37. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
    [Crossref]
  38. L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011).
    [Crossref]
  39. M. Elawad, L. Sun, G. T. Mola, Z. Yu, and E. A. A. Arbab, “Enhanced performance of perovskite solar cells using p-type doped PFB:F4TCNQ composite as hole transport layer,” J. Alloys Compd. 771, 25–32 (2019).
    [Crossref]

2019 (5)

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, “Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications,” Adv. Mater. 31, 1804294 (2019).
[Crossref]

Y. Y. Ma, X. C. Hua, T. S. Zhai, Y. H. Li, X. Lu, S. Duhm, and M. K. Fung, “Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes,” Org. Electron. 68, 236–241 (2019).
[Crossref]

Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, “Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence,” J. Am. Chem. Soc. 141(16), 6448–6452 (2019).
[Crossref]

M. Elawad, L. Sun, G. T. Mola, Z. Yu, and E. A. A. Arbab, “Enhanced performance of perovskite solar cells using p-type doped PFB:F4TCNQ composite as hole transport layer,” J. Alloys Compd. 771, 25–32 (2019).
[Crossref]

2018 (6)

J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, “Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 10(4), 3865–3873 (2018).
[Crossref]

H. Zhang, S. Chen, and X. W. Sun, “Efficient Red/Green/Blue Tandem Quantum-Dot Light-Emitting Diodes with External Quantum Efficiency Exceeding 21%,” ACS Nano 12(1), 697–704 (2018).
[Crossref]

F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, “A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes,” Chem. Mater. 30(21), 8002–8007 (2018).
[Crossref]

M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
[Crossref]

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
[Crossref]

2017 (7)

Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
[Crossref]

H. J. Kim, M. H. Shin, J. Y. Lee, and Y. J. Kim, “Realization of 95% of the Rec. 2020 color gamut in a highly efficient LCD using a patterned quantum dot film,” Opt. Express 25(10), 10724–10734 (2017).
[Crossref]

Y. L. Shi, F. Liang, Y. Hu, X. D. Wang, Z. K. Wang, and L. S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinylcarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

H. Zhang, X. Sun, and S. Chen, “Over 100 cdA−1 Efficient Quantum Dot Light-Emitting Diodes with Inverted Tandem Structure,” Adv. Funct. Mater. 27(21), 1700610 (2017).
[Crossref]

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

2016 (6)

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

F. Guillain, J. Endres, L. Bourgeois, A. Kahn, L. Vignau, and G. Wantz, “Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(14), 9262–9267 (2016).
[Crossref]

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Q. Huang, J. Pan, Y. Zhang, J. Chen, Z. Tao, C. He, K. Zhou, Y. Tu, and W. Lei, “High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering,” Opt. Express 24(23), 25955–25963 (2016).
[Crossref]

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP Nanocrystal Syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

J. H. Jo, J. H. Kim, K. H. Lee, C. Y. Han, E. P. Jang, Y. R. Do, and H. Yang, “High-efficiency red electroluminescent device based on multishelled InP quantum dots,” Opt. Lett. 41(17), 3984–3987 (2016).
[Crossref]

2015 (7)

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot based Light-Emitting Diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

J. Li, C. W. Rochester, I. E. Jacobs, S. Friedrich, P. Stroeve, M. Riede, and A. J. Moulé, “Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures,” ACS Appl. Mater. Interfaces 7(51), 28420–28428 (2015).
[Crossref]

W. Ji, Y. Lv, P. Jing, H. Zhang, J. Wang, H. Zhang, and J. Zhao, “Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer,” ACS Appl. Mater. Interfaces 7(29), 15955–15960 (2015).
[Crossref]

S. Nam, N. Oh, Y. Zhai, and M. Shim, “High Efficiency and Optical Anisotropy in Double-Heterojunction Nanorod Light-Emitting Diodes,” ACS Nano 9(1), 878–885 (2015).
[Crossref]

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

2014 (2)

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

J. S. Steckel, J. Ho, and S. Coe-Sullivan, “QDs Generate Light for Next-Generation Display,” Photonics Spectra. 48(9), 55–61 (2014).

2013 (4)

W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic Insights into the Performance of Quantum Dot Light-Emitting Diodes,” MRS Bull. 38(9), 721–730 (2013).
[Crossref]

M. D. Ho, D. Kim, N. Kim, S. M. Cho, and H. Chae, “Polymer and Small Molecule Mixture for Organic Hole Transport Layers in Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 5(23), 12369–12374 (2013).
[Crossref]

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

2011 (2)

The European Parliament and The Council of The European Union, “Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment,” Off. J. Eur. Union L'174, 88–110 (2011).

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011).
[Crossref]

Aasen, E. W.

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

Arbab, E. A. A.

M. Elawad, L. Sun, G. T. Mola, Z. Yu, and E. A. A. Arbab, “Enhanced performance of perovskite solar cells using p-type doped PFB:F4TCNQ composite as hole transport layer,” J. Alloys Compd. 771, 25–32 (2019).
[Crossref]

Atwater, H. A.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Augustine, M. P.

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

Bae, W. K.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic Insights into the Performance of Quantum Dot Light-Emitting Diodes,” MRS Bull. 38(9), 721–730 (2013).
[Crossref]

Bourgeois, L.

F. Guillain, J. Endres, L. Bourgeois, A. Kahn, L. Vignau, and G. Wantz, “Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(14), 9262–9267 (2016).
[Crossref]

Brovelli, S.

W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic Insights into the Performance of Quantum Dot Light-Emitting Diodes,” MRS Bull. 38(9), 721–730 (2013).
[Crossref]

Cao, F.

F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, “A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes,” Chem. Mater. 30(21), 8002–8007 (2018).
[Crossref]

Cao, H.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Cao, L.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Cao, W.

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot based Light-Emitting Diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Chae, H.

H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, “Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications,” Adv. Mater. 31, 1804294 (2019).
[Crossref]

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
[Crossref]

Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

M. D. Ho, D. Kim, N. Kim, S. M. Cho, and H. Chae, “Polymer and Small Molecule Mixture for Organic Hole Transport Layers in Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 5(23), 12369–12374 (2013).
[Crossref]

Char, K.

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

Chen, H.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

Chen, H. Y.

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
[Crossref]

Chen, J.

Chen, L.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Chen, S.

H. Zhang, S. Chen, and X. W. Sun, “Efficient Red/Green/Blue Tandem Quantum-Dot Light-Emitting Diodes with External Quantum Efficiency Exceeding 21%,” ACS Nano 12(1), 697–704 (2018).
[Crossref]

H. Zhang, X. Sun, and S. Chen, “Over 100 cdA−1 Efficient Quantum Dot Light-Emitting Diodes with Inverted Tandem Structure,” Adv. Funct. Mater. 27(21), 1700610 (2017).
[Crossref]

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
[Crossref]

Chen, S. W. H.

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Chen, Z.

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Cho, S. M.

M. D. Ho, D. Kim, N. Kim, S. M. Cho, and H. Chae, “Polymer and Small Molecule Mixture for Organic Hole Transport Layers in Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 5(23), 12369–12374 (2013).
[Crossref]

Chung, H. K.

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

Chung, R. J.

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
[Crossref]

Coe-Sullivan, S.

J. S. Steckel, J. Ho, and S. Coe-Sullivan, “QDs Generate Light for Next-Generation Display,” Photonics Spectra. 48(9), 55–61 (2014).

Dai, X.

Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, “Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence,” J. Am. Chem. Soc. 141(16), 6448–6452 (2019).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Ding, K.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

Do, Y. R.

Dong, Q.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Du, Z.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

Duhm, S.

Y. Y. Ma, X. C. Hua, T. S. Zhai, Y. H. Li, X. Lu, S. Duhm, and M. K. Fung, “Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes,” Org. Electron. 68, 236–241 (2019).
[Crossref]

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Eisler, C.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Elawad, M.

M. Elawad, L. Sun, G. T. Mola, Z. Yu, and E. A. A. Arbab, “Enhanced performance of perovskite solar cells using p-type doped PFB:F4TCNQ composite as hole transport layer,” J. Alloys Compd. 771, 25–32 (2019).
[Crossref]

Endres, J.

F. Guillain, J. Endres, L. Bourgeois, A. Kahn, L. Vignau, and G. Wantz, “Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(14), 9262–9267 (2016).
[Crossref]

Fan, L.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

Fang, Y.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Fonseca, T. N.

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

Friedrich, S.

J. Li, C. W. Rochester, I. E. Jacobs, S. Friedrich, P. Stroeve, M. Riede, and A. J. Moulé, “Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures,” ACS Appl. Mater. Interfaces 7(51), 28420–28428 (2015).
[Crossref]

Frisch, J.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Fu, Y.

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
[Crossref]

Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

Fung, M. K.

Y. Y. Ma, X. C. Hua, T. S. Zhai, Y. H. Li, X. Lu, S. Duhm, and M. K. Fung, “Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes,” Org. Electron. 68, 236–241 (2019).
[Crossref]

Goddard, W. A.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Greer, J. R.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Guillain, F.

F. Guillain, J. Endres, L. Bourgeois, A. Kahn, L. Vignau, and G. Wantz, “Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(14), 9262–9267 (2016).
[Crossref]

Guo, F.

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Guo, W.

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Han, C. Y.

He, C.

Heimel, G.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Hermans, Y.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP Nanocrystal Syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

Ho, J.

J. S. Steckel, J. Ho, and S. Coe-Sullivan, “QDs Generate Light for Next-Generation Display,” Photonics Spectra. 48(9), 55–61 (2014).

Ho, M. D.

M. D. Ho, D. Kim, N. Kim, S. M. Cho, and H. Chae, “Polymer and Small Molecule Mixture for Organic Hole Transport Layers in Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 5(23), 12369–12374 (2013).
[Crossref]

Holloway, P. H.

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011).
[Crossref]

Hou, X.

Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, “Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence,” J. Am. Chem. Soc. 141(16), 6448–6452 (2019).
[Crossref]

Hu, B.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

Hu, N.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

Hu, Y.

Y. L. Shi, F. Liang, Y. Hu, X. D. Wang, Z. K. Wang, and L. S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinylcarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

Hua, X. C.

Y. Y. Ma, X. C. Hua, T. S. Zhai, Y. H. Li, X. Lu, S. Duhm, and M. K. Fung, “Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes,” Org. Electron. 68, 236–241 (2019).
[Crossref]

Huang, J.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Huang, Q.

Huang, Z.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

Jacobs, I. E.

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

J. Li, C. W. Rochester, I. E. Jacobs, S. Friedrich, P. Stroeve, M. Riede, and A. J. Moulé, “Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures,” ACS Appl. Mater. Interfaces 7(51), 28420–28428 (2015).
[Crossref]

Jang, E. P.

Jeong, S.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP Nanocrystal Syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

Ji, W.

W. Ji, Y. Lv, P. Jing, H. Zhang, J. Wang, H. Zhang, and J. Zhao, “Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer,” ACS Appl. Mater. Interfaces 7(29), 15955–15960 (2015).
[Crossref]

Jia, Y.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

Jiang, W.

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
[Crossref]

Jin, H.

J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, “Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 10(4), 3865–3873 (2018).
[Crossref]

Jin, Y.

Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, “Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence,” J. Am. Chem. Soc. 141(16), 6448–6452 (2019).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Jing, P.

W. Ji, Y. Lv, P. Jing, H. Zhang, J. Wang, H. Zhang, and J. Zhao, “Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer,” ACS Appl. Mater. Interfaces 7(29), 15955–15960 (2015).
[Crossref]

Jo, J. H.

Kahn, A.

F. Guillain, J. Endres, L. Bourgeois, A. Kahn, L. Vignau, and G. Wantz, “Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(14), 9262–9267 (2016).
[Crossref]

Kim, D.

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
[Crossref]

Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

M. D. Ho, D. Kim, N. Kim, S. M. Cho, and H. Chae, “Polymer and Small Molecule Mixture for Organic Hole Transport Layers in Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 5(23), 12369–12374 (2013).
[Crossref]

Kim, H. J.

Kim, J.

H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, “Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications,” Adv. Mater. 31, 1804294 (2019).
[Crossref]

Kim, J. H.

Kim, N.

M. D. Ho, D. Kim, N. Kim, S. M. Cho, and H. Chae, “Polymer and Small Molecule Mixture for Organic Hole Transport Layers in Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 5(23), 12369–12374 (2013).
[Crossref]

Kim, S.

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

Kim, Y. J.

Klimov, V. I.

W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic Insights into the Performance of Quantum Dot Light-Emitting Diodes,” MRS Bull. 38(9), 721–730 (2013).
[Crossref]

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

Koch, N.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Kuo, H. C.

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Lee, C.

H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, “Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications,” Adv. Mater. 31, 1804294 (2019).
[Crossref]

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

Lee, C. F.

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Lee, D.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

Lee, H. J.

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

Lee, J. H.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Lee, J. Y.

Lee, K. H.

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

J. H. Jo, J. H. Kim, K. H. Lee, C. Y. Han, E. P. Jang, Y. R. Do, and H. Yang, “High-efficiency red electroluminescent device based on multishelled InP quantum dots,” Opt. Lett. 41(17), 3984–3987 (2016).
[Crossref]

Lee, S.

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

Lee, W.

H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, “Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications,” Adv. Mater. 31, 1804294 (2019).
[Crossref]

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

Lei, W.

Li, J.

J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, “Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 10(4), 3865–3873 (2018).
[Crossref]

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

J. Li, C. W. Rochester, I. E. Jacobs, S. Friedrich, P. Stroeve, M. Riede, and A. J. Moulé, “Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures,” ACS Appl. Mater. Interfaces 7(51), 28420–28428 (2015).
[Crossref]

Li, L. S.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot based Light-Emitting Diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Li, Y.

Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, “Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence,” J. Am. Chem. Soc. 141(16), 6448–6452 (2019).
[Crossref]

Li, Y. H.

Y. Y. Ma, X. C. Hua, T. S. Zhai, Y. H. Li, X. Lu, S. Duhm, and M. K. Fung, “Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes,” Org. Electron. 68, 236–241 (2019).
[Crossref]

Liang, F.

Y. L. Shi, F. Liang, Y. Hu, X. D. Wang, Z. K. Wang, and L. S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinylcarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

Liang, S.

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Liang, X.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Liang, Z.

J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, “Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 10(4), 3865–3873 (2018).
[Crossref]

Liao, L. S.

Y. L. Shi, F. Liang, Y. Hu, X. D. Wang, Z. K. Wang, and L. S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinylcarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

Lim, J.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

Lin, C. E.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Lin, Q.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Lin, Y.

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Lincheneau, C.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP Nanocrystal Syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

Liu, C. W.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Liu, R. S.

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
[Crossref]

Liu, S.

M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
[Crossref]

Lu, X.

Y. Y. Ma, X. C. Hua, T. S. Zhai, Y. H. Li, X. Lu, S. Duhm, and M. K. Fung, “Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes,” Org. Electron. 68, 236–241 (2019).
[Crossref]

Lu, Y.

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Luo, S.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Lv, L.

Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, “Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence,” J. Am. Chem. Soc. 141(16), 6448–6452 (2019).
[Crossref]

Lv, Y.

W. Ji, Y. Lv, P. Jing, H. Zhang, J. Wang, H. Zhang, and J. Zhao, “Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer,” ACS Appl. Mater. Interfaces 7(29), 15955–15960 (2015).
[Crossref]

Ma, Y. Y.

Y. Y. Ma, X. C. Hua, T. S. Zhai, Y. H. Li, X. Lu, S. Duhm, and M. K. Fung, “Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes,” Org. Electron. 68, 236–241 (2019).
[Crossref]

Mascal, M.

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

McDaniel, H.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

Méndez, H.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Mola, G. T.

M. Elawad, L. Sun, G. T. Mola, Z. Yu, and E. A. A. Arbab, “Enhanced performance of perovskite solar cells using p-type doped PFB:F4TCNQ composite as hole transport layer,” J. Alloys Compd. 771, 25–32 (2019).
[Crossref]

Moon, H.

H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, “Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications,” Adv. Mater. 31, 1804294 (2019).
[Crossref]

Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
[Crossref]

Moule, A. J.

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

Moulé, A. J.

J. Li, C. W. Rochester, I. E. Jacobs, S. Friedrich, P. Stroeve, M. Riede, and A. J. Moulé, “Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures,” ACS Appl. Mater. Interfaces 7(51), 28420–28428 (2015).
[Crossref]

Mulligan, P.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Nam, S.

S. Nam, N. Oh, Y. Zhai, and M. Shim, “High Efficiency and Optical Anisotropy in Double-Heterojunction Nanorod Light-Emitting Diodes,” ACS Nano 9(1), 878–885 (2015).
[Crossref]

Niu, J.

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Niu, Y.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Oehzelt, M.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Oh, N.

S. Nam, N. Oh, Y. Zhai, and M. Shim, “High Efficiency and Optical Anisotropy in Double-Heterojunction Nanorod Light-Emitting Diodes,” ACS Nano 9(1), 878–885 (2015).
[Crossref]

Oliveira, J. L.

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

Opitz, A.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Padilha, L. A.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

Pan, J.

Pan, T.

M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
[Crossref]

Park, M.

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

Park, Y. S.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

Peng, X.

Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, “Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence,” J. Am. Chem. Soc. 141(16), 6448–6452 (2019).
[Crossref]

M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Pietryga, J. M.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

Qian, L.

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011).
[Crossref]

Qiu, J.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Reiss, P.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP Nanocrystal Syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

Riede, M.

J. Li, C. W. Rochester, I. E. Jacobs, S. Friedrich, P. Stroeve, M. Riede, and A. J. Moulé, “Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures,” ACS Appl. Mater. Interfaces 7(51), 28420–28428 (2015).
[Crossref]

Robel, I.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

Rochester, C. W.

J. Li, C. W. Rochester, I. E. Jacobs, S. Friedrich, P. Stroeve, M. Riede, and A. J. Moulé, “Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures,” ACS Appl. Mater. Interfaces 7(51), 28420–28428 (2015).
[Crossref]

Roehling, J. D.

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

Röthel, C.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Salzmann, I.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Sauer, K.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Shao, Y.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Shen, C. H.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Shen, H.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot based Light-Emitting Diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Sher, C. W.

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Shewmon, N. T.

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot based Light-Emitting Diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Shi, Y. L.

Y. L. Shi, F. Liang, Y. Hu, X. D. Wang, Z. K. Wang, and L. S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinylcarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

Shieh, J. M.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Shim, M.

S. Nam, N. Oh, Y. Zhai, and M. Shim, “High Efficiency and Optical Anisotropy in Double-Heterojunction Nanorod Light-Emitting Diodes,” ACS Nano 9(1), 878–885 (2015).
[Crossref]

Shin, M. H.

Steckel, J. S.

J. S. Steckel, J. Ho, and S. Coe-Sullivan, “QDs Generate Light for Next-Generation Display,” Photonics Spectra. 48(9), 55–61 (2014).

Stroeve, P.

J. Li, C. W. Rochester, I. E. Jacobs, S. Friedrich, P. Stroeve, M. Riede, and A. J. Moulé, “Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures,” ACS Appl. Mater. Interfaces 7(51), 28420–28428 (2015).
[Crossref]

Su, Q.

J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, “Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 10(4), 3865–3873 (2018).
[Crossref]

Sun, L.

M. Elawad, L. Sun, G. T. Mola, Z. Yu, and E. A. A. Arbab, “Enhanced performance of perovskite solar cells using p-type doped PFB:F4TCNQ composite as hole transport layer,” J. Alloys Compd. 771, 25–32 (2019).
[Crossref]

Sun, X.

H. Zhang, X. Sun, and S. Chen, “Over 100 cdA−1 Efficient Quantum Dot Light-Emitting Diodes with Inverted Tandem Structure,” Adv. Funct. Mater. 27(21), 1700610 (2017).
[Crossref]

Sun, X. W.

H. Zhang, S. Chen, and X. W. Sun, “Efficient Red/Green/Blue Tandem Quantum-Dot Light-Emitting Diodes with External Quantum Efficiency Exceeding 21%,” ACS Nano 12(1), 697–704 (2018).
[Crossref]

Tamang, S.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP Nanocrystal Syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

Tang, A.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

Tao, Z.

Teng, F.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

Többens, D.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Tsai, C. C.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Tseng, M. R.

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
[Crossref]

Tu, Y.

Vignau, L.

F. Guillain, J. Endres, L. Bourgeois, A. Kahn, L. Vignau, and G. Wantz, “Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(14), 9262–9267 (2016).
[Crossref]

Wang, A.

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Wang, B.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

Wang, F.

F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, “A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes,” Chem. Mater. 30(21), 8002–8007 (2018).
[Crossref]

Wang, H.

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Wang, H. C.

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
[Crossref]

Wang, J.

W. Ji, Y. Lv, P. Jing, H. Zhang, J. Wang, H. Zhang, and J. Zhao, “Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer,” ACS Appl. Mater. Interfaces 7(29), 15955–15960 (2015).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Wang, K.

J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, “Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 10(4), 3865–3873 (2018).
[Crossref]

Wang, L.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

Wang, S.

F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, “A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes,” Chem. Mater. 30(21), 8002–8007 (2018).
[Crossref]

Wang, X. D.

Y. L. Shi, F. Liang, Y. Hu, X. D. Wang, Z. K. Wang, and L. S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinylcarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

Wang, Z. K.

Y. L. Shi, F. Liang, Y. Hu, X. D. Wang, Z. K. Wang, and L. S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinylcarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

Wantz, G.

F. Guillain, J. Endres, L. Bourgeois, A. Kahn, L. Vignau, and G. Wantz, “Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(14), 9262–9267 (2016).
[Crossref]

Wegner, B.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Winkler, S.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Wong, T. H.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Wu, Q.

F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, “A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes,” Chem. Mater. 30(21), 8002–8007 (2018).
[Crossref]

Wu, T.

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Wu, T. T.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Xiao, H.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Xie, W.

M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
[Crossref]

Xu, G.

J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, “Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 10(4), 3865–3873 (2018).
[Crossref]

Xu, X.

J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, “Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 10(4), 3865–3873 (2018).
[Crossref]

Xue, J.

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot based Light-Emitting Diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011).
[Crossref]

Yang, C.

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot based Light-Emitting Diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Yang, H.

Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

J. H. Jo, J. H. Kim, K. H. Lee, C. Y. Han, E. P. Jang, Y. R. Do, and H. Yang, “High-efficiency red electroluminescent device based on multishelled InP quantum dots,” Opt. Lett. 41(17), 3984–3987 (2016).
[Crossref]

Yang, X.

F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, “A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes,” Chem. Mater. 30(21), 8002–8007 (2018).
[Crossref]

Yao, Z.

Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, “Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence,” J. Am. Chem. Soc. 141(16), 6448–6452 (2019).
[Crossref]

Yeh, H. C.

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
[Crossref]

Yin, M.

M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
[Crossref]

Yu, Z.

M. Elawad, L. Sun, G. T. Mola, Z. Yu, and E. A. A. Arbab, “Enhanced performance of perovskite solar cells using p-type doped PFB:F4TCNQ composite as hole transport layer,” J. Alloys Compd. 771, 25–32 (2019).
[Crossref]

M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
[Crossref]

Zeng, Z.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

Zhai, T. S.

Y. Y. Ma, X. C. Hua, T. S. Zhai, Y. H. Li, X. Lu, S. Duhm, and M. K. Fung, “Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes,” Org. Electron. 68, 236–241 (2019).
[Crossref]

Zhai, Y.

S. Nam, N. Oh, Y. Zhai, and M. Shim, “High Efficiency and Optical Anisotropy in Double-Heterojunction Nanorod Light-Emitting Diodes,” ACS Nano 9(1), 878–885 (2015).
[Crossref]

Zhang, F.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

Zhang, G.

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

Zhang, H.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

H. Zhang, S. Chen, and X. W. Sun, “Efficient Red/Green/Blue Tandem Quantum-Dot Light-Emitting Diodes with External Quantum Efficiency Exceeding 21%,” ACS Nano 12(1), 697–704 (2018).
[Crossref]

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
[Crossref]

H. Zhang, X. Sun, and S. Chen, “Over 100 cdA−1 Efficient Quantum Dot Light-Emitting Diodes with Inverted Tandem Structure,” Adv. Funct. Mater. 27(21), 1700610 (2017).
[Crossref]

W. Ji, Y. Lv, P. Jing, H. Zhang, J. Wang, H. Zhang, and J. Zhao, “Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer,” ACS Appl. Mater. Interfaces 7(29), 15955–15960 (2015).
[Crossref]

W. Ji, Y. Lv, P. Jing, H. Zhang, J. Wang, H. Zhang, and J. Zhao, “Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer,” ACS Appl. Mater. Interfaces 7(29), 15955–15960 (2015).
[Crossref]

Zhang, L.

M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
[Crossref]

Zhang, X.

M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
[Crossref]

Zhang, Y.

Zhang, Z.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Zhao, D.

F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, “A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes,” Chem. Mater. 30(21), 8002–8007 (2018).
[Crossref]

Zhao, J.

W. Ji, Y. Lv, P. Jing, H. Zhang, J. Wang, H. Zhang, and J. Zhao, “Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer,” ACS Appl. Mater. Interfaces 7(29), 15955–15960 (2015).
[Crossref]

Zheng, Y.

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011).
[Crossref]

Zhou, K.

Zhuang, S.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (7)

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
[Crossref]

M. D. Ho, D. Kim, N. Kim, S. M. Cho, and H. Chae, “Polymer and Small Molecule Mixture for Organic Hole Transport Layers in Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 5(23), 12369–12374 (2013).
[Crossref]

W. Ji, Y. Lv, P. Jing, H. Zhang, J. Wang, H. Zhang, and J. Zhao, “Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer,” ACS Appl. Mater. Interfaces 7(29), 15955–15960 (2015).
[Crossref]

F. Guillain, J. Endres, L. Bourgeois, A. Kahn, L. Vignau, and G. Wantz, “Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(14), 9262–9267 (2016).
[Crossref]

J. Li, C. W. Rochester, I. E. Jacobs, S. Friedrich, P. Stroeve, M. Riede, and A. J. Moulé, “Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures,” ACS Appl. Mater. Interfaces 7(51), 28420–28428 (2015).
[Crossref]

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, “Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 10(4), 3865–3873 (2018).
[Crossref]

ACS Nano (4)

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

S. Nam, N. Oh, Y. Zhai, and M. Shim, “High Efficiency and Optical Anisotropy in Double-Heterojunction Nanorod Light-Emitting Diodes,” ACS Nano 9(1), 878–885 (2015).
[Crossref]

H. Zhang, S. Chen, and X. W. Sun, “Efficient Red/Green/Blue Tandem Quantum-Dot Light-Emitting Diodes with External Quantum Efficiency Exceeding 21%,” ACS Nano 12(1), 697–704 (2018).
[Crossref]

Acta Mater. (1)

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Adv. Funct. Mater. (1)

H. Zhang, X. Sun, and S. Chen, “Over 100 cdA−1 Efficient Quantum Dot Light-Emitting Diodes with Inverted Tandem Structure,” Adv. Funct. Mater. 27(21), 1700610 (2017).
[Crossref]

Adv. Mater. (1)

H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, “Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications,” Adv. Mater. 31, 1804294 (2019).
[Crossref]

Adv. Opt. Mater. (1)

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

Appl. Sci. (1)

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Chem. Mater. (2)

F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, “A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes,” Chem. Mater. 30(21), 8002–8007 (2018).
[Crossref]

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP Nanocrystal Syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

J. Alloys Compd. (1)

M. Elawad, L. Sun, G. T. Mola, Z. Yu, and E. A. A. Arbab, “Enhanced performance of perovskite solar cells using p-type doped PFB:F4TCNQ composite as hole transport layer,” J. Alloys Compd. 771, 25–32 (2019).
[Crossref]

J. Am. Chem. Soc. (1)

Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, “Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence,” J. Am. Chem. Soc. 141(16), 6448–6452 (2019).
[Crossref]

J. Mater. Chem. C (3)

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

Y. L. Shi, F. Liang, Y. Hu, X. D. Wang, Z. K. Wang, and L. S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinylcarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
[Crossref]

MRS Bull. (1)

W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic Insights into the Performance of Quantum Dot Light-Emitting Diodes,” MRS Bull. 38(9), 721–730 (2013).
[Crossref]

Nano Lett. (1)

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot based Light-Emitting Diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Nat. Commun. (2)

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Nat. Photonics (1)

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011).
[Crossref]

Nature (1)

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Off. J. Eur. Union (1)

The European Parliament and The Council of The European Union, “Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment,” Off. J. Eur. Union L'174, 88–110 (2011).

Opt. Express (2)

Opt. Lett. (1)

Org. Electron. (3)

M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
[Crossref]

Y. Y. Ma, X. C. Hua, T. S. Zhai, Y. H. Li, X. Lu, S. Duhm, and M. K. Fung, “Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes,” Org. Electron. 68, 236–241 (2019).
[Crossref]

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Photonics Spectra. (1)

J. S. Steckel, J. Ho, and S. Coe-Sullivan, “QDs Generate Light for Next-Generation Display,” Photonics Spectra. 48(9), 55–61 (2014).

Science (1)

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Small (1)

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. The absorption and PL spectra of InP/ZnSeS/ZnS QDs with TOP:S treatment. (inset) high-resolution transmission electron microscopy (HRTEM) image of InP/ZnSeS/ZnS QDs after TOP:S treatment for 14 h.
Fig. 2.
Fig. 2. (a) Chemical profiling of PEDOT:PSS/TFB and PEDOT:PSS/F4-TCNQ/TFB with F4-TCNQ interlayer coated with a 3 mg/mL solution using time of flight secondary ion mass spectrometry (TOF-SIMS) to detect fingerprints of the F4-TCNQ molecule (F ions). The sputter times versus F counts reveals diffusion of F4-TCNQ into PEDOT:PSS and TFB layer. (inset) chemical structure of F4-TCNQ. (b) Ultraviolet-visible-near infrared (UV-Vis-NIR) absorption spectra of PEDOT:PSS, F4-TCNQ, TFB and PEDOT:PSS/F4-TCNQ/TFB multilayers with F4-TCNQ doping interlayer with 0, 2-4 mg/mL solution.
Fig. 3.
Fig. 3. Ultraviolet photoelectron spectra (UPS) of (a) TFB and (b) F4-TCNQ-doped TFB with F4-TCNQ interlayer (3 mg/mL solution). (c) The optical band gap of TFB, F4-TCNQ-doped TFB from Tauc plots of ${(\alpha hv)^2} - (hv)$ relation.
Fig. 4.
Fig. 4. The current density of hole-only device (HOD) of undoped and doped with F4-TCNQ doping interlayer with 1-4 mg/mL solutions and electron-only device (EOD) of 11 mol% ZnMgO.
Fig. 5.
Fig. 5. Atomic force microscopy (AFM) images of PEDOT:PSS/TFB and PEDOT:PSS/F4-TCNQ/TFB multilayers with F4-TCNQ doping interlayer with 1-4 mg/mL solutions. The root-mean-square (RMS) surface roughness of the multilayer films were (a) 0.477 nm, (b) 0.443 nm, (c) 0.498 nm, (d) 0.501 nm and (e) 0.506 nm
Fig. 6.
Fig. 6. (a) Band energy level of a multilayered QLED structure with an F4-TCNQ doping interlayer. (b) cross-SEM image of the device with an F4-TCNQ interlayer with a 3 mg/mL solution. The electrical properties of undoped QLED (No F4-TCNQ) and QLEDs doped with F4-TCNQ interlayer with 2-4 mg/mL solutions. (c) the current density and the luminance versus the operating voltage curves of QLEDs. (d) the external quantum efficiency (EQE) versus the current density curves of QLEDs. (e) the power efficiency (PE) versus the current density curves of QLEDs
Fig. 7.
Fig. 7. Normalized EL spectra of (a) undoped QLED and (b) QLED doped with F4-TCNQ interlayer with a 3 mg/mL solution at 2 V, 2.5 V of the maximum EQE and 4 V of the maximum luminance. (inset) EL intensity spectra magnified at the 350-600 nm spectral region

Tables (2)

Tables Icon

Table 1. Characteristics of synthesized InP/ZnSeS/ZnS QDs depending on reaction time with trioctylphosphine sulfide (TOP:S) treatment for surface passivation.

Tables Icon

Table 2. Summarized device performances of InP-based QLEDs depending on different concentration of F4-TCNQ doping interlayer.

Metrics