Abstract

We introduce a new coherent anti-Stokes Raman scattering (CARS) suppression scheme based on measuring a non-resonant CARS loss signal by three-beam (pump-Stokes-depletion) double stimulated Raman scattering (SRS) processes, which can be potentially of use for super-resolution Raman microscopy. In the converging configuration with employing both pump-depletion and Stokes-depletion SRS processes, we obtained approximately 94% suppression of non-resonant CARS signal, which is about 1.5 times more efficient than that with the parallel configuration with pump-Stokes and pump-depletion SRS processes. Such an enhanced suppression efficiency in the converging configuration results from a simultaneous loss of photons both in the pump and Stokes beams by double SRS processes, leading to an efficient suppression of the pump-Stokes-pump CARS signal. Based on the present method, we further propose two potential applications: (1) non-resonant background-free CARS imaging and (2) label-free super-resolution Raman imaging, and carry out simple numerical simulations to show their feasibility.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Non-resonant background suppression by destructive interference in coherent anti-Stokes Raman scattering spectroscopy

Stanislav O. Konorov, Michael W. Blades, and Robin F. B. Turner
Opt. Express 19(27) 25925-25934 (2011)

Six-wave mixing coherent anti-Stokes Raman scattering microscopy

Vitor B. Pelegati, Bernardo B. C. Kyotoku, Lazaro A. Padilha, and Carlos L. Cesar
Biomed. Opt. Express 9(5) 2407-2417 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. X. Cheng and X. S. Xie, Coherent Raman scattering microscopy, (CRC Press, 2013).
  2. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  3. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
    [Crossref] [PubMed]
  4. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [Crossref]
  5. J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19(6), 1363–1375 (2002).
    [Crossref]
  6. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
    [Crossref] [PubMed]
  7. X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy,” ChemPhysChem 13(4), 1054–1059 (2012).
    [Crossref] [PubMed]
  8. D. Zhang, M. N. Slipchenko, D. E. Leaird, A. M. Weiner, and J. X. Cheng, “Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper,” Opt. Express 21(11), 13864–13874 (2013).
    [Crossref] [PubMed]
  9. A. Alfonso-García, R. Mittal, E. S. Lee, and E. O. Potma, “Biological imaging with coherent Raman scattering microscopy: a tutorial,” J. Biomed. Opt. 19(7), 071407 (2014).
    [Crossref]
  10. D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T. H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
    [Crossref] [PubMed]
  11. B. G. Saar, L. R. Contreras-Rojas, X. S. Xie, and R. H. Guy, “Imaging drug delivery to skin with stimulated Raman scattering microscopy,” Mol. Pharm. 8(3), 969–975 (2011).
    [Crossref] [PubMed]
  12. C. Zhang, D. Zhang, and J. X. Cheng, “Coherent Raman scattering microscopy in biology and medicine,” Annu. Rev. Biomed. Eng. 17(1), 415–445 (2015).
    [Crossref] [PubMed]
  13. L. Wei, Y. Yu, Y. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(28), 11226–11231 (2013).
    [Crossref] [PubMed]
  14. D. Polli, V. Kumar, C. M. Valensise, M. Marangoni, and G. Cerullo, “Broadband coherent Raman scattering microscopy,” Laser Photonics Rev. 12(9), 1800020 (2018).
    [Crossref]
  15. K. Bito, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source,” Chem. Phys. 419(20), 156–162 (2013).
    [Crossref]
  16. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  17. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref] [PubMed]
  18. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  19. S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
    [Crossref] [PubMed]
  20. V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
    [Crossref] [PubMed]
  21. C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
    [Crossref]
  22. C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
    [Crossref]
  23. L. Gong and H. Wang, “Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: a theoretical study,” Phys. Rev. A 90(1), 013818 (2014).
    [Crossref]
  24. W. R. Silva, C. T. Graefe, and R. R. Frontiera, “Toward label-free super-resolution microscopy,” ACS Photonics 3(1), 79–86 (2016).
    [Crossref]
  25. A. Gasecka, A. Daradich, H. Dehez, M. Piché, and D. Côté, “Resolution and contrast enhancement in coherent anti-Stokes Raman-scattering microscopy,” Opt. Lett. 38(21), 4510–4513 (2013).
    [Crossref] [PubMed]
  26. H. Kim, G. W. Bryant, and S. J. Stranick, “Superresolution four-wave mixing microscopy,” Opt. Express 20(6), 6042–6051 (2012).
    [Crossref] [PubMed]
  27. A. Nikolaenko, V. V. Krishnamachari, and E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79(1), 13823 (2009).
    [Crossref] [PubMed]
  28. D. Wang, S. Liu, Y. Chen, J. Song, W. Liu, M. Xiong, G. Wang, X. Peng, and J. Qu, “Breaking the diffraction barrier using coherent anti-Stokes Raman scattering difference microscopy,” Opt. Express 25(9), 10276–10286 (2017).
    [Crossref] [PubMed]
  29. W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
    [Crossref] [PubMed]
  30. W. P. Beeker, C. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
    [Crossref]
  31. W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
    [Crossref]
  32. W. Liu and H. Niu, “Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion,” Phys. Rev. A 83(2), 023830 (2011).
    [Crossref]
  33. M. Cho, “Three-beam double stimulated Raman scatterings,” J. Chem. Phys. 148(1), 014201 (2018).
    [Crossref] [PubMed]
  34. D. Kim, D. S. Choi, J. Kwon, S.-H. Shim, H. Rhee, and M. Cho, “A selective suppression of stimulated Raman scattering with another competing stimulated Raman scattering,” J. Phys. Chem. Lett. 8(24), 6118–6123 (2017).
    [Crossref] [PubMed]
  35. B. J. Rao and M. Cho, “Three-beam double stimulated Raman scatterings: Cascading configuration,” J. Chem. Phys. 148(11), 114201 (2018).
    [Crossref] [PubMed]
  36. B. J. Rao, D. S. Choi, and M. Cho, “Selective suppression of CARS signal with two competing stimulated Raman scattering processes,” J. Chem. Phys. 149(23), 234202 (2018).
    [Crossref] [PubMed]
  37. D. S. Choi, B. J. Rao, D. Kim, S.-H. Shim, H. Rhee, and M. Cho, “Selective suppression of CARS signal with three-beam competing stimulated Raman scattering processes,” Phys. Chem. Chem. Phys. 20(25), 17156–17170 (2018).
    [Crossref] [PubMed]

2018 (5)

D. Polli, V. Kumar, C. M. Valensise, M. Marangoni, and G. Cerullo, “Broadband coherent Raman scattering microscopy,” Laser Photonics Rev. 12(9), 1800020 (2018).
[Crossref]

B. J. Rao and M. Cho, “Three-beam double stimulated Raman scatterings: Cascading configuration,” J. Chem. Phys. 148(11), 114201 (2018).
[Crossref] [PubMed]

B. J. Rao, D. S. Choi, and M. Cho, “Selective suppression of CARS signal with two competing stimulated Raman scattering processes,” J. Chem. Phys. 149(23), 234202 (2018).
[Crossref] [PubMed]

D. S. Choi, B. J. Rao, D. Kim, S.-H. Shim, H. Rhee, and M. Cho, “Selective suppression of CARS signal with three-beam competing stimulated Raman scattering processes,” Phys. Chem. Chem. Phys. 20(25), 17156–17170 (2018).
[Crossref] [PubMed]

M. Cho, “Three-beam double stimulated Raman scatterings,” J. Chem. Phys. 148(1), 014201 (2018).
[Crossref] [PubMed]

2017 (2)

D. Kim, D. S. Choi, J. Kwon, S.-H. Shim, H. Rhee, and M. Cho, “A selective suppression of stimulated Raman scattering with another competing stimulated Raman scattering,” J. Phys. Chem. Lett. 8(24), 6118–6123 (2017).
[Crossref] [PubMed]

D. Wang, S. Liu, Y. Chen, J. Song, W. Liu, M. Xiong, G. Wang, X. Peng, and J. Qu, “Breaking the diffraction barrier using coherent anti-Stokes Raman scattering difference microscopy,” Opt. Express 25(9), 10276–10286 (2017).
[Crossref] [PubMed]

2016 (1)

W. R. Silva, C. T. Graefe, and R. R. Frontiera, “Toward label-free super-resolution microscopy,” ACS Photonics 3(1), 79–86 (2016).
[Crossref]

2015 (1)

C. Zhang, D. Zhang, and J. X. Cheng, “Coherent Raman scattering microscopy in biology and medicine,” Annu. Rev. Biomed. Eng. 17(1), 415–445 (2015).
[Crossref] [PubMed]

2014 (3)

A. Alfonso-García, R. Mittal, E. S. Lee, and E. O. Potma, “Biological imaging with coherent Raman scattering microscopy: a tutorial,” J. Biomed. Opt. 19(7), 071407 (2014).
[Crossref]

D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T. H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
[Crossref] [PubMed]

L. Gong and H. Wang, “Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: a theoretical study,” Phys. Rev. A 90(1), 013818 (2014).
[Crossref]

2013 (5)

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

L. Wei, Y. Yu, Y. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(28), 11226–11231 (2013).
[Crossref] [PubMed]

K. Bito, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source,” Chem. Phys. 419(20), 156–162 (2013).
[Crossref]

D. Zhang, M. N. Slipchenko, D. E. Leaird, A. M. Weiner, and J. X. Cheng, “Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper,” Opt. Express 21(11), 13864–13874 (2013).
[Crossref] [PubMed]

A. Gasecka, A. Daradich, H. Dehez, M. Piché, and D. Côté, “Resolution and contrast enhancement in coherent anti-Stokes Raman-scattering microscopy,” Opt. Lett. 38(21), 4510–4513 (2013).
[Crossref] [PubMed]

2012 (3)

X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy,” ChemPhysChem 13(4), 1054–1059 (2012).
[Crossref] [PubMed]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

H. Kim, G. W. Bryant, and S. J. Stranick, “Superresolution four-wave mixing microscopy,” Opt. Express 20(6), 6042–6051 (2012).
[Crossref] [PubMed]

2011 (3)

B. G. Saar, L. R. Contreras-Rojas, X. S. Xie, and R. H. Guy, “Imaging drug delivery to skin with stimulated Raman scattering microscopy,” Mol. Pharm. 8(3), 969–975 (2011).
[Crossref] [PubMed]

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. Liu and H. Niu, “Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion,” Phys. Rev. A 83(2), 023830 (2011).
[Crossref]

2010 (2)

W. P. Beeker, C. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

2009 (2)

A. Nikolaenko, V. V. Krishnamachari, and E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79(1), 13823 (2009).
[Crossref] [PubMed]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

2008 (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

2007 (1)

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

2006 (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

2005 (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

2002 (1)

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

1994 (1)

Alfonso-García, A.

A. Alfonso-García, R. Mittal, E. S. Lee, and E. O. Potma, “Biological imaging with coherent Raman scattering microscopy: a tutorial,” J. Biomed. Opt. 19(7), 071407 (2014).
[Crossref]

Basu, S.

X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy,” ChemPhysChem 13(4), 1054–1059 (2012).
[Crossref] [PubMed]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Beeker, W. P.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Bito, K.

K. Bito, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source,” Chem. Phys. 419(20), 156–162 (2013).
[Crossref]

Boller, K. J.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

Boller, K.-J.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Bryant, G. W.

Cerullo, G.

D. Polli, V. Kumar, C. M. Valensise, M. Marangoni, and G. Cerullo, “Broadband coherent Raman scattering microscopy,” Laser Photonics Rev. 12(9), 1800020 (2018).
[Crossref]

Chen, Y.

Cheng, J. X.

Cho, M.

D. S. Choi, B. J. Rao, D. Kim, S.-H. Shim, H. Rhee, and M. Cho, “Selective suppression of CARS signal with three-beam competing stimulated Raman scattering processes,” Phys. Chem. Chem. Phys. 20(25), 17156–17170 (2018).
[Crossref] [PubMed]

M. Cho, “Three-beam double stimulated Raman scatterings,” J. Chem. Phys. 148(1), 014201 (2018).
[Crossref] [PubMed]

B. J. Rao, D. S. Choi, and M. Cho, “Selective suppression of CARS signal with two competing stimulated Raman scattering processes,” J. Chem. Phys. 149(23), 234202 (2018).
[Crossref] [PubMed]

B. J. Rao and M. Cho, “Three-beam double stimulated Raman scatterings: Cascading configuration,” J. Chem. Phys. 148(11), 114201 (2018).
[Crossref] [PubMed]

D. Kim, D. S. Choi, J. Kwon, S.-H. Shim, H. Rhee, and M. Cho, “A selective suppression of stimulated Raman scattering with another competing stimulated Raman scattering,” J. Phys. Chem. Lett. 8(24), 6118–6123 (2017).
[Crossref] [PubMed]

Choi, D. S.

D. S. Choi, B. J. Rao, D. Kim, S.-H. Shim, H. Rhee, and M. Cho, “Selective suppression of CARS signal with three-beam competing stimulated Raman scattering processes,” Phys. Chem. Chem. Phys. 20(25), 17156–17170 (2018).
[Crossref] [PubMed]

B. J. Rao, D. S. Choi, and M. Cho, “Selective suppression of CARS signal with two competing stimulated Raman scattering processes,” J. Chem. Phys. 149(23), 234202 (2018).
[Crossref] [PubMed]

D. Kim, D. S. Choi, J. Kwon, S.-H. Shim, H. Rhee, and M. Cho, “A selective suppression of stimulated Raman scattering with another competing stimulated Raman scattering,” J. Phys. Chem. Lett. 8(24), 6118–6123 (2017).
[Crossref] [PubMed]

Cleff, C.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Contreras-Rojas, L. R.

B. G. Saar, L. R. Contreras-Rojas, X. S. Xie, and R. H. Guy, “Imaging drug delivery to skin with stimulated Raman scattering microscopy,” Mol. Pharm. 8(3), 969–975 (2011).
[Crossref] [PubMed]

Côté, D.

A. Gasecka, A. Daradich, H. Dehez, M. Piché, and D. Côté, “Resolution and contrast enhancement in coherent anti-Stokes Raman-scattering microscopy,” Opt. Lett. 38(21), 4510–4513 (2013).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Couderc, V.

K. Bito, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source,” Chem. Phys. 419(20), 156–162 (2013).
[Crossref]

Currie, E.

D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T. H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
[Crossref] [PubMed]

Daniele, J. R.

X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy,” ChemPhysChem 13(4), 1054–1059 (2012).
[Crossref] [PubMed]

Daradich, A.

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Dehez, H.

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Fallnich, C.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Farese, R. V.

D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T. H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
[Crossref] [PubMed]

Folick, A.

D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T. H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
[Crossref] [PubMed]

Freudiger, C. W.

X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy,” ChemPhysChem 13(4), 1054–1059 (2012).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Frontiera, R. R.

W. R. Silva, C. T. Graefe, and R. R. Frontiera, “Toward label-free super-resolution microscopy,” ACS Photonics 3(1), 79–86 (2016).
[Crossref]

Fu, D.

D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T. H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
[Crossref] [PubMed]

X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy,” ChemPhysChem 13(4), 1054–1059 (2012).
[Crossref] [PubMed]

Gasecka, A.

Gong, L.

L. Gong and H. Wang, “Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: a theoretical study,” Phys. Rev. A 90(1), 013818 (2014).
[Crossref]

Graefe, C. T.

W. R. Silva, C. T. Graefe, and R. R. Frontiera, “Toward label-free super-resolution microscopy,” ACS Photonics 3(1), 79–86 (2016).
[Crossref]

Groß, P.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

Gross, P.

Guy, R. H.

B. G. Saar, L. R. Contreras-Rojas, X. S. Xie, and R. H. Guy, “Imaging drug delivery to skin with stimulated Raman scattering microscopy,” Mol. Pharm. 8(3), 969–975 (2011).
[Crossref] [PubMed]

Hamaguchi, H.

K. Bito, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source,” Chem. Phys. 419(20), 156–162 (2013).
[Crossref]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Hell, S. W.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

Herek, J. L.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Holtom, G. R.

X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy,” ChemPhysChem 13(4), 1054–1059 (2012).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Jahn, R.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

Kamin, D.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Kano, H.

K. Bito, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source,” Chem. Phys. 419(20), 156–162 (2013).
[Crossref]

Kim, D.

D. S. Choi, B. J. Rao, D. Kim, S.-H. Shim, H. Rhee, and M. Cho, “Selective suppression of CARS signal with three-beam competing stimulated Raman scattering processes,” Phys. Chem. Chem. Phys. 20(25), 17156–17170 (2018).
[Crossref] [PubMed]

D. Kim, D. S. Choi, J. Kwon, S.-H. Shim, H. Rhee, and M. Cho, “A selective suppression of stimulated Raman scattering with another competing stimulated Raman scattering,” J. Phys. Chem. Lett. 8(24), 6118–6123 (2017).
[Crossref] [PubMed]

Kim, H.

Krishnamachari, V. V.

A. Nikolaenko, V. V. Krishnamachari, and E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79(1), 13823 (2009).
[Crossref] [PubMed]

Kruse, K.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

Kumar, V.

D. Polli, V. Kumar, C. M. Valensise, M. Marangoni, and G. Cerullo, “Broadband coherent Raman scattering microscopy,” Laser Photonics Rev. 12(9), 1800020 (2018).
[Crossref]

Kwon, J.

D. Kim, D. S. Choi, J. Kwon, S.-H. Shim, H. Rhee, and M. Cho, “A selective suppression of stimulated Raman scattering with another competing stimulated Raman scattering,” J. Phys. Chem. Lett. 8(24), 6118–6123 (2017).
[Crossref] [PubMed]

Lauterbach, M. A.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

Leaird, D. E.

Lee, C.

W. P. Beeker, C. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

Lee, C. J.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Lee, E. S.

A. Alfonso-García, R. Mittal, E. S. Lee, and E. O. Potma, “Biological imaging with coherent Raman scattering microscopy: a tutorial,” J. Biomed. Opt. 19(7), 071407 (2014).
[Crossref]

Leproux, P.

K. Bito, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source,” Chem. Phys. 419(20), 156–162 (2013).
[Crossref]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Liu, S.

Liu, W.

D. Wang, S. Liu, Y. Chen, J. Song, W. Liu, M. Xiong, G. Wang, X. Peng, and J. Qu, “Breaking the diffraction barrier using coherent anti-Stokes Raman scattering difference microscopy,” Opt. Express 25(9), 10276–10286 (2017).
[Crossref] [PubMed]

W. Liu and H. Niu, “Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion,” Phys. Rev. A 83(2), 023830 (2011).
[Crossref]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Marangoni, M.

D. Polli, V. Kumar, C. M. Valensise, M. Marangoni, and G. Cerullo, “Broadband coherent Raman scattering microscopy,” Laser Photonics Rev. 12(9), 1800020 (2018).
[Crossref]

Min, W.

L. Wei, Y. Yu, Y. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(28), 11226–11231 (2013).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Mittal, R.

A. Alfonso-García, R. Mittal, E. S. Lee, and E. O. Potma, “Biological imaging with coherent Raman scattering microscopy: a tutorial,” J. Biomed. Opt. 19(7), 071407 (2014).
[Crossref]

Nikolaenko, A.

A. Nikolaenko, V. V. Krishnamachari, and E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79(1), 13823 (2009).
[Crossref] [PubMed]

Niu, H.

W. Liu and H. Niu, “Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion,” Phys. Rev. A 83(2), 023830 (2011).
[Crossref]

Offerhaus, H. L.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Okuno, M.

K. Bito, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source,” Chem. Phys. 419(20), 156–162 (2013).
[Crossref]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Peng, X.

Piché, M.

Polli, D.

D. Polli, V. Kumar, C. M. Valensise, M. Marangoni, and G. Cerullo, “Broadband coherent Raman scattering microscopy,” Laser Photonics Rev. 12(9), 1800020 (2018).
[Crossref]

Potma, E. O.

A. Alfonso-García, R. Mittal, E. S. Lee, and E. O. Potma, “Biological imaging with coherent Raman scattering microscopy: a tutorial,” J. Biomed. Opt. 19(7), 071407 (2014).
[Crossref]

A. Nikolaenko, V. V. Krishnamachari, and E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79(1), 13823 (2009).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Qu, J.

Rao, B. J.

B. J. Rao and M. Cho, “Three-beam double stimulated Raman scatterings: Cascading configuration,” J. Chem. Phys. 148(11), 114201 (2018).
[Crossref] [PubMed]

B. J. Rao, D. S. Choi, and M. Cho, “Selective suppression of CARS signal with two competing stimulated Raman scattering processes,” J. Chem. Phys. 149(23), 234202 (2018).
[Crossref] [PubMed]

D. S. Choi, B. J. Rao, D. Kim, S.-H. Shim, H. Rhee, and M. Cho, “Selective suppression of CARS signal with three-beam competing stimulated Raman scattering processes,” Phys. Chem. Chem. Phys. 20(25), 17156–17170 (2018).
[Crossref] [PubMed]

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Rhee, H.

D. S. Choi, B. J. Rao, D. Kim, S.-H. Shim, H. Rhee, and M. Cho, “Selective suppression of CARS signal with three-beam competing stimulated Raman scattering processes,” Phys. Chem. Chem. Phys. 20(25), 17156–17170 (2018).
[Crossref] [PubMed]

D. Kim, D. S. Choi, J. Kwon, S.-H. Shim, H. Rhee, and M. Cho, “A selective suppression of stimulated Raman scattering with another competing stimulated Raman scattering,” J. Phys. Chem. Lett. 8(24), 6118–6123 (2017).
[Crossref] [PubMed]

Rizzoli, S. O.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

Roeffaers, M. B. J.

X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy,” ChemPhysChem 13(4), 1054–1059 (2012).
[Crossref] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Saar, B. G.

B. G. Saar, L. R. Contreras-Rojas, X. S. Xie, and R. H. Guy, “Imaging drug delivery to skin with stimulated Raman scattering microscopy,” Mol. Pharm. 8(3), 969–975 (2011).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Shen, Y.

L. Wei, Y. Yu, Y. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(28), 11226–11231 (2013).
[Crossref] [PubMed]

Shim, S.-H.

D. S. Choi, B. J. Rao, D. Kim, S.-H. Shim, H. Rhee, and M. Cho, “Selective suppression of CARS signal with three-beam competing stimulated Raman scattering processes,” Phys. Chem. Chem. Phys. 20(25), 17156–17170 (2018).
[Crossref] [PubMed]

D. Kim, D. S. Choi, J. Kwon, S.-H. Shim, H. Rhee, and M. Cho, “A selective suppression of stimulated Raman scattering with another competing stimulated Raman scattering,” J. Phys. Chem. Lett. 8(24), 6118–6123 (2017).
[Crossref] [PubMed]

Silva, W. R.

W. R. Silva, C. T. Graefe, and R. R. Frontiera, “Toward label-free super-resolution microscopy,” ACS Photonics 3(1), 79–86 (2016).
[Crossref]

Slipchenko, M. N.

Song, J.

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Stranick, S. J.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Tsai, T. H.

D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T. H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
[Crossref] [PubMed]

Valensise, C. M.

D. Polli, V. Kumar, C. M. Valensise, M. Marangoni, and G. Cerullo, “Broadband coherent Raman scattering microscopy,” Laser Photonics Rev. 12(9), 1800020 (2018).
[Crossref]

Volkmer, A.

Wang, D.

Wang, G.

Wang, H.

L. Gong and H. Wang, “Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: a theoretical study,” Phys. Rev. A 90(1), 013818 (2014).
[Crossref]

Wang, M. C.

D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T. H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
[Crossref] [PubMed]

L. Wei, Y. Yu, Y. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(28), 11226–11231 (2013).
[Crossref] [PubMed]

Wei, L.

L. Wei, Y. Yu, Y. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(28), 11226–11231 (2013).
[Crossref] [PubMed]

Weiner, A. M.

Westphal, V.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

Wichmann, J.

Xie, X. S.

D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T. H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
[Crossref] [PubMed]

X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy,” ChemPhysChem 13(4), 1054–1059 (2012).
[Crossref] [PubMed]

B. G. Saar, L. R. Contreras-Rojas, X. S. Xie, and R. H. Guy, “Imaging drug delivery to skin with stimulated Raman scattering microscopy,” Mol. Pharm. 8(3), 969–975 (2011).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19(6), 1363–1375 (2002).
[Crossref]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Xiong, M.

Yu, Y.

D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T. H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
[Crossref] [PubMed]

L. Wei, Y. Yu, Y. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(28), 11226–11231 (2013).
[Crossref] [PubMed]

Zhang, C.

C. Zhang, D. Zhang, and J. X. Cheng, “Coherent Raman scattering microscopy in biology and medicine,” Annu. Rev. Biomed. Eng. 17(1), 415–445 (2015).
[Crossref] [PubMed]

Zhang, D.

Zhang, X.

X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy,” ChemPhysChem 13(4), 1054–1059 (2012).
[Crossref] [PubMed]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

ACS Photonics (1)

W. R. Silva, C. T. Graefe, and R. R. Frontiera, “Toward label-free super-resolution microscopy,” ACS Photonics 3(1), 79–86 (2016).
[Crossref]

Annu. Rev. Biomed. Eng. (1)

C. Zhang, D. Zhang, and J. X. Cheng, “Coherent Raman scattering microscopy in biology and medicine,” Annu. Rev. Biomed. Eng. 17(1), 415–445 (2015).
[Crossref] [PubMed]

Chem. Phys. (1)

K. Bito, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source,” Chem. Phys. 419(20), 156–162 (2013).
[Crossref]

ChemPhysChem (1)

X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy,” ChemPhysChem 13(4), 1054–1059 (2012).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T. H. Tsai, X. S. Xie, and M. C. Wang, “In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 136(24), 8820–8828 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

A. Alfonso-García, R. Mittal, E. S. Lee, and E. O. Potma, “Biological imaging with coherent Raman scattering microscopy: a tutorial,” J. Biomed. Opt. 19(7), 071407 (2014).
[Crossref]

J. Chem. Phys. (3)

M. Cho, “Three-beam double stimulated Raman scatterings,” J. Chem. Phys. 148(1), 014201 (2018).
[Crossref] [PubMed]

B. J. Rao and M. Cho, “Three-beam double stimulated Raman scatterings: Cascading configuration,” J. Chem. Phys. 148(11), 114201 (2018).
[Crossref] [PubMed]

B. J. Rao, D. S. Choi, and M. Cho, “Selective suppression of CARS signal with two competing stimulated Raman scattering processes,” J. Chem. Phys. 149(23), 234202 (2018).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Lett. (1)

D. Kim, D. S. Choi, J. Kwon, S.-H. Shim, H. Rhee, and M. Cho, “A selective suppression of stimulated Raman scattering with another competing stimulated Raman scattering,” J. Phys. Chem. Lett. 8(24), 6118–6123 (2017).
[Crossref] [PubMed]

J. Raman Spectrosc. (1)

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

Laser Photonics Rev. (1)

D. Polli, V. Kumar, C. M. Valensise, M. Marangoni, and G. Cerullo, “Broadband coherent Raman scattering microscopy,” Laser Photonics Rev. 12(9), 1800020 (2018).
[Crossref]

Mol. Pharm. (1)

B. G. Saar, L. R. Contreras-Rojas, X. S. Xie, and R. H. Guy, “Imaging drug delivery to skin with stimulated Raman scattering microscopy,” Mol. Pharm. 8(3), 969–975 (2011).
[Crossref] [PubMed]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

D. S. Choi, B. J. Rao, D. Kim, S.-H. Shim, H. Rhee, and M. Cho, “Selective suppression of CARS signal with three-beam competing stimulated Raman scattering processes,” Phys. Chem. Chem. Phys. 20(25), 17156–17170 (2018).
[Crossref] [PubMed]

Phys. Rev. A (6)

W. Liu and H. Niu, “Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion,” Phys. Rev. A 83(2), 023830 (2011).
[Crossref]

W. P. Beeker, C. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

A. Nikolaenko, V. V. Krishnamachari, and E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79(1), 13823 (2009).
[Crossref] [PubMed]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

L. Gong and H. Wang, “Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: a theoretical study,” Phys. Rev. A 90(1), 013818 (2014).
[Crossref]

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

L. Wei, Y. Yu, Y. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(28), 11226–11231 (2013).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Science (5)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Other (1)

J. X. Cheng and X. S. Xie, Coherent Raman scattering microscopy, (CRC Press, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagrams of two different CARS suppression processes. (a) Spontaneous Raman spectrum of liquid benzene. Three-beam (pump-Stokes-depletion) double SRS-CARS suppression processes in the (b) parallel and (c) converging configurations. Two vibrational modes of benzene (ring breathing mode; ωv1 = 992 cm−1 and C-H stretching mode; ωv2 = 3062 cm−1) can be used for generating SRS1 (ωv1 = 992 cm−1) and SRS2 (ωv2 = 3062 cm−1) processes simultaneously (see the main text for more details).
Fig. 2
Fig. 2 SRL spectral changes (a, c) and SRL efficiencies (b, d) of liquid benzene as the increase of the depletion pulse energy (from 0 to 100 nJ) in the parallel and converging configurations.
Fig. 3
Fig. 3 CARS spectral changes of liquid benzene as the increase of depletion pulse energy (Ed) in the (a) parallel and (d) converging configurations. The resonant (992 cm−1) and non-resonant (2072 cm−1) p-s-p CARS spectra in the red boxes of (a) and (d) are shown in (b) and (e), respectively. (c, f) CARS losses (black circles) and suppression efficiencies (blue squares) as a function of Ed.
Fig. 4
Fig. 4 Calculated CARS suppression efficiencies (η) from Eqs. (4) and (8) in the parallel (black for z = 0.05, blue for z = 0.5) and converging (red for z = 0.05, green for z = 0.5) configurations; gd = 1, gs = 2 and Ip(0) = Is(0).
Fig. 5
Fig. 5 Simulation on non-resonant background-free CARS imaging using the converging geometry-based CARS technique. (a) Differential measurement between CARS1 obtained by using the two (pump and Stokes) beams (upper) and CARS2 obtained by using the three (pump, Stokes, and depletion) beams (lower). All the three beams have Gaussian-shaped intensity profiles. The difference signal (ΔCARS = CARS1 −CARS2) contains vibrationally resonant SRS information of the target molecule. (b) A PS film (width = 2 μm) in water used for CARS imaging. (c) Calculated cross-sections of the CARS images for a PS film in water in (b): CARS1 without depletion (black), CARS2 with depletion (red), ΔCARS (blue) and p-d-p resonant CARS (green).
Fig. 6
Fig. 6 Simulation on super-resolution CARS imaging using the three-beam (pump-Stokes-depletion) double SRS-CARS suppression technique. (a) Differential measurement between dCARS (upper) and gCARS (lower). For the generations of the dCARS and gCARS signals, two Gaussian-shaped pump and Stokes beams combined with a doughnut-shaped (dCARS) and a Gaussian-shaped (gCARS) depletion beam are used. The difference CARS signal (ΔCARS = dCARS1−gCARS) yields an SRS-induced vibrationally resonant signal only at a limited region of the central node of the doughnut-shaped depletion beam. (b, c) Normalized dCARS signals, which is approximately equivalent to ΔCARS, at variable depletion intensities (a = 0, 1, 10, 20, 50) for (b) z = 0.05 and (c) z = 0.5. (d) Comparison between the spatial resolutions of dCARS at a = 50 in the parallel and converging configurations. The dashed lines represent the CARS intensity corresponding to 1/e2 of its maximum value.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

I p (z)= I p (0)exp( ( g s ω p ω s I s (0)+ g d ω p ω d I d (0)+ g ¯ I p (0) )z ),
g ¯ = [ g s ω p ω s I s (0)+ g d ω p ω d I d (0) ]/ [ ω p ω s I s (0)+ ω p ω d I d (0) ] .
I CARS psp (z)= ( ω CARS ω s σ CARS R ) 2 I p 2 (0) I s (0) 4 ( g s ω p ω s I s (0)+ g d ω p ω d I d (0)+ g ¯ I p (0) ) 2 ( e ( g s ω p ω s I s (0)+ g d ω p ω d I d (0)+ g ¯ I p (0) )z 1 ) 2 ,
η parallel =( 1 ( e ( g s ω p ω s I s (0)+ g d ω p ω d I d (0)+ g ¯ I p (0) )z 1 ) 2 ( e ( g s ω p ω s I s (0)+ g ¯ I p (0) )z 1 ) 2 ( g s ω p ω s I s (0)+ g ¯ I p (0) ) 2 ( g s ω p ω s I s (0)+ g d ω p ω d I d (0)+ g ¯ I p (0) ) 2 ).
I p(s) (z)= I p(s) (0)exp( g p(s)d ( I d (0)+ ω d ω p(s) I p(s) (0) )z ),
z I CARS NRpsp (z)=( ω CARS NRpsp ω p ) σ CARS NR I p (0) I s (z) I CARS NRpsp (z) ,
I CARS NRpsp (z)= ( ω CARS NRpsp ω p σ CARS NR ) 2 I p 2 (0) I s (0) 4 ( g pd ( I d (0)+ ω d ω p I p (0) )+ g sd 2 ( I d (0)+ ω d ω s I s (0) ) ) 2 × ( e ( g pd ( I d (0)+ ω d ω p I p (0) )+ g sd 2 ( I d (0)+ ω d ω s I s (0) ) )z 1 ) 2 ,
η converging =1 ( g pd ω d ω p I p (0)+ g sd 2 ω d ω s I s (0) ) 2 ( g pd ( I d (0)+ ω d ω p I p (0) )+ g sd 2 ( I d (0)+ ω d ω s I s (0) ) ) 2 × ( exp[ ( g pd ( I d (0)+ ω d ω p I p (0) )+ g sd 2 ( I d (0)+ ω d ω s I s (0) ) )z ]1 ) 2 ( exp[ ( g pd ω d ω p I p (0)+ g sd 2 ω d ω s I s (0) )z ]1 ) 2 .
γ p(s) = | Δ I p(s) | I p(s) ( I d (0)=0) =1exp[ A I d (0) ],
γ CARS psp = | Δ I CARS psp | I CARS psp ( I d (0)=0) .
I j (x,r)= I j,0 exp( 2 ( rx ) 2 ( λ j /2 ) 2 ).
I CARS NRpsp (x,z) dr ( σ CARS NR (x) ) 2 I p 2 (x,r) I s (x,r) ( ω d ω p I p (x,r)+ ω d ω s I s (x,r)+2 I d (x,r) ) 2 × ( e ( ω d ω p I p (x,r)+ ω d ω s I s (x,r)+2 I d (x,r) )z 1 ) 2 .
I CARS pdp (x,z) ( σ CARS R + σ CARS NR ) I p 2 (x,r) I d (x,r) z 2 dr.
I p (0,r)= I p,0 exp( 2 r 2 ( λ s /2 ) 2 ),
I s (0,r)= I s,0 exp( 2 r 2 ( λ s /2 ) 2 ),
I d (0,r)= I d,0 ( r λ d /2 ) 2 exp( 2 r 2 ( λ d /2 ) 2 ),
I j (0)= I j (0,r)dr ,
I CARS NRpsp (r,z) I p 2 (0,r) I s (0,r) ( g pd ( I d (0,r)+ ω d ω p I p (0,r) )+ g sd 2 ( I d (0,r)+ ω d ω s I s (0,r) ) ) 2 × ( e ( g pd ( I d (0,r)+ ω d ω p I p (0,r) )+ g sd 2 ( I d (0,r)+ ω d ω s I s (0,r) ) )z 1 ) 2 .

Metrics