Abstract

We derive explicit power dissipation functions for stratified anisotropic OLEDs based on a radiation model of dipole antennas inside anisotropic microcavity. The dipole field expressed by vector potential is expanded into plane waves whose coefficients are determined by scattering matrix method, and then an explicit expression is derived to calculate the energy flux through arbitrary interfaces. Taking advantage of the formulation, we can easily perform quantitative analysis on outcoupling characteristics of stratified anisotropic OLEDs, including outcoupling efficiency, normalized decay rate and angular emission profile. Simulations are carried out on a prototypic stratified OLED structure to verify the validity and capability of the proposed model. The dependencies of the outcoupling characteristics on various emission feature parameters, including dipole position, dipole orientation, and the intrinsic radiative quantum efficiency, are comprehensively evaluated and discussed. Results demonstrate that the optical anisotropy in different organic layers has nonnegligible influences on the far-field angular emission profile as well as outcoupling efficiency, and thereby highlight the necessity of our method. The proposed model can be expected to guide the optimal design of stratified anisotropic OLED devices, and help to solve the inverse outcoupling problem for determining the emission feature parameters.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Anisotropic materials in OLEDs for high outcoupling efficiency

Michiel Koen Callens, Daisuke Yokoyama, and Kristiaan Neyts
Opt. Express 23(16) 21128-21148 (2015)

Dipole radiation within one-dimensional anisotropic microcavities: a simulation method

Lieven Penninck, Patrick De Visschere, Jeroen Beeckman, and Kristiaan Neyts
Opt. Express 19(19) 18558-18576 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. C. Gather, A. Köhnen, and K. Meerholz, “White organic light-emitting diodes,” Adv. Mater. 23(2), 233–248 (2011).
    [Crossref] [PubMed]
  2. A. Salehi, X. Y. Fu, D. H. Shin, and F. So, “Recent advances in OLED optical design,” Adv. Funct. Mater. 29(15), 1808803 (2019).
    [Crossref]
  3. H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7(3), 17168 (2018).
    [Crossref] [PubMed]
  4. S. Reineke, M. Thomschke, B. Lussem, and K. Leo, “White organic light-emitting diodes: status and perspective,” Rev. Mod. Phys. 85(3), 1245–1293 (2013).
    [Crossref]
  5. Z. Wang and S. J. Su, “Molecular and device design strategies for ideal performance white organic light-emitting diodes,” Chem. Rec. 18, 1–14 (2018).
    [Crossref] [PubMed]
  6. K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
    [Crossref]
  7. M. C. Gather and S. Reineke, “Recent advances in light outcoupling from white organic light-emitting diodes,” J. Photon. Energy 5(1), 057607 (2015).
    [Crossref]
  8. W. Brutting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light- emitting diodes: progress by improved light outcoupling,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 44–65 (2013).
    [Crossref]
  9. S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brutting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
    [Crossref]
  10. M. Chakaroun, A. T. Diallo, S. Hamdad, S. Khadir, A. P. A. Fischer, and A. Boudrioua, ““Experimental and theoretical study of the optical properties optimization of an OLED in a microcavity,” IEEE T,” Electron Dev. 65, 4897–4904 (2018).
  11. T. D. Schmidt, T. Lampe, D. Sylvinson, M. R. P. I. Djurovich, M. E. Thompsom, and W. Brutting, “Emitter orientation as a key parameter in organic light-emitting diodes,” Phys. Rev. Appl. 8, 037001 (2017).
  12. D. Yokoyama, “Molecular orientation in small-molecule organic light-emitting diodes,” J. Mater. Chem. 21(48), 19187–19202 (2011).
    [Crossref]
  13. T. Lee, B. Caron, M. Stroet, D. M. Huang, P. L. Burn, and A. E. Mark, “The Molecular origin of anisotropic emission in an organic light-emitting diode,” Nano Lett. 17(10), 6464–6468 (2017).
    [Crossref] [PubMed]
  14. K. H. Kim and J. J. Kim, “Origin and control of orientation of phosphorescent and TADF dyes for high efficiency OLEDs,” Adv. Mater. 30(42), e1705600 (2018).
    [Crossref] [PubMed]
  15. H. Cho, J. Chung, J. Song, J. Lee, H. Lee, J. Lee, J. Moon, S. Yoo, and N. S. Cho, “Importance of Purcell factor for optimizing structure of organic light-emitting diodes,” Opt. Express 27(8), 11057–11068 (2019).
    [Crossref] [PubMed]
  16. T. V. Hoang, S. E. Lee, J. G. Lee, Y. K. Kim, and J. H. Lee, “Optimum thickness of epsilon negative tri-metal layer electrodes for maximizing OLED outcoupling efficiency,” Opt. Express 25(25), 31006–31016 (2017).
    [Crossref] [PubMed]
  17. S. E. Lee, T. V. Hoang, J. H. Lee, and Y. K. Kim, “Investigation of light out-coupling efficiency of blue OLED using microcavity effects,” Physica B 550, 122–126 (2018).
    [Crossref]
  18. K. Kang, Y. Lee, J. Kim, H. Lee, and B. Yang, “A generalized Fabry-Perot formulation for optical modeling of organic light-emitting diodes considering the dipole orientation and light polarization,” IEEE Photonics J. 8(2), 1–19 (2016).
    [Crossref]
  19. D. Poitras, C. C. Kuo, and C. Py, “Design of high-contrast OLEDs with microcavity effect,” Opt. Express 16(11), 8003–8015 (2008).
    [Crossref] [PubMed]
  20. H. Peng, J. Sun, X. Zhu, X. Yu, M. Wong, and H.-S. Kwok, “High-efficiency microcavity top-emitting organic light-emitting diodes using silver anode,” Appl. Phys. Lett. 88(7), 073517 (2006).
    [Crossref]
  21. W. Lukosz, “Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers,” Phys. Rev. B 22(6), 3030–3038 (1980).
    [Crossref]
  22. K. G. Sullivan and D. G. Hall, “Enhancement and inhibition of electromagnetic radiation in plane-layered media. I. Plane-wave spectrum approach to modeling classical effects,” J. Opt. Soc. Am. B 14(5), 1149–1159 (1997).
    [Crossref]
  23. K. A. Neyts, “Simulation of light emission from thin-film microcavities,” J. Opt. Soc. Am. A 15(4), 962–971 (1998).
    [Crossref]
  24. K. Celebi, T. D. Heidel, and M. A. Baldo, “Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green’s functions,” Opt. Express 15(4), 1762–1772 (2007).
    [Crossref] [PubMed]
  25. R. Meerheim, M. Furno, S. Hofmann, B. Lussem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
    [Crossref]
  26. R. Zhu, Z. Luo, and S. T. Wu, “Light extraction analysis and enhancement in a quantum dot light emitting diode,” Opt. Express 22(S7Suppl 7), A1783–A1798 (2014).
    [Crossref] [PubMed]
  27. A. A. Shcherbakov, A. V. Tishchenko, D. S. Setz, and B. C. Krummacher, “Rigorous S-matrix approach to the modeling of the optical properties of OLEDs,” Org. Electron. 12(4), 654–659 (2011).
    [Crossref]
  28. M. Qian, X. B. Shi, Y. Liu, Z. M. Jin, X. L. Wang, Z. K. Wang, and L. S. Liao, “Theoretical model for the external quantum efficiency of organic light-emitting diodes and its experimental validation,” Org. Electron. 25, 200–205 (2015).
    [Crossref]
  29. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (2007).
    [Crossref]
  30. J. A. E. Wasey, A. Safonov, I. D. W. Samuel, and W. L. Barnes, “Effects of dipole orientation and birefringence on the optical emission from thin films,” Opt. Commun. 183(1-4), 109–121 (2000).
    [Crossref]
  31. K. Sainath, F. L. Teixeira, and B. Donderici, “Robust computation of dipole electromagnetic fields in arbitrarily anisotropic, planar-stratified environments,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 013312 (2014).
    [Crossref] [PubMed]
  32. H. Moon, B. Donderici, and F. L. Teixeira, “Stable evaluation of Green’s functions in cylindrically stratified regions with uniaxial anisotropic layers,” J. Comput. Phys. 325, 174–200 (2016).
    [Crossref]
  33. M. K. Callens, D. Yokoyama, and K. Neyts, “Anisotropic materials in OLEDs for high outcoupling efficiency,” Opt. Express 23(16), 21128–21148 (2015).
    [Crossref] [PubMed]
  34. C. K. Moon, S. Y. Kim, J. H. Lee, and J. J. Kim, “Luminescence from oriented emitting dipoles in a birefringent medium,” Opt. Express 23(7), A279–A291 (2015).
    [Crossref] [PubMed]
  35. L. Penninck, P. De Visschere, J. Beeckman, and K. Neyts, “Dipole radiation within one-dimensional anisotropic microcavities: a simulation method,” Opt. Express 19(19), 18558–18576 (2011).
    [Crossref] [PubMed]
  36. Z. H. Xiong, “Electromagnetic fields of electric dipoles embedded in a stratified anisotropic earth,” Geophys. 54(12), 1643–1646 (1989).
    [Crossref]
  37. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1995), Chap. 2.
  38. D. Y. K. Ko and J. R. Sambles, “Scattering matrix method for propagation of radiation in stratified media: attenuated total reflection studies of liquid crystals,” J. Opt. Soc. Am. A 5(11), 1863–1866 (1988).
    [Crossref]
  39. H. Kim, I. M. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24(8), 2313–2327 (2007).
    [Crossref] [PubMed]
  40. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic, 2007), Chap.6.
  41. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists (Academic, 2005), Chap. 11.
  42. A. G. Fluxim, “Semiconducting emissive thin film optics simulator SETFOS,” http://www.fluxim.com .
  43. H. Liang, H. C. Hsu, J. Wu, X. He, M. K. Wei, T. L. Chiu, C. F. Lin, J. H. Lee, and J. Wang, “Corrugated organic light-emitting diodes to effectively extract internal modes,” Opt. Express 27(8), A372–A384 (2019).
    [Crossref] [PubMed]
  44. M. Kovacic, P. A. Will, B. Lipvsek, M. Topic, S. Lenk, S. Reineke, and J. Krc, “Coupled optical modeling for optimization of organic light-emitting diodes with external outcoupling structures,” ACS Photonics 5(2), 422–430 (2018).
    [Crossref]
  45. H. Liang, Z. Luo, R. Zhu, Y. Dong, J. H. Lee, J. Zhou, and S. T. Wu, “High efficiency quantum dot and organic LEDs with a bach-cavity and a high index substrate,” J. Phys. D Appl. Phys. 49(14), 145103 (2016).
    [Crossref]
  46. H. Liang, R. Zhu, Y. Dong, S. T. Wu, J. Li, J. Wang, and J. Zhou, “Enhancing the outcoupling efficiency of quantum dot LEDs with internal nano-scattering pattern,” Opt. Express 23(10), 12910–12922 (2015).
    [Crossref] [PubMed]
  47. J. W. Kim, J. H. Jang, M. C. Oh, J. W. Shin, D. H. Cho, J. H. Moon, and J. I. Lee, “FDTD analysis of the light extraction efficiency of OLEDs with a random scattering layer,” Opt. Express 22(1), 498–507 (2014).
    [Crossref] [PubMed]
  48. W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010).
    [Crossref]
  49. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation of stable and efficient implementation of the rigorous coupled wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]
  50. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996).
    [Crossref]
  51. S. Liu, Y. Ma, X. Chen, and C. Zhang, “Estimation of the convergence order of rigorous coupled-wave analysis for binary gratings in optical critical dimension metrology,” Opt. Eng. 51(8), 081504 (2012).
    [Crossref]

2019 (3)

2018 (6)

M. Kovacic, P. A. Will, B. Lipvsek, M. Topic, S. Lenk, S. Reineke, and J. Krc, “Coupled optical modeling for optimization of organic light-emitting diodes with external outcoupling structures,” ACS Photonics 5(2), 422–430 (2018).
[Crossref]

K. H. Kim and J. J. Kim, “Origin and control of orientation of phosphorescent and TADF dyes for high efficiency OLEDs,” Adv. Mater. 30(42), e1705600 (2018).
[Crossref] [PubMed]

S. E. Lee, T. V. Hoang, J. H. Lee, and Y. K. Kim, “Investigation of light out-coupling efficiency of blue OLED using microcavity effects,” Physica B 550, 122–126 (2018).
[Crossref]

H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7(3), 17168 (2018).
[Crossref] [PubMed]

Z. Wang and S. J. Su, “Molecular and device design strategies for ideal performance white organic light-emitting diodes,” Chem. Rec. 18, 1–14 (2018).
[Crossref] [PubMed]

M. Chakaroun, A. T. Diallo, S. Hamdad, S. Khadir, A. P. A. Fischer, and A. Boudrioua, ““Experimental and theoretical study of the optical properties optimization of an OLED in a microcavity,” IEEE T,” Electron Dev. 65, 4897–4904 (2018).

2017 (3)

T. D. Schmidt, T. Lampe, D. Sylvinson, M. R. P. I. Djurovich, M. E. Thompsom, and W. Brutting, “Emitter orientation as a key parameter in organic light-emitting diodes,” Phys. Rev. Appl. 8, 037001 (2017).

T. V. Hoang, S. E. Lee, J. G. Lee, Y. K. Kim, and J. H. Lee, “Optimum thickness of epsilon negative tri-metal layer electrodes for maximizing OLED outcoupling efficiency,” Opt. Express 25(25), 31006–31016 (2017).
[Crossref] [PubMed]

T. Lee, B. Caron, M. Stroet, D. M. Huang, P. L. Burn, and A. E. Mark, “The Molecular origin of anisotropic emission in an organic light-emitting diode,” Nano Lett. 17(10), 6464–6468 (2017).
[Crossref] [PubMed]

2016 (3)

K. Kang, Y. Lee, J. Kim, H. Lee, and B. Yang, “A generalized Fabry-Perot formulation for optical modeling of organic light-emitting diodes considering the dipole orientation and light polarization,” IEEE Photonics J. 8(2), 1–19 (2016).
[Crossref]

H. Liang, Z. Luo, R. Zhu, Y. Dong, J. H. Lee, J. Zhou, and S. T. Wu, “High efficiency quantum dot and organic LEDs with a bach-cavity and a high index substrate,” J. Phys. D Appl. Phys. 49(14), 145103 (2016).
[Crossref]

H. Moon, B. Donderici, and F. L. Teixeira, “Stable evaluation of Green’s functions in cylindrically stratified regions with uniaxial anisotropic layers,” J. Comput. Phys. 325, 174–200 (2016).
[Crossref]

2015 (5)

2014 (3)

2013 (2)

W. Brutting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light- emitting diodes: progress by improved light outcoupling,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 44–65 (2013).
[Crossref]

S. Reineke, M. Thomschke, B. Lussem, and K. Leo, “White organic light-emitting diodes: status and perspective,” Rev. Mod. Phys. 85(3), 1245–1293 (2013).
[Crossref]

2012 (1)

S. Liu, Y. Ma, X. Chen, and C. Zhang, “Estimation of the convergence order of rigorous coupled-wave analysis for binary gratings in optical critical dimension metrology,” Opt. Eng. 51(8), 081504 (2012).
[Crossref]

2011 (4)

D. Yokoyama, “Molecular orientation in small-molecule organic light-emitting diodes,” J. Mater. Chem. 21(48), 19187–19202 (2011).
[Crossref]

M. C. Gather, A. Köhnen, and K. Meerholz, “White organic light-emitting diodes,” Adv. Mater. 23(2), 233–248 (2011).
[Crossref] [PubMed]

L. Penninck, P. De Visschere, J. Beeckman, and K. Neyts, “Dipole radiation within one-dimensional anisotropic microcavities: a simulation method,” Opt. Express 19(19), 18558–18576 (2011).
[Crossref] [PubMed]

A. A. Shcherbakov, A. V. Tishchenko, D. S. Setz, and B. C. Krummacher, “Rigorous S-matrix approach to the modeling of the optical properties of OLEDs,” Org. Electron. 12(4), 654–659 (2011).
[Crossref]

2010 (2)

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010).
[Crossref]

R. Meerheim, M. Furno, S. Hofmann, B. Lussem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
[Crossref]

2009 (1)

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[Crossref]

2008 (2)

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brutting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[Crossref]

D. Poitras, C. C. Kuo, and C. Py, “Design of high-contrast OLEDs with microcavity effect,” Opt. Express 16(11), 8003–8015 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (1)

H. Peng, J. Sun, X. Zhu, X. Yu, M. Wong, and H.-S. Kwok, “High-efficiency microcavity top-emitting organic light-emitting diodes using silver anode,” Appl. Phys. Lett. 88(7), 073517 (2006).
[Crossref]

2000 (1)

J. A. E. Wasey, A. Safonov, I. D. W. Samuel, and W. L. Barnes, “Effects of dipole orientation and birefringence on the optical emission from thin films,” Opt. Commun. 183(1-4), 109–121 (2000).
[Crossref]

1998 (1)

1997 (1)

1996 (1)

1995 (1)

1989 (1)

Z. H. Xiong, “Electromagnetic fields of electric dipoles embedded in a stratified anisotropic earth,” Geophys. 54(12), 1643–1646 (1989).
[Crossref]

1988 (1)

1980 (1)

W. Lukosz, “Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers,” Phys. Rev. B 22(6), 3030–3038 (1980).
[Crossref]

Araoka, F.

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010).
[Crossref]

Baldo, M. A.

Barnes, W. L.

J. A. E. Wasey, A. Safonov, I. D. W. Samuel, and W. L. Barnes, “Effects of dipole orientation and birefringence on the optical emission from thin films,” Opt. Commun. 183(1-4), 109–121 (2000).
[Crossref]

Beeckman, J.

Boudrioua, A.

M. Chakaroun, A. T. Diallo, S. Hamdad, S. Khadir, A. P. A. Fischer, and A. Boudrioua, ““Experimental and theoretical study of the optical properties optimization of an OLED in a microcavity,” IEEE T,” Electron Dev. 65, 4897–4904 (2018).

Brutting, W.

T. D. Schmidt, T. Lampe, D. Sylvinson, M. R. P. I. Djurovich, M. E. Thompsom, and W. Brutting, “Emitter orientation as a key parameter in organic light-emitting diodes,” Phys. Rev. Appl. 8, 037001 (2017).

W. Brutting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light- emitting diodes: progress by improved light outcoupling,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 44–65 (2013).
[Crossref]

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brutting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[Crossref]

Burn, P. L.

T. Lee, B. Caron, M. Stroet, D. M. Huang, P. L. Burn, and A. E. Mark, “The Molecular origin of anisotropic emission in an organic light-emitting diode,” Nano Lett. 17(10), 6464–6468 (2017).
[Crossref] [PubMed]

Callens, M. K.

Caron, B.

T. Lee, B. Caron, M. Stroet, D. M. Huang, P. L. Burn, and A. E. Mark, “The Molecular origin of anisotropic emission in an organic light-emitting diode,” Nano Lett. 17(10), 6464–6468 (2017).
[Crossref] [PubMed]

Celebi, K.

Chakaroun, M.

M. Chakaroun, A. T. Diallo, S. Hamdad, S. Khadir, A. P. A. Fischer, and A. Boudrioua, ““Experimental and theoretical study of the optical properties optimization of an OLED in a microcavity,” IEEE T,” Electron Dev. 65, 4897–4904 (2018).

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (2007).
[Crossref]

Chen, H. W.

H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7(3), 17168 (2018).
[Crossref] [PubMed]

Chen, S.

H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7(3), 17168 (2018).
[Crossref] [PubMed]

Chen, X.

S. Liu, Y. Ma, X. Chen, and C. Zhang, “Estimation of the convergence order of rigorous coupled-wave analysis for binary gratings in optical critical dimension metrology,” Opt. Eng. 51(8), 081504 (2012).
[Crossref]

Chiu, T. L.

Cho, D. H.

Cho, H.

Cho, N. S.

Chung, J.

De Visschere, P.

Diallo, A. T.

M. Chakaroun, A. T. Diallo, S. Hamdad, S. Khadir, A. P. A. Fischer, and A. Boudrioua, ““Experimental and theoretical study of the optical properties optimization of an OLED in a microcavity,” IEEE T,” Electron Dev. 65, 4897–4904 (2018).

Djurovich, M. R. P. I.

T. D. Schmidt, T. Lampe, D. Sylvinson, M. R. P. I. Djurovich, M. E. Thompsom, and W. Brutting, “Emitter orientation as a key parameter in organic light-emitting diodes,” Phys. Rev. Appl. 8, 037001 (2017).

Donderici, B.

H. Moon, B. Donderici, and F. L. Teixeira, “Stable evaluation of Green’s functions in cylindrically stratified regions with uniaxial anisotropic layers,” J. Comput. Phys. 325, 174–200 (2016).
[Crossref]

K. Sainath, F. L. Teixeira, and B. Donderici, “Robust computation of dipole electromagnetic fields in arbitrarily anisotropic, planar-stratified environments,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 013312 (2014).
[Crossref] [PubMed]

Dong, Y.

H. Liang, Z. Luo, R. Zhu, Y. Dong, J. H. Lee, J. Zhou, and S. T. Wu, “High efficiency quantum dot and organic LEDs with a bach-cavity and a high index substrate,” J. Phys. D Appl. Phys. 49(14), 145103 (2016).
[Crossref]

H. Liang, R. Zhu, Y. Dong, S. T. Wu, J. Li, J. Wang, and J. Zhou, “Enhancing the outcoupling efficiency of quantum dot LEDs with internal nano-scattering pattern,” Opt. Express 23(10), 12910–12922 (2015).
[Crossref] [PubMed]

Fischer, A. P. A.

M. Chakaroun, A. T. Diallo, S. Hamdad, S. Khadir, A. P. A. Fischer, and A. Boudrioua, ““Experimental and theoretical study of the optical properties optimization of an OLED in a microcavity,” IEEE T,” Electron Dev. 65, 4897–4904 (2018).

Frischeisen, J.

W. Brutting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light- emitting diodes: progress by improved light outcoupling,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 44–65 (2013).
[Crossref]

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brutting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[Crossref]

Fu, X. Y.

A. Salehi, X. Y. Fu, D. H. Shin, and F. So, “Recent advances in OLED optical design,” Adv. Funct. Mater. 29(15), 1808803 (2019).
[Crossref]

Furno, M.

R. Meerheim, M. Furno, S. Hofmann, B. Lussem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
[Crossref]

Gather, M. C.

M. C. Gather and S. Reineke, “Recent advances in light outcoupling from white organic light-emitting diodes,” J. Photon. Energy 5(1), 057607 (2015).
[Crossref]

M. C. Gather, A. Köhnen, and K. Meerholz, “White organic light-emitting diodes,” Adv. Mater. 23(2), 233–248 (2011).
[Crossref] [PubMed]

Gaylord, T. K.

Grann, E. B.

Hall, D. G.

Hamdad, S.

M. Chakaroun, A. T. Diallo, S. Hamdad, S. Khadir, A. P. A. Fischer, and A. Boudrioua, ““Experimental and theoretical study of the optical properties optimization of an OLED in a microcavity,” IEEE T,” Electron Dev. 65, 4897–4904 (2018).

He, X.

Heidel, T. D.

Hoang, T. V.

S. E. Lee, T. V. Hoang, J. H. Lee, and Y. K. Kim, “Investigation of light out-coupling efficiency of blue OLED using microcavity effects,” Physica B 550, 122–126 (2018).
[Crossref]

T. V. Hoang, S. E. Lee, J. G. Lee, Y. K. Kim, and J. H. Lee, “Optimum thickness of epsilon negative tri-metal layer electrodes for maximizing OLED outcoupling efficiency,” Opt. Express 25(25), 31006–31016 (2017).
[Crossref] [PubMed]

Hofmann, S.

R. Meerheim, M. Furno, S. Hofmann, B. Lussem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
[Crossref]

Hsu, H. C.

Huang, D. M.

T. Lee, B. Caron, M. Stroet, D. M. Huang, P. L. Burn, and A. E. Mark, “The Molecular origin of anisotropic emission in an organic light-emitting diode,” Nano Lett. 17(10), 6464–6468 (2017).
[Crossref] [PubMed]

Ishikawa, K.

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010).
[Crossref]

Jain, V. K.

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[Crossref]

Jang, J. H.

Jeong, S. M.

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010).
[Crossref]

Jin, Z. M.

M. Qian, X. B. Shi, Y. Liu, Z. M. Jin, X. L. Wang, Z. K. Wang, and L. S. Liao, “Theoretical model for the external quantum efficiency of organic light-emitting diodes and its experimental validation,” Org. Electron. 25, 200–205 (2015).
[Crossref]

Kang, K.

K. Kang, Y. Lee, J. Kim, H. Lee, and B. Yang, “A generalized Fabry-Perot formulation for optical modeling of organic light-emitting diodes considering the dipole orientation and light polarization,” IEEE Photonics J. 8(2), 1–19 (2016).
[Crossref]

Khadir, S.

M. Chakaroun, A. T. Diallo, S. Hamdad, S. Khadir, A. P. A. Fischer, and A. Boudrioua, ““Experimental and theoretical study of the optical properties optimization of an OLED in a microcavity,” IEEE T,” Electron Dev. 65, 4897–4904 (2018).

Kim, H.

Kim, J.

K. Kang, Y. Lee, J. Kim, H. Lee, and B. Yang, “A generalized Fabry-Perot formulation for optical modeling of organic light-emitting diodes considering the dipole orientation and light polarization,” IEEE Photonics J. 8(2), 1–19 (2016).
[Crossref]

Kim, J. J.

K. H. Kim and J. J. Kim, “Origin and control of orientation of phosphorescent and TADF dyes for high efficiency OLEDs,” Adv. Mater. 30(42), e1705600 (2018).
[Crossref] [PubMed]

C. K. Moon, S. Y. Kim, J. H. Lee, and J. J. Kim, “Luminescence from oriented emitting dipoles in a birefringent medium,” Opt. Express 23(7), A279–A291 (2015).
[Crossref] [PubMed]

Kim, J. W.

Kim, K. H.

K. H. Kim and J. J. Kim, “Origin and control of orientation of phosphorescent and TADF dyes for high efficiency OLEDs,” Adv. Mater. 30(42), e1705600 (2018).
[Crossref] [PubMed]

Kim, S. Y.

Kim, Y. K.

S. E. Lee, T. V. Hoang, J. H. Lee, and Y. K. Kim, “Investigation of light out-coupling efficiency of blue OLED using microcavity effects,” Physica B 550, 122–126 (2018).
[Crossref]

T. V. Hoang, S. E. Lee, J. G. Lee, Y. K. Kim, and J. H. Lee, “Optimum thickness of epsilon negative tri-metal layer electrodes for maximizing OLED outcoupling efficiency,” Opt. Express 25(25), 31006–31016 (2017).
[Crossref] [PubMed]

Ko, D. Y. K.

Köhnen, A.

M. C. Gather, A. Köhnen, and K. Meerholz, “White organic light-emitting diodes,” Adv. Mater. 23(2), 233–248 (2011).
[Crossref] [PubMed]

Koo, W. H.

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010).
[Crossref]

Kovacic, M.

M. Kovacic, P. A. Will, B. Lipvsek, M. Topic, S. Lenk, S. Reineke, and J. Krc, “Coupled optical modeling for optimization of organic light-emitting diodes with external outcoupling structures,” ACS Photonics 5(2), 422–430 (2018).
[Crossref]

Krc, J.

M. Kovacic, P. A. Will, B. Lipvsek, M. Topic, S. Lenk, S. Reineke, and J. Krc, “Coupled optical modeling for optimization of organic light-emitting diodes with external outcoupling structures,” ACS Photonics 5(2), 422–430 (2018).
[Crossref]

Krummacher, B. C.

A. A. Shcherbakov, A. V. Tishchenko, D. S. Setz, and B. C. Krummacher, “Rigorous S-matrix approach to the modeling of the optical properties of OLEDs,” Org. Electron. 12(4), 654–659 (2011).
[Crossref]

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brutting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[Crossref]

Kuo, C. C.

Kwok, H.-S.

H. Peng, J. Sun, X. Zhu, X. Yu, M. Wong, and H.-S. Kwok, “High-efficiency microcavity top-emitting organic light-emitting diodes using silver anode,” Appl. Phys. Lett. 88(7), 073517 (2006).
[Crossref]

Lampe, T.

T. D. Schmidt, T. Lampe, D. Sylvinson, M. R. P. I. Djurovich, M. E. Thompsom, and W. Brutting, “Emitter orientation as a key parameter in organic light-emitting diodes,” Phys. Rev. Appl. 8, 037001 (2017).

Lee, B.

Lee, H.

H. Cho, J. Chung, J. Song, J. Lee, H. Lee, J. Lee, J. Moon, S. Yoo, and N. S. Cho, “Importance of Purcell factor for optimizing structure of organic light-emitting diodes,” Opt. Express 27(8), 11057–11068 (2019).
[Crossref] [PubMed]

K. Kang, Y. Lee, J. Kim, H. Lee, and B. Yang, “A generalized Fabry-Perot formulation for optical modeling of organic light-emitting diodes considering the dipole orientation and light polarization,” IEEE Photonics J. 8(2), 1–19 (2016).
[Crossref]

Lee, I. M.

Lee, J.

Lee, J. G.

Lee, J. H.

H. Liang, H. C. Hsu, J. Wu, X. He, M. K. Wei, T. L. Chiu, C. F. Lin, J. H. Lee, and J. Wang, “Corrugated organic light-emitting diodes to effectively extract internal modes,” Opt. Express 27(8), A372–A384 (2019).
[Crossref] [PubMed]

S. E. Lee, T. V. Hoang, J. H. Lee, and Y. K. Kim, “Investigation of light out-coupling efficiency of blue OLED using microcavity effects,” Physica B 550, 122–126 (2018).
[Crossref]

H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7(3), 17168 (2018).
[Crossref] [PubMed]

T. V. Hoang, S. E. Lee, J. G. Lee, Y. K. Kim, and J. H. Lee, “Optimum thickness of epsilon negative tri-metal layer electrodes for maximizing OLED outcoupling efficiency,” Opt. Express 25(25), 31006–31016 (2017).
[Crossref] [PubMed]

H. Liang, Z. Luo, R. Zhu, Y. Dong, J. H. Lee, J. Zhou, and S. T. Wu, “High efficiency quantum dot and organic LEDs with a bach-cavity and a high index substrate,” J. Phys. D Appl. Phys. 49(14), 145103 (2016).
[Crossref]

C. K. Moon, S. Y. Kim, J. H. Lee, and J. J. Kim, “Luminescence from oriented emitting dipoles in a birefringent medium,” Opt. Express 23(7), A279–A291 (2015).
[Crossref] [PubMed]

Lee, J. I.

Lee, S. E.

S. E. Lee, T. V. Hoang, J. H. Lee, and Y. K. Kim, “Investigation of light out-coupling efficiency of blue OLED using microcavity effects,” Physica B 550, 122–126 (2018).
[Crossref]

T. V. Hoang, S. E. Lee, J. G. Lee, Y. K. Kim, and J. H. Lee, “Optimum thickness of epsilon negative tri-metal layer electrodes for maximizing OLED outcoupling efficiency,” Opt. Express 25(25), 31006–31016 (2017).
[Crossref] [PubMed]

Lee, T.

T. Lee, B. Caron, M. Stroet, D. M. Huang, P. L. Burn, and A. E. Mark, “The Molecular origin of anisotropic emission in an organic light-emitting diode,” Nano Lett. 17(10), 6464–6468 (2017).
[Crossref] [PubMed]

Lee, Y.

K. Kang, Y. Lee, J. Kim, H. Lee, and B. Yang, “A generalized Fabry-Perot formulation for optical modeling of organic light-emitting diodes considering the dipole orientation and light polarization,” IEEE Photonics J. 8(2), 1–19 (2016).
[Crossref]

Lenk, S.

M. Kovacic, P. A. Will, B. Lipvsek, M. Topic, S. Lenk, S. Reineke, and J. Krc, “Coupled optical modeling for optimization of organic light-emitting diodes with external outcoupling structures,” ACS Photonics 5(2), 422–430 (2018).
[Crossref]

Leo, K.

S. Reineke, M. Thomschke, B. Lussem, and K. Leo, “White organic light-emitting diodes: status and perspective,” Rev. Mod. Phys. 85(3), 1245–1293 (2013).
[Crossref]

R. Meerheim, M. Furno, S. Hofmann, B. Lussem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
[Crossref]

Li, J.

Li, L.

Liang, H.

Liao, L. S.

M. Qian, X. B. Shi, Y. Liu, Z. M. Jin, X. L. Wang, Z. K. Wang, and L. S. Liao, “Theoretical model for the external quantum efficiency of organic light-emitting diodes and its experimental validation,” Org. Electron. 25, 200–205 (2015).
[Crossref]

Lin, B. Y.

H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7(3), 17168 (2018).
[Crossref] [PubMed]

Lin, C. F.

Lipvsek, B.

M. Kovacic, P. A. Will, B. Lipvsek, M. Topic, S. Lenk, S. Reineke, and J. Krc, “Coupled optical modeling for optimization of organic light-emitting diodes with external outcoupling structures,” ACS Photonics 5(2), 422–430 (2018).
[Crossref]

Liu, S.

S. Liu, Y. Ma, X. Chen, and C. Zhang, “Estimation of the convergence order of rigorous coupled-wave analysis for binary gratings in optical critical dimension metrology,” Opt. Eng. 51(8), 081504 (2012).
[Crossref]

Liu, Y.

M. Qian, X. B. Shi, Y. Liu, Z. M. Jin, X. L. Wang, Z. K. Wang, and L. S. Liao, “Theoretical model for the external quantum efficiency of organic light-emitting diodes and its experimental validation,” Org. Electron. 25, 200–205 (2015).
[Crossref]

Lukosz, W.

W. Lukosz, “Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers,” Phys. Rev. B 22(6), 3030–3038 (1980).
[Crossref]

Luo, Z.

H. Liang, Z. Luo, R. Zhu, Y. Dong, J. H. Lee, J. Zhou, and S. T. Wu, “High efficiency quantum dot and organic LEDs with a bach-cavity and a high index substrate,” J. Phys. D Appl. Phys. 49(14), 145103 (2016).
[Crossref]

R. Zhu, Z. Luo, and S. T. Wu, “Light extraction analysis and enhancement in a quantum dot light emitting diode,” Opt. Express 22(S7Suppl 7), A1783–A1798 (2014).
[Crossref] [PubMed]

Lussem, B.

S. Reineke, M. Thomschke, B. Lussem, and K. Leo, “White organic light-emitting diodes: status and perspective,” Rev. Mod. Phys. 85(3), 1245–1293 (2013).
[Crossref]

R. Meerheim, M. Furno, S. Hofmann, B. Lussem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
[Crossref]

Ma, Y.

S. Liu, Y. Ma, X. Chen, and C. Zhang, “Estimation of the convergence order of rigorous coupled-wave analysis for binary gratings in optical critical dimension metrology,” Opt. Eng. 51(8), 081504 (2012).
[Crossref]

Mark, A. E.

T. Lee, B. Caron, M. Stroet, D. M. Huang, P. L. Burn, and A. E. Mark, “The Molecular origin of anisotropic emission in an organic light-emitting diode,” Nano Lett. 17(10), 6464–6468 (2017).
[Crossref] [PubMed]

Mayr, C.

W. Brutting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light- emitting diodes: progress by improved light outcoupling,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 44–65 (2013).
[Crossref]

Meerheim, R.

R. Meerheim, M. Furno, S. Hofmann, B. Lussem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
[Crossref]

Meerholz, K.

M. C. Gather, A. Köhnen, and K. Meerholz, “White organic light-emitting diodes,” Adv. Mater. 23(2), 233–248 (2011).
[Crossref] [PubMed]

Mehta, D. S.

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[Crossref]

Moharam, M. G.

Moon, C. K.

Moon, H.

H. Moon, B. Donderici, and F. L. Teixeira, “Stable evaluation of Green’s functions in cylindrically stratified regions with uniaxial anisotropic layers,” J. Comput. Phys. 325, 174–200 (2016).
[Crossref]

Moon, J.

Moon, J. H.

Neyts, K.

Neyts, K. A.

Nishimura, S.

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010).
[Crossref]

Nowy, S.

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brutting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[Crossref]

Oh, M. C.

Peng, H.

H. Peng, J. Sun, X. Zhu, X. Yu, M. Wong, and H.-S. Kwok, “High-efficiency microcavity top-emitting organic light-emitting diodes using silver anode,” Appl. Phys. Lett. 88(7), 073517 (2006).
[Crossref]

Penninck, L.

Poitras, D.

Pommet, D. A.

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (2007).
[Crossref]

Py, C.

Qian, M.

M. Qian, X. B. Shi, Y. Liu, Z. M. Jin, X. L. Wang, Z. K. Wang, and L. S. Liao, “Theoretical model for the external quantum efficiency of organic light-emitting diodes and its experimental validation,” Org. Electron. 25, 200–205 (2015).
[Crossref]

Reineke, S.

M. Kovacic, P. A. Will, B. Lipvsek, M. Topic, S. Lenk, S. Reineke, and J. Krc, “Coupled optical modeling for optimization of organic light-emitting diodes with external outcoupling structures,” ACS Photonics 5(2), 422–430 (2018).
[Crossref]

M. C. Gather and S. Reineke, “Recent advances in light outcoupling from white organic light-emitting diodes,” J. Photon. Energy 5(1), 057607 (2015).
[Crossref]

S. Reineke, M. Thomschke, B. Lussem, and K. Leo, “White organic light-emitting diodes: status and perspective,” Rev. Mod. Phys. 85(3), 1245–1293 (2013).
[Crossref]

Reinke, N. A.

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brutting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[Crossref]

Safonov, A.

J. A. E. Wasey, A. Safonov, I. D. W. Samuel, and W. L. Barnes, “Effects of dipole orientation and birefringence on the optical emission from thin films,” Opt. Commun. 183(1-4), 109–121 (2000).
[Crossref]

Sainath, K.

K. Sainath, F. L. Teixeira, and B. Donderici, “Robust computation of dipole electromagnetic fields in arbitrarily anisotropic, planar-stratified environments,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 013312 (2014).
[Crossref] [PubMed]

Salehi, A.

A. Salehi, X. Y. Fu, D. H. Shin, and F. So, “Recent advances in OLED optical design,” Adv. Funct. Mater. 29(15), 1808803 (2019).
[Crossref]

Sambles, J. R.

Samuel, I. D. W.

J. A. E. Wasey, A. Safonov, I. D. W. Samuel, and W. L. Barnes, “Effects of dipole orientation and birefringence on the optical emission from thin films,” Opt. Commun. 183(1-4), 109–121 (2000).
[Crossref]

Saxena, K.

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[Crossref]

Schmidt, T. D.

T. D. Schmidt, T. Lampe, D. Sylvinson, M. R. P. I. Djurovich, M. E. Thompsom, and W. Brutting, “Emitter orientation as a key parameter in organic light-emitting diodes,” Phys. Rev. Appl. 8, 037001 (2017).

W. Brutting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light- emitting diodes: progress by improved light outcoupling,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 44–65 (2013).
[Crossref]

Scholz, B. J.

W. Brutting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light- emitting diodes: progress by improved light outcoupling,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 44–65 (2013).
[Crossref]

Setz, D. S.

A. A. Shcherbakov, A. V. Tishchenko, D. S. Setz, and B. C. Krummacher, “Rigorous S-matrix approach to the modeling of the optical properties of OLEDs,” Org. Electron. 12(4), 654–659 (2011).
[Crossref]

Shcherbakov, A. A.

A. A. Shcherbakov, A. V. Tishchenko, D. S. Setz, and B. C. Krummacher, “Rigorous S-matrix approach to the modeling of the optical properties of OLEDs,” Org. Electron. 12(4), 654–659 (2011).
[Crossref]

Shi, X. B.

M. Qian, X. B. Shi, Y. Liu, Z. M. Jin, X. L. Wang, Z. K. Wang, and L. S. Liao, “Theoretical model for the external quantum efficiency of organic light-emitting diodes and its experimental validation,” Org. Electron. 25, 200–205 (2015).
[Crossref]

Shin, D. H.

A. Salehi, X. Y. Fu, D. H. Shin, and F. So, “Recent advances in OLED optical design,” Adv. Funct. Mater. 29(15), 1808803 (2019).
[Crossref]

Shin, J. W.

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (2007).
[Crossref]

So, F.

A. Salehi, X. Y. Fu, D. H. Shin, and F. So, “Recent advances in OLED optical design,” Adv. Funct. Mater. 29(15), 1808803 (2019).
[Crossref]

Song, J.

Stroet, M.

T. Lee, B. Caron, M. Stroet, D. M. Huang, P. L. Burn, and A. E. Mark, “The Molecular origin of anisotropic emission in an organic light-emitting diode,” Nano Lett. 17(10), 6464–6468 (2017).
[Crossref] [PubMed]

Su, S. J.

Z. Wang and S. J. Su, “Molecular and device design strategies for ideal performance white organic light-emitting diodes,” Chem. Rec. 18, 1–14 (2018).
[Crossref] [PubMed]

Sullivan, K. G.

Sun, J.

H. Peng, J. Sun, X. Zhu, X. Yu, M. Wong, and H.-S. Kwok, “High-efficiency microcavity top-emitting organic light-emitting diodes using silver anode,” Appl. Phys. Lett. 88(7), 073517 (2006).
[Crossref]

Sylvinson, D.

T. D. Schmidt, T. Lampe, D. Sylvinson, M. R. P. I. Djurovich, M. E. Thompsom, and W. Brutting, “Emitter orientation as a key parameter in organic light-emitting diodes,” Phys. Rev. Appl. 8, 037001 (2017).

Takezoe, H.

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010).
[Crossref]

Teixeira, F. L.

H. Moon, B. Donderici, and F. L. Teixeira, “Stable evaluation of Green’s functions in cylindrically stratified regions with uniaxial anisotropic layers,” J. Comput. Phys. 325, 174–200 (2016).
[Crossref]

K. Sainath, F. L. Teixeira, and B. Donderici, “Robust computation of dipole electromagnetic fields in arbitrarily anisotropic, planar-stratified environments,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 013312 (2014).
[Crossref] [PubMed]

Thompsom, M. E.

T. D. Schmidt, T. Lampe, D. Sylvinson, M. R. P. I. Djurovich, M. E. Thompsom, and W. Brutting, “Emitter orientation as a key parameter in organic light-emitting diodes,” Phys. Rev. Appl. 8, 037001 (2017).

Thomschke, M.

S. Reineke, M. Thomschke, B. Lussem, and K. Leo, “White organic light-emitting diodes: status and perspective,” Rev. Mod. Phys. 85(3), 1245–1293 (2013).
[Crossref]

Tishchenko, A. V.

A. A. Shcherbakov, A. V. Tishchenko, D. S. Setz, and B. C. Krummacher, “Rigorous S-matrix approach to the modeling of the optical properties of OLEDs,” Org. Electron. 12(4), 654–659 (2011).
[Crossref]

Topic, M.

M. Kovacic, P. A. Will, B. Lipvsek, M. Topic, S. Lenk, S. Reineke, and J. Krc, “Coupled optical modeling for optimization of organic light-emitting diodes with external outcoupling structures,” ACS Photonics 5(2), 422–430 (2018).
[Crossref]

Toyooka, T.

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010).
[Crossref]

Wang, J.

Wang, X. L.

M. Qian, X. B. Shi, Y. Liu, Z. M. Jin, X. L. Wang, Z. K. Wang, and L. S. Liao, “Theoretical model for the external quantum efficiency of organic light-emitting diodes and its experimental validation,” Org. Electron. 25, 200–205 (2015).
[Crossref]

Wang, Z.

Z. Wang and S. J. Su, “Molecular and device design strategies for ideal performance white organic light-emitting diodes,” Chem. Rec. 18, 1–14 (2018).
[Crossref] [PubMed]

Wang, Z. K.

M. Qian, X. B. Shi, Y. Liu, Z. M. Jin, X. L. Wang, Z. K. Wang, and L. S. Liao, “Theoretical model for the external quantum efficiency of organic light-emitting diodes and its experimental validation,” Org. Electron. 25, 200–205 (2015).
[Crossref]

Wasey, J. A. E.

J. A. E. Wasey, A. Safonov, I. D. W. Samuel, and W. L. Barnes, “Effects of dipole orientation and birefringence on the optical emission from thin films,” Opt. Commun. 183(1-4), 109–121 (2000).
[Crossref]

Wei, M. K.

Will, P. A.

M. Kovacic, P. A. Will, B. Lipvsek, M. Topic, S. Lenk, S. Reineke, and J. Krc, “Coupled optical modeling for optimization of organic light-emitting diodes with external outcoupling structures,” ACS Photonics 5(2), 422–430 (2018).
[Crossref]

Wong, M.

H. Peng, J. Sun, X. Zhu, X. Yu, M. Wong, and H.-S. Kwok, “High-efficiency microcavity top-emitting organic light-emitting diodes using silver anode,” Appl. Phys. Lett. 88(7), 073517 (2006).
[Crossref]

Wu, J.

Wu, S. T.

H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7(3), 17168 (2018).
[Crossref] [PubMed]

H. Liang, Z. Luo, R. Zhu, Y. Dong, J. H. Lee, J. Zhou, and S. T. Wu, “High efficiency quantum dot and organic LEDs with a bach-cavity and a high index substrate,” J. Phys. D Appl. Phys. 49(14), 145103 (2016).
[Crossref]

H. Liang, R. Zhu, Y. Dong, S. T. Wu, J. Li, J. Wang, and J. Zhou, “Enhancing the outcoupling efficiency of quantum dot LEDs with internal nano-scattering pattern,” Opt. Express 23(10), 12910–12922 (2015).
[Crossref] [PubMed]

R. Zhu, Z. Luo, and S. T. Wu, “Light extraction analysis and enhancement in a quantum dot light emitting diode,” Opt. Express 22(S7Suppl 7), A1783–A1798 (2014).
[Crossref] [PubMed]

Xiong, Z. H.

Z. H. Xiong, “Electromagnetic fields of electric dipoles embedded in a stratified anisotropic earth,” Geophys. 54(12), 1643–1646 (1989).
[Crossref]

Yang, B.

K. Kang, Y. Lee, J. Kim, H. Lee, and B. Yang, “A generalized Fabry-Perot formulation for optical modeling of organic light-emitting diodes considering the dipole orientation and light polarization,” IEEE Photonics J. 8(2), 1–19 (2016).
[Crossref]

Yokoyama, D.

M. K. Callens, D. Yokoyama, and K. Neyts, “Anisotropic materials in OLEDs for high outcoupling efficiency,” Opt. Express 23(16), 21128–21148 (2015).
[Crossref] [PubMed]

D. Yokoyama, “Molecular orientation in small-molecule organic light-emitting diodes,” J. Mater. Chem. 21(48), 19187–19202 (2011).
[Crossref]

Yoo, S.

Yu, X.

H. Peng, J. Sun, X. Zhu, X. Yu, M. Wong, and H.-S. Kwok, “High-efficiency microcavity top-emitting organic light-emitting diodes using silver anode,” Appl. Phys. Lett. 88(7), 073517 (2006).
[Crossref]

Zhang, C.

S. Liu, Y. Ma, X. Chen, and C. Zhang, “Estimation of the convergence order of rigorous coupled-wave analysis for binary gratings in optical critical dimension metrology,” Opt. Eng. 51(8), 081504 (2012).
[Crossref]

Zhou, J.

H. Liang, Z. Luo, R. Zhu, Y. Dong, J. H. Lee, J. Zhou, and S. T. Wu, “High efficiency quantum dot and organic LEDs with a bach-cavity and a high index substrate,” J. Phys. D Appl. Phys. 49(14), 145103 (2016).
[Crossref]

H. Liang, R. Zhu, Y. Dong, S. T. Wu, J. Li, J. Wang, and J. Zhou, “Enhancing the outcoupling efficiency of quantum dot LEDs with internal nano-scattering pattern,” Opt. Express 23(10), 12910–12922 (2015).
[Crossref] [PubMed]

Zhu, R.

Zhu, X.

H. Peng, J. Sun, X. Zhu, X. Yu, M. Wong, and H.-S. Kwok, “High-efficiency microcavity top-emitting organic light-emitting diodes using silver anode,” Appl. Phys. Lett. 88(7), 073517 (2006).
[Crossref]

ACS Photonics (1)

M. Kovacic, P. A. Will, B. Lipvsek, M. Topic, S. Lenk, S. Reineke, and J. Krc, “Coupled optical modeling for optimization of organic light-emitting diodes with external outcoupling structures,” ACS Photonics 5(2), 422–430 (2018).
[Crossref]

Adv. Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (2007).
[Crossref]

Adv. Funct. Mater. (1)

A. Salehi, X. Y. Fu, D. H. Shin, and F. So, “Recent advances in OLED optical design,” Adv. Funct. Mater. 29(15), 1808803 (2019).
[Crossref]

Adv. Mater. (2)

M. C. Gather, A. Köhnen, and K. Meerholz, “White organic light-emitting diodes,” Adv. Mater. 23(2), 233–248 (2011).
[Crossref] [PubMed]

K. H. Kim and J. J. Kim, “Origin and control of orientation of phosphorescent and TADF dyes for high efficiency OLEDs,” Adv. Mater. 30(42), e1705600 (2018).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

H. Peng, J. Sun, X. Zhu, X. Yu, M. Wong, and H.-S. Kwok, “High-efficiency microcavity top-emitting organic light-emitting diodes using silver anode,” Appl. Phys. Lett. 88(7), 073517 (2006).
[Crossref]

R. Meerheim, M. Furno, S. Hofmann, B. Lussem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
[Crossref]

Chem. Rec. (1)

Z. Wang and S. J. Su, “Molecular and device design strategies for ideal performance white organic light-emitting diodes,” Chem. Rec. 18, 1–14 (2018).
[Crossref] [PubMed]

Electron Dev. (1)

M. Chakaroun, A. T. Diallo, S. Hamdad, S. Khadir, A. P. A. Fischer, and A. Boudrioua, ““Experimental and theoretical study of the optical properties optimization of an OLED in a microcavity,” IEEE T,” Electron Dev. 65, 4897–4904 (2018).

Geophys. (1)

Z. H. Xiong, “Electromagnetic fields of electric dipoles embedded in a stratified anisotropic earth,” Geophys. 54(12), 1643–1646 (1989).
[Crossref]

IEEE Photonics J. (1)

K. Kang, Y. Lee, J. Kim, H. Lee, and B. Yang, “A generalized Fabry-Perot formulation for optical modeling of organic light-emitting diodes considering the dipole orientation and light polarization,” IEEE Photonics J. 8(2), 1–19 (2016).
[Crossref]

J. Appl. Phys. (1)

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brutting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[Crossref]

J. Comput. Phys. (1)

H. Moon, B. Donderici, and F. L. Teixeira, “Stable evaluation of Green’s functions in cylindrically stratified regions with uniaxial anisotropic layers,” J. Comput. Phys. 325, 174–200 (2016).
[Crossref]

J. Mater. Chem. (1)

D. Yokoyama, “Molecular orientation in small-molecule organic light-emitting diodes,” J. Mater. Chem. 21(48), 19187–19202 (2011).
[Crossref]

J. Opt. Soc. Am. A (5)

J. Opt. Soc. Am. B (1)

J. Photon. Energy (1)

M. C. Gather and S. Reineke, “Recent advances in light outcoupling from white organic light-emitting diodes,” J. Photon. Energy 5(1), 057607 (2015).
[Crossref]

J. Phys. D Appl. Phys. (1)

H. Liang, Z. Luo, R. Zhu, Y. Dong, J. H. Lee, J. Zhou, and S. T. Wu, “High efficiency quantum dot and organic LEDs with a bach-cavity and a high index substrate,” J. Phys. D Appl. Phys. 49(14), 145103 (2016).
[Crossref]

Light Sci. Appl. (1)

H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7(3), 17168 (2018).
[Crossref] [PubMed]

Nano Lett. (1)

T. Lee, B. Caron, M. Stroet, D. M. Huang, P. L. Burn, and A. E. Mark, “The Molecular origin of anisotropic emission in an organic light-emitting diode,” Nano Lett. 17(10), 6464–6468 (2017).
[Crossref] [PubMed]

Nat. Photonics (1)

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010).
[Crossref]

Opt. Commun. (1)

J. A. E. Wasey, A. Safonov, I. D. W. Samuel, and W. L. Barnes, “Effects of dipole orientation and birefringence on the optical emission from thin films,” Opt. Commun. 183(1-4), 109–121 (2000).
[Crossref]

Opt. Eng. (1)

S. Liu, Y. Ma, X. Chen, and C. Zhang, “Estimation of the convergence order of rigorous coupled-wave analysis for binary gratings in optical critical dimension metrology,” Opt. Eng. 51(8), 081504 (2012).
[Crossref]

Opt. Express (11)

K. Celebi, T. D. Heidel, and M. A. Baldo, “Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green’s functions,” Opt. Express 15(4), 1762–1772 (2007).
[Crossref] [PubMed]

D. Poitras, C. C. Kuo, and C. Py, “Design of high-contrast OLEDs with microcavity effect,” Opt. Express 16(11), 8003–8015 (2008).
[Crossref] [PubMed]

L. Penninck, P. De Visschere, J. Beeckman, and K. Neyts, “Dipole radiation within one-dimensional anisotropic microcavities: a simulation method,” Opt. Express 19(19), 18558–18576 (2011).
[Crossref] [PubMed]

J. W. Kim, J. H. Jang, M. C. Oh, J. W. Shin, D. H. Cho, J. H. Moon, and J. I. Lee, “FDTD analysis of the light extraction efficiency of OLEDs with a random scattering layer,” Opt. Express 22(1), 498–507 (2014).
[Crossref] [PubMed]

R. Zhu, Z. Luo, and S. T. Wu, “Light extraction analysis and enhancement in a quantum dot light emitting diode,” Opt. Express 22(S7Suppl 7), A1783–A1798 (2014).
[Crossref] [PubMed]

C. K. Moon, S. Y. Kim, J. H. Lee, and J. J. Kim, “Luminescence from oriented emitting dipoles in a birefringent medium,” Opt. Express 23(7), A279–A291 (2015).
[Crossref] [PubMed]

H. Liang, R. Zhu, Y. Dong, S. T. Wu, J. Li, J. Wang, and J. Zhou, “Enhancing the outcoupling efficiency of quantum dot LEDs with internal nano-scattering pattern,” Opt. Express 23(10), 12910–12922 (2015).
[Crossref] [PubMed]

M. K. Callens, D. Yokoyama, and K. Neyts, “Anisotropic materials in OLEDs for high outcoupling efficiency,” Opt. Express 23(16), 21128–21148 (2015).
[Crossref] [PubMed]

T. V. Hoang, S. E. Lee, J. G. Lee, Y. K. Kim, and J. H. Lee, “Optimum thickness of epsilon negative tri-metal layer electrodes for maximizing OLED outcoupling efficiency,” Opt. Express 25(25), 31006–31016 (2017).
[Crossref] [PubMed]

H. Liang, H. C. Hsu, J. Wu, X. He, M. K. Wei, T. L. Chiu, C. F. Lin, J. H. Lee, and J. Wang, “Corrugated organic light-emitting diodes to effectively extract internal modes,” Opt. Express 27(8), A372–A384 (2019).
[Crossref] [PubMed]

H. Cho, J. Chung, J. Song, J. Lee, H. Lee, J. Lee, J. Moon, S. Yoo, and N. S. Cho, “Importance of Purcell factor for optimizing structure of organic light-emitting diodes,” Opt. Express 27(8), 11057–11068 (2019).
[Crossref] [PubMed]

Opt. Mater. (1)

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[Crossref]

Org. Electron. (2)

A. A. Shcherbakov, A. V. Tishchenko, D. S. Setz, and B. C. Krummacher, “Rigorous S-matrix approach to the modeling of the optical properties of OLEDs,” Org. Electron. 12(4), 654–659 (2011).
[Crossref]

M. Qian, X. B. Shi, Y. Liu, Z. M. Jin, X. L. Wang, Z. K. Wang, and L. S. Liao, “Theoretical model for the external quantum efficiency of organic light-emitting diodes and its experimental validation,” Org. Electron. 25, 200–205 (2015).
[Crossref]

Phys. Rev. Appl. (1)

T. D. Schmidt, T. Lampe, D. Sylvinson, M. R. P. I. Djurovich, M. E. Thompsom, and W. Brutting, “Emitter orientation as a key parameter in organic light-emitting diodes,” Phys. Rev. Appl. 8, 037001 (2017).

Phys. Rev. B (1)

W. Lukosz, “Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers,” Phys. Rev. B 22(6), 3030–3038 (1980).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

K. Sainath, F. L. Teixeira, and B. Donderici, “Robust computation of dipole electromagnetic fields in arbitrarily anisotropic, planar-stratified environments,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 013312 (2014).
[Crossref] [PubMed]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

W. Brutting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light- emitting diodes: progress by improved light outcoupling,” Phys. Status Solidi., A Appl. Mater. Sci. 210(1), 44–65 (2013).
[Crossref]

Physica B (1)

S. E. Lee, T. V. Hoang, J. H. Lee, and Y. K. Kim, “Investigation of light out-coupling efficiency of blue OLED using microcavity effects,” Physica B 550, 122–126 (2018).
[Crossref]

Rev. Mod. Phys. (1)

S. Reineke, M. Thomschke, B. Lussem, and K. Leo, “White organic light-emitting diodes: status and perspective,” Rev. Mod. Phys. 85(3), 1245–1293 (2013).
[Crossref]

Other (4)

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1995), Chap. 2.

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic, 2007), Chap.6.

G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists (Academic, 2005), Chap. 11.

A. G. Fluxim, “Semiconducting emissive thin film optics simulator SETFOS,” http://www.fluxim.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic of a typical OLED structure. (b) Simplified formulation model for the stratified anisotropic OLED structure with dipole in the s-th layer.
Fig. 2
Fig. 2 (a) A detailed structure of a prototypic OLED device used for simulation. (b) Intrinsic emission spectrum of the emitting materials with a peak wavelength corresponding to 539 nm.
Fig. 3
Fig. 3 Simulated (a) outcoupling efficiency and (b) normalized decay rate as a function of the ETL layer thickness and the difference between their model and our proposed model. Dipoles orientated perpendicular to the substrate plane are denoted as VED and those orientated parallel to the substrate plane are denoted as HED. The phrase “δVED” and “δHED” in legend denote the difference between their model and our model for VED and HED respectively.
Fig. 4
Fig. 4 Simulated normalized emission in the direction normal to the substrate under various ETL layer thickness by our proposed method and the commercial software Fluxim Setfos The results using our model are denoted by lines while those using Setfos are denoted by circles.
Fig. 5
Fig. 5 Simulated outcoupling efficiency of the OLED stack under investigation as a function of the dipole position and wavelength for (a) VED and (b) HED.
Fig. 6
Fig. 6 Simulated outcoupling efficiency of the OLED stack as a function of the ETL thickness under various radiative quantum efficiency q for (a) VED and (b) HED.
Fig. 7
Fig. 7 Simulated normalized decay rate of the OLED as a function of the ETL layer thickness under various radiative quantum efficiency q for (a) VED and (b) HED.
Fig. 8
Fig. 8 Simulated far-field normalized angular emission profile with ETL layer birefringence for (a) VED and (b) HED under the wavelength λ = 539 nm.
Fig. 9
Fig. 9 Simulated far-field normalized angular emission profile with HTL layer birefringence for (a) VED and (b) HED under the wavelength λ = 539 nm.
Fig. 10
Fig. 10 Amount of power coupled to different optical channels for the OLED in dependence of the layer birefringence and dipole orientation. The radiative quantum efficiency is assumed as q = 1, and the simulation was performed under monochromatic wave with wavelength λ = 539 nm. Figures 10(a) and 10(b) denote the corresponding influence of the ETL and HTL layer birefringence on power dissipation for VED, while Figs. 10(c) and 10(d) denote that for HED.

Tables (1)

Tables Icon

Table 1 The optical constants of OLED layers at wavelength λ = 539 nm.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

ε = ε v I + ( ε h ε v ) z z .
A z ( ρ , z ) = e ^ z ε h ε v j μ 4 π 0 k ρ k z v J 0 ( k ρ ρ ) e j k z v | z z | d k ρ ,
A x ( ρ , z ) = e ^ x j μ 4 π 0 k ρ k z h J 0 ( k ρ ρ ) e j k z h | z z | d k ρ + e ^ z μ 4 π sgn ( z z ) x 0 1 k ρ J 0 ( k ρ ρ ) ( e j k z h | z z | e j k z v | z z | ) d k ρ ,
ρ = ( x x ) 2 + ( y y ) 2 ,
k z h = k 0 2 ε h k ρ 2 ,
k z v = k 0 2 ε h k ρ 2 ε h / ε v ,
E z z = 1 4 π ω ε v ε h ε v 0 k ρ 3 k z v J 0 ( k ρ ρ ) e j k z v | z | d k ρ ,
H z z = 0 ,
E z x = j sgn ( z ) 4 π ω ε v x 0 k ρ J 0 ( k ρ ρ ) e j k z v | z | d k ρ ,
H z x = j 4 π y 0 k ρ k z h J 0 ( k ρ ρ ) e j k z h | z | d k ρ .
E l , z z ( z ) = 1 4 π ω ε l , v ε l , h ε l , v 0 k ρ 3 k l , z v [ A l e j k l , z v z + A l e j k l , z v z + δ ( l m ) e j k l , z v | z | ] J 0 ( k ρ ρ ) d k ρ ,
E l , z x ( z ) = j 4 π ω ε l , v x 0 k ρ [ B l e j k l , z v z + B l e j k l , z v z + δ ( l m ) sgn ( z ) e j k l , z v | z | ] J 0 ( k ρ ρ ) d k ρ ,
H l , z x ( z ) = j 4 π y 0 k ρ k l , z h [ C l e j k l , z h z + C l e j k l , z h z + δ ( l m ) e j k l , z h | z | ] J 0 ( k ρ ρ ) d k ρ .
ε l , v E l , z = ε l + 1 , v E l + 1 , z , 1 ε l , h z ε l , v E l , z = 1 ε l + 1 , h z ε l + 1 , v E l + 1 , z ,
H l , z = H l + 1 , z , z H l , z = z H l + 1 , z .
E x = j ω μ k ρ 2 H z y + ε v ε h k ρ 2 z E z x ,
E y = j ω μ k ρ 2 H z x + ε v ε h k ρ 2 z E z y ,
H x = j ω ε v k ρ 2 E z y + 1 k ρ 2 z H z x ,
H y = j ω ε v k ρ 2 E z x + 1 k ρ 2 z H z y .
S = Re σ ( E × H * ) n d σ ,
S l TM , z = 3 q 4 Re | ε s , v | 2 ε s , v * 2 ε s , h * Re ( ε l , h ε l , v ) * u 3 n s 4 ε l , h * ( 1 u 2 ε s , v / ε l , v ) * ε l , v [ A l e j k l , z v z A l e j k l , z v z ] [ A l e j k l , z v z + A l e j k l , z v z ] * d u ,
S l TE , x = 1 2 ( 3 q ε s , h 3 ε s , h + ε s , v ) Re d u u n s ε l , h / n s 2 u 2 [ C l e j k l , z h z + C l e j k l , z h z ] [ C l e j k l , z h z C l e j k l , z h z ] * ,
S l TM , x = 1 2 ( 3 q ε s , h 3 ε s , h + ε s , v ) Re d u u n s 2 1 u 2 n s 2 / ε l , v ε l , h [ B l e j k l , z v z B l e j k l , z v z ] [ B l e j k l , z v z + B l e j k l , z v z ] * .
b z b 0 = 1 q + q { 1 + 3 2 Re [ 0 d u u 3 1 u 2 ( A s + A s ) ] } ,
b x b = 1 q + q { 1 + Re [ 0 d u 3 ε s , v u 3 ε s , h + ε s , v ( C s + C s 1 u 2 ε s , v / ε s , h 1 u 2 ( B s B s ) ) ] } .
η outcoupling x . z = S N x , z / ( b x , z / b 0 ) ,
I ( θ air , λ ) = α S N T M , z ( u , λ ) 2 π tan ( θ air ) + ( 1 α ) S N T E , x ( u , λ ) + S N T M , x ( u , λ ) 2 π tan ( θ air ) ,
τ τ 0 = b ( q ) b 0 ,
ε v = ( n + Δ n + j k ) 2 .

Metrics