Abstract

An 8-channel coarse wavelength division multiplexer (CWDM) based on coupled vertical gratings has been designed, fabricated and characterized. The devices are implemented on the ultra-silicon-rich nitride (USRN) platform. The demonstrated device possesses 8 CWDM channels. The absence of free spectral range (FSR) enabled the overall multiplexed bandwidth to span across the S + C + L bands. The CWDM channels meet the specifications stipulated by the International Telecommunications Union G.694.2 standard. The average channel crosstalk is −25dB. Pseudo-Random Bit Sequence 231-1 Non-Return-Zero data at 30Gb/s was launched into the device and a clear eye diagram was obtained. The device was further used with a USRN waveguide generating supercontinuum to create a multi-wavelength source emitting light at 8 CWDM wavelengths.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
N-rich silicon nitride angled MMI for coarse wavelength division (de)multiplexing in the O-band

Thalía Domínguez Bucio, Ali Z. Khokhar, Goran Z. Mashanovich, and Frederic Y. Gardes
Opt. Lett. 43(6) 1251-1254 (2018)

Silicon-based four-mode division multiplexing for chip-scale optical data transmission in the 2  μm waveband

Shuang Zheng, Meng Huang, Xiaoping Cao, Lulu Wang, Zhengsen Ruan, Li Shen, and Jian Wang
Photon. Res. 7(9) 1030-1035 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. F. R. Chen, T. Wang, K. J. A. Ooi, A. K. Chee, L. K. Ang, and D. T. H. Tan, “Wavelength selective mode division multiplexing on a silicon chip,” Opt. Express 23(6), 8095–8103 (2015).
    [Crossref] [PubMed]
  2. B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2(6), 530–535 (2015).
    [Crossref]
  3. D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10‐Channel Mode (de) multiplexer with Dual Polarizations,” Laser Photonics Rev. 12(1), 1700109 (2018).
    [Crossref]
  4. L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
    [Crossref] [PubMed]
  5. D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19(3), 2401–2409 (2011).
    [Crossref] [PubMed]
  6. X. Wang, W. Shi, H. Yun, S. Grist, N. A. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
    [Crossref] [PubMed]
  7. Y.-D. Yang, Y. Li, Y.-Z. Huang, and A. W. Poon, “Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators,” Opt. Express 22(18), 22172–22183 (2014).
    [Crossref] [PubMed]
  8. P. Dong, “Silicon photonic integrated circuits for wavelength-division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 370–378 (2016).
    [Crossref]
  9. A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2009).
  10. D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64‐channel silicon hybrid demultiplexer enabling simultaneous wavelength‐and mode‐division‐multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
    [Crossref]
  11. T. Guo, M. Zhang, Y. Yin, and D. Dai, “A laser-trimming-assist wavelength-alignment technique for silicon microdonut resonators,” IEEE Photonics Technol. Lett. 29(5), 419–422 (2017).
    [Crossref]
  12. “CWDM4 MSA” (November 24, 2015), retrieved www.cwdm4-msa.org .
  13. M. P. A. Bechtolsheim, “100G CLR4 Industry Alliance” (2014, April 4), retrieved https://www.intel.com/content/dam/www/public/us/en/documents/presentation/clr4-press-deck.pdf .
  14. P. Pan, J. An, Y. Wang, J. Zhang, L. Wang, Y. Qi, Q. Han, and X. Hu, “Compact 4-channel AWGs for CWDM and LAN WDM in data center monolithic applications,” Opt. Laser Technol. 75, 177–181 (2015).
    [Crossref]
  15. H. Xu and Y. Shi, “Flat-top CWDM (de) multiplexer based on MZI with bent directional couplers,” IEEE Photonics Technol. Lett. 30(2), 169–172 (2018).
    [Crossref]
  16. S. Dwivedi, P. De Heyn, P. Absil, J. Van Campenhout, and W. Bogaerts, “Coarse wavelength division multiplexer on silicon-on-insulator for 100 GbE,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP), (IEEE, 2015), 9–10.
    [Crossref]
  17. R. K. Gupta, S. Chandran, and B. Krishna, “Integrated silicon photonics directional couplers for WDM applications,” in 2018 3rd International Conference on Microwave and Photonics (ICMAP), (IEEE, 2018), 1–2.
    [Crossref]
  18. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
    [Crossref] [PubMed]
  19. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [Crossref] [PubMed]
  20. H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14(3), 1182–1188 (2006).
    [Crossref] [PubMed]
  21. F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2(1), 296 (2011).
    [Crossref] [PubMed]
  22. L. Nunes, T. Liang, H. Tsang, M. Tsuchiya, D. Van Thourhout, P. Dumon, and R. Baets, “Ultrafast non-inverting wavelength conversion by cross-absorption modulation in silicon wire waveguides,” in IEEE International Conference on Group IV Photonics,2005. 2nd, (IEEE, 2005), 154–156.
    [Crossref]
  23. W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-Optical Format Conversion of NRZ-OOK to RZ-OOK in a Silicon Nanowire Utilizing Either XPM or FWM and Resulting in a Receiver Sensitivity Gain of $\sim $2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
    [Crossref]
  24. I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15(23), 15242–15249 (2007).
    [Crossref] [PubMed]
  25. K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
    [Crossref] [PubMed]
  26. D. K. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. Tan, “Exploring high refractive index silicon-rich nitride films by low-temperature inductively coupled plasma chemical vapor deposition and applications for integrated waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
    [Crossref] [PubMed]
  27. D. T. H. Tan, K. J. A. Ooi, and D. K. T. Ng, “Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform,” Photon. Res. 6(5), B50–B66 (2018).
    [Crossref]
  28. K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92(20), 201111 (2008).
    [Crossref]
  29. T. Wang, D. K. T. Ng, S.-K. Ng, Y.-T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
    [Crossref]

2018 (3)

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10‐Channel Mode (de) multiplexer with Dual Polarizations,” Laser Photonics Rev. 12(1), 1700109 (2018).
[Crossref]

H. Xu and Y. Shi, “Flat-top CWDM (de) multiplexer based on MZI with bent directional couplers,” IEEE Photonics Technol. Lett. 30(2), 169–172 (2018).
[Crossref]

D. T. H. Tan, K. J. A. Ooi, and D. K. T. Ng, “Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform,” Photon. Res. 6(5), B50–B66 (2018).
[Crossref]

2017 (2)

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

T. Guo, M. Zhang, Y. Yin, and D. Dai, “A laser-trimming-assist wavelength-alignment technique for silicon microdonut resonators,” IEEE Photonics Technol. Lett. 29(5), 419–422 (2017).
[Crossref]

2016 (1)

P. Dong, “Silicon photonic integrated circuits for wavelength-division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 370–378 (2016).
[Crossref]

2015 (6)

G. F. R. Chen, T. Wang, K. J. A. Ooi, A. K. Chee, L. K. Ang, and D. T. H. Tan, “Wavelength selective mode division multiplexing on a silicon chip,” Opt. Express 23(6), 8095–8103 (2015).
[Crossref] [PubMed]

B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2(6), 530–535 (2015).
[Crossref]

P. Pan, J. An, Y. Wang, J. Zhang, L. Wang, Y. Qi, Q. Han, and X. Hu, “Compact 4-channel AWGs for CWDM and LAN WDM in data center monolithic applications,” Opt. Laser Technol. 75, 177–181 (2015).
[Crossref]

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64‐channel silicon hybrid demultiplexer enabling simultaneous wavelength‐and mode‐division‐multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

D. K. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. Tan, “Exploring high refractive index silicon-rich nitride films by low-temperature inductively coupled plasma chemical vapor deposition and applications for integrated waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
[Crossref] [PubMed]

T. Wang, D. K. T. Ng, S.-K. Ng, Y.-T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

2014 (2)

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Y.-D. Yang, Y. Li, Y.-Z. Huang, and A. W. Poon, “Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators,” Opt. Express 22(18), 22172–22183 (2014).
[Crossref] [PubMed]

2012 (1)

2011 (2)

D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19(3), 2401–2409 (2011).
[Crossref] [PubMed]

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2(1), 296 (2011).
[Crossref] [PubMed]

2010 (1)

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-Optical Format Conversion of NRZ-OOK to RZ-OOK in a Silicon Nanowire Utilizing Either XPM or FWM and Resulting in a Receiver Sensitivity Gain of $\sim $2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[Crossref]

2009 (1)

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2009).

2008 (1)

K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92(20), 201111 (2008).
[Crossref]

2007 (2)

2006 (1)

2004 (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Agarwal, A. M.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

Agrawal, G. P.

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

An, J.

P. Pan, J. An, Y. Wang, J. Zhang, L. Wang, Y. Qi, Q. Han, and X. Hu, “Compact 4-channel AWGs for CWDM and LAN WDM in data center monolithic applications,” Opt. Laser Technol. 75, 177–181 (2015).
[Crossref]

Ang, L. K.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

G. F. R. Chen, T. Wang, K. J. A. Ooi, A. K. Chee, L. K. Ang, and D. T. H. Tan, “Wavelength selective mode division multiplexing on a silicon chip,” Opt. Express 23(6), 8095–8103 (2015).
[Crossref] [PubMed]

Astar, W.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-Optical Format Conversion of NRZ-OOK to RZ-OOK in a Silicon Nanowire Utilizing Either XPM or FWM and Resulting in a Receiver Sensitivity Gain of $\sim $2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[Crossref]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Basak, J.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2009).

Bergman, K.

Bergmen, K.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Canciamilla, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2(1), 296 (2011).
[Crossref] [PubMed]

Cardenas, J.

Carter, G. M.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-Optical Format Conversion of NRZ-OOK to RZ-OOK in a Silicon Nanowire Utilizing Either XPM or FWM and Resulting in a Receiver Sensitivity Gain of $\sim $2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[Crossref]

Chee, A. K.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

G. F. R. Chen, T. Wang, K. J. A. Ooi, A. K. Chee, L. K. Ang, and D. T. H. Tan, “Wavelength selective mode division multiplexing on a silicon chip,” Opt. Express 23(6), 8095–8103 (2015).
[Crossref] [PubMed]

Chee, A. K. L.

T. Wang, D. K. T. Ng, S.-K. Ng, Y.-T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Chen, C. P.

B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2(6), 530–535 (2015).
[Crossref]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Chen, G. F. R.

G. F. R. Chen, T. Wang, K. J. A. Ooi, A. K. Chee, L. K. Ang, and D. T. H. Tan, “Wavelength selective mode division multiplexing on a silicon chip,” Opt. Express 23(6), 8095–8103 (2015).
[Crossref] [PubMed]

T. Wang, D. K. T. Ng, S.-K. Ng, Y.-T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Chen, S.

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64‐channel silicon hybrid demultiplexer enabling simultaneous wavelength‐and mode‐division‐multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

Chen, X.

Chetrit, Y.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2009).

Chou, C.-Y.

Chrostowski, L.

Cohen, O.

Cunningham, J. E.

Dadap, J. I.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-Optical Format Conversion of NRZ-OOK to RZ-OOK in a Silicon Nanowire Utilizing Either XPM or FWM and Resulting in a Receiver Sensitivity Gain of $\sim $2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[Crossref]

I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15(23), 15242–15249 (2007).
[Crossref] [PubMed]

Dai, D.

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10‐Channel Mode (de) multiplexer with Dual Polarizations,” Laser Photonics Rev. 12(1), 1700109 (2018).
[Crossref]

T. Guo, M. Zhang, Y. Yin, and D. Dai, “A laser-trimming-assist wavelength-alignment technique for silicon microdonut resonators,” IEEE Photonics Technol. Lett. 29(5), 419–422 (2017).
[Crossref]

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64‐channel silicon hybrid demultiplexer enabling simultaneous wavelength‐and mode‐division‐multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

Dai, T.

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10‐Channel Mode (de) multiplexer with Dual Polarizations,” Laser Photonics Rev. 12(1), 1700109 (2018).
[Crossref]

Dong, P.

P. Dong, “Silicon photonic integrated circuits for wavelength-division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 370–378 (2016).
[Crossref]

Driscoll, J. B.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-Optical Format Conversion of NRZ-OOK to RZ-OOK in a Silicon Nanowire Utilizing Either XPM or FWM and Resulting in a Receiver Sensitivity Gain of $\sim $2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[Crossref]

Fainman, Y.

Ferrari, C.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2(1), 296 (2011).
[Crossref] [PubMed]

Gabrielli, L. H.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Gao, S.

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10‐Channel Mode (de) multiplexer with Dual Polarizations,” Laser Photonics Rev. 12(1), 1700109 (2018).
[Crossref]

Green, W. M.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-Optical Format Conversion of NRZ-OOK to RZ-OOK in a Silicon Nanowire Utilizing Either XPM or FWM and Resulting in a Receiver Sensitivity Gain of $\sim $2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[Crossref]

I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15(23), 15242–15249 (2007).
[Crossref] [PubMed]

Grist, S.

Guo, T.

T. Guo, M. Zhang, Y. Yin, and D. Dai, “A laser-trimming-assist wavelength-alignment technique for silicon microdonut resonators,” IEEE Photonics Technol. Lett. 29(5), 419–422 (2017).
[Crossref]

Han, Q.

P. Pan, J. An, Y. Wang, J. Zhang, L. Wang, Y. Qi, Q. Han, and X. Hu, “Compact 4-channel AWGs for CWDM and LAN WDM in data center monolithic applications,” Opt. Laser Technol. 75, 177–181 (2015).
[Crossref]

He, S.

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64‐channel silicon hybrid demultiplexer enabling simultaneous wavelength‐and mode‐division‐multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

Hsieh, I.-W.

Hu, X.

P. Pan, J. An, Y. Wang, J. Zhang, L. Wang, Y. Qi, Q. Han, and X. Hu, “Compact 4-channel AWGs for CWDM and LAN WDM in data center monolithic applications,” Opt. Laser Technol. 75, 177–181 (2015).
[Crossref]

Huang, Y.-Z.

Ikeda, K.

Jaeger, N. A.

Kimerling, L. C.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

Krishnamoorthy, A. V.

Kuo, Y.-H.

Li, C.

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10‐Channel Mode (de) multiplexer with Dual Polarizations,” Laser Photonics Rev. 12(1), 1700109 (2018).
[Crossref]

Li, Y.

Liao, L.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2009).

Lim, K.-P.

D. K. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. Tan, “Exploring high refractive index silicon-rich nitride films by low-temperature inductively coupled plasma chemical vapor deposition and applications for integrated waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
[Crossref] [PubMed]

Lin, Q.

Lipson, M.

B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2(6), 530–535 (2015).
[Crossref]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Liu, A.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2009).

H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14(3), 1182–1188 (2006).
[Crossref] [PubMed]

Liu, X.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-Optical Format Conversion of NRZ-OOK to RZ-OOK in a Silicon Nanowire Utilizing Either XPM or FWM and Resulting in a Receiver Sensitivity Gain of $\sim $2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[Crossref]

I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15(23), 15242–15249 (2007).
[Crossref] [PubMed]

Luo, L.-W.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Luo, Y.

Melloni, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2(1), 296 (2011).
[Crossref] [PubMed]

Mizrahi, A.

Morichetti, F.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2(1), 296 (2011).
[Crossref] [PubMed]

Nezhad, M.

K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92(20), 201111 (2008).
[Crossref]

Nezhad, M. P.

Ng, D. K.

D. K. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. Tan, “Exploring high refractive index silicon-rich nitride films by low-temperature inductively coupled plasma chemical vapor deposition and applications for integrated waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
[Crossref] [PubMed]

Ng, D. K. T.

D. T. H. Tan, K. J. A. Ooi, and D. K. T. Ng, “Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform,” Photon. Res. 6(5), B50–B66 (2018).
[Crossref]

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

T. Wang, D. K. T. Ng, S.-K. Ng, Y.-T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Ng, S. K.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

Ng, S.-K.

T. Wang, D. K. T. Ng, S.-K. Ng, Y.-T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

D. K. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. Tan, “Exploring high refractive index silicon-rich nitride films by low-temperature inductively coupled plasma chemical vapor deposition and applications for integrated waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
[Crossref] [PubMed]

Nguyen, H.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2009).

Ooi, K. J. A.

D. T. H. Tan, K. J. A. Ooi, and D. K. T. Ng, “Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform,” Photon. Res. 6(5), B50–B66 (2018).
[Crossref]

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

G. F. R. Chen, T. Wang, K. J. A. Ooi, A. K. Chee, L. K. Ang, and D. T. H. Tan, “Wavelength selective mode division multiplexing on a silicon chip,” Opt. Express 23(6), 8095–8103 (2015).
[Crossref] [PubMed]

Ophir, N.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Osgood, R. M.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-Optical Format Conversion of NRZ-OOK to RZ-OOK in a Silicon Nanowire Utilizing Either XPM or FWM and Resulting in a Receiver Sensitivity Gain of $\sim $2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[Crossref]

I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15(23), 15242–15249 (2007).
[Crossref] [PubMed]

Painter, O. J.

Pan, P.

P. Pan, J. An, Y. Wang, J. Zhang, L. Wang, Y. Qi, Q. Han, and X. Hu, “Compact 4-channel AWGs for CWDM and LAN WDM in data center monolithic applications,” Opt. Laser Technol. 75, 177–181 (2015).
[Crossref]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Paniccia, M.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2009).

H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14(3), 1182–1188 (2006).
[Crossref] [PubMed]

Panoiu, N. C.

Poitras, C. B.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Poon, A. W.

Qi, Y.

P. Pan, J. An, Y. Wang, J. Zhang, L. Wang, Y. Qi, Q. Han, and X. Hu, “Compact 4-channel AWGs for CWDM and LAN WDM in data center monolithic applications,” Opt. Laser Technol. 75, 177–181 (2015).
[Crossref]

Raj, K.

Rong, H.

Rubin, D.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2009).

Samarelli, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2(1), 296 (2011).
[Crossref] [PubMed]

Shi, W.

Shi, Y.

H. Xu and Y. Shi, “Flat-top CWDM (de) multiplexer based on MZI with bent directional couplers,” IEEE Photonics Technol. Lett. 30(2), 169–172 (2018).
[Crossref]

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10‐Channel Mode (de) multiplexer with Dual Polarizations,” Laser Photonics Rev. 12(1), 1700109 (2018).
[Crossref]

Shubin, I.

Sorel, M.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2(1), 296 (2011).
[Crossref] [PubMed]

Stern, B.

Tan, D. T.

D. K. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. Tan, “Exploring high refractive index silicon-rich nitride films by low-temperature inductively coupled plasma chemical vapor deposition and applications for integrated waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
[Crossref] [PubMed]

Tan, D. T. H.

D. T. H. Tan, K. J. A. Ooi, and D. K. T. Ng, “Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform,” Photon. Res. 6(5), B50–B66 (2018).
[Crossref]

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

T. Wang, D. K. T. Ng, S.-K. Ng, Y.-T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

G. F. R. Chen, T. Wang, K. J. A. Ooi, A. K. Chee, L. K. Ang, and D. T. H. Tan, “Wavelength selective mode division multiplexing on a silicon chip,” Opt. Express 23(6), 8095–8103 (2015).
[Crossref] [PubMed]

D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19(3), 2401–2409 (2011).
[Crossref] [PubMed]

Toh, Y.-T.

T. Wang, D. K. T. Ng, S.-K. Ng, Y.-T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

D. K. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. Tan, “Exploring high refractive index silicon-rich nitride films by low-temperature inductively coupled plasma chemical vapor deposition and applications for integrated waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
[Crossref] [PubMed]

Tsang, H. K.

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10‐Channel Mode (de) multiplexer with Dual Polarizations,” Laser Photonics Rev. 12(1), 1700109 (2018).
[Crossref]

Tzuang, L. D.

Vlasov, Y. A.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-Optical Format Conversion of NRZ-OOK to RZ-OOK in a Silicon Nanowire Utilizing Either XPM or FWM and Resulting in a Receiver Sensitivity Gain of $\sim $2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[Crossref]

I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15(23), 15242–15249 (2007).
[Crossref] [PubMed]

Wang, J.

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64‐channel silicon hybrid demultiplexer enabling simultaneous wavelength‐and mode‐division‐multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

Wang, L.

P. Pan, J. An, Y. Wang, J. Zhang, L. Wang, Y. Qi, Q. Han, and X. Hu, “Compact 4-channel AWGs for CWDM and LAN WDM in data center monolithic applications,” Opt. Laser Technol. 75, 177–181 (2015).
[Crossref]

Wang, Q.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

D. K. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. Tan, “Exploring high refractive index silicon-rich nitride films by low-temperature inductively coupled plasma chemical vapor deposition and applications for integrated waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
[Crossref] [PubMed]

T. Wang, D. K. T. Ng, S.-K. Ng, Y.-T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Wang, S.

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10‐Channel Mode (de) multiplexer with Dual Polarizations,” Laser Photonics Rev. 12(1), 1700109 (2018).
[Crossref]

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64‐channel silicon hybrid demultiplexer enabling simultaneous wavelength‐and mode‐division‐multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

Wang, T.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

D. K. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. Tan, “Exploring high refractive index silicon-rich nitride films by low-temperature inductively coupled plasma chemical vapor deposition and applications for integrated waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
[Crossref] [PubMed]

T. Wang, D. K. T. Ng, S.-K. Ng, Y.-T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

G. F. R. Chen, T. Wang, K. J. A. Ooi, A. K. Chee, L. K. Ang, and D. T. H. Tan, “Wavelength selective mode division multiplexing on a silicon chip,” Opt. Express 23(6), 8095–8103 (2015).
[Crossref] [PubMed]

Wang, X.

Wang, Y.

P. Pan, J. An, Y. Wang, J. Zhang, L. Wang, Y. Qi, Q. Han, and X. Hu, “Compact 4-channel AWGs for CWDM and LAN WDM in data center monolithic applications,” Opt. Laser Technol. 75, 177–181 (2015).
[Crossref]

Wu, H.

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10‐Channel Mode (de) multiplexer with Dual Polarizations,” Laser Photonics Rev. 12(1), 1700109 (2018).
[Crossref]

Wu, Z.

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10‐Channel Mode (de) multiplexer with Dual Polarizations,” Laser Photonics Rev. 12(1), 1700109 (2018).
[Crossref]

Xia, F.

Xu, H.

H. Xu and Y. Shi, “Flat-top CWDM (de) multiplexer based on MZI with bent directional couplers,” IEEE Photonics Technol. Lett. 30(2), 169–172 (2018).
[Crossref]

Yang, Y.

D. K. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. Tan, “Exploring high refractive index silicon-rich nitride films by low-temperature inductively coupled plasma chemical vapor deposition and applications for integrated waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
[Crossref] [PubMed]

Yang, Y.-D.

Yin, Y.

T. Guo, M. Zhang, Y. Yin, and D. Dai, “A laser-trimming-assist wavelength-alignment technique for silicon microdonut resonators,” IEEE Photonics Technol. Lett. 29(5), 419–422 (2017).
[Crossref]

Yu, H.

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10‐Channel Mode (de) multiplexer with Dual Polarizations,” Laser Photonics Rev. 12(1), 1700109 (2018).
[Crossref]

Yun, H.

Zamek, S.

Zhang, J.

P. Pan, J. An, Y. Wang, J. Zhang, L. Wang, Y. Qi, Q. Han, and X. Hu, “Compact 4-channel AWGs for CWDM and LAN WDM in data center monolithic applications,” Opt. Laser Technol. 75, 177–181 (2015).
[Crossref]

Zhang, M.

T. Guo, M. Zhang, Y. Yin, and D. Dai, “A laser-trimming-assist wavelength-alignment technique for silicon microdonut resonators,” IEEE Photonics Technol. Lett. 29(5), 419–422 (2017).
[Crossref]

Zheng, X.

Zhu, X.

ACS Appl. Mater. Interfaces (1)

D. K. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. Tan, “Exploring high refractive index silicon-rich nitride films by low-temperature inductively coupled plasma chemical vapor deposition and applications for integrated waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92(20), 201111 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

P. Dong, “Silicon photonic integrated circuits for wavelength-division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 370–378 (2016).
[Crossref]

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2009).

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-Optical Format Conversion of NRZ-OOK to RZ-OOK in a Silicon Nanowire Utilizing Either XPM or FWM and Resulting in a Receiver Sensitivity Gain of $\sim $2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (2)

T. Guo, M. Zhang, Y. Yin, and D. Dai, “A laser-trimming-assist wavelength-alignment technique for silicon microdonut resonators,” IEEE Photonics Technol. Lett. 29(5), 419–422 (2017).
[Crossref]

H. Xu and Y. Shi, “Flat-top CWDM (de) multiplexer based on MZI with bent directional couplers,” IEEE Photonics Technol. Lett. 30(2), 169–172 (2018).
[Crossref]

Laser Photonics Rev. (3)

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, “10‐Channel Mode (de) multiplexer with Dual Polarizations,” Laser Photonics Rev. 12(1), 1700109 (2018).
[Crossref]

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64‐channel silicon hybrid demultiplexer enabling simultaneous wavelength‐and mode‐division‐multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

T. Wang, D. K. T. Ng, S.-K. Ng, Y.-T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, and D. T. H. Tan, “Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Nat. Commun. (3)

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref] [PubMed]

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2(1), 296 (2011).
[Crossref] [PubMed]

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Opt. Express (7)

H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14(3), 1182–1188 (2006).
[Crossref] [PubMed]

I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15(23), 15242–15249 (2007).
[Crossref] [PubMed]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
[Crossref] [PubMed]

D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19(3), 2401–2409 (2011).
[Crossref] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
[Crossref] [PubMed]

Y.-D. Yang, Y. Li, Y.-Z. Huang, and A. W. Poon, “Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators,” Opt. Express 22(18), 22172–22183 (2014).
[Crossref] [PubMed]

G. F. R. Chen, T. Wang, K. J. A. Ooi, A. K. Chee, L. K. Ang, and D. T. H. Tan, “Wavelength selective mode division multiplexing on a silicon chip,” Opt. Express 23(6), 8095–8103 (2015).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

P. Pan, J. An, Y. Wang, J. Zhang, L. Wang, Y. Qi, Q. Han, and X. Hu, “Compact 4-channel AWGs for CWDM and LAN WDM in data center monolithic applications,” Opt. Laser Technol. 75, 177–181 (2015).
[Crossref]

Optica (1)

Photon. Res. (1)

Other (5)

S. Dwivedi, P. De Heyn, P. Absil, J. Van Campenhout, and W. Bogaerts, “Coarse wavelength division multiplexer on silicon-on-insulator for 100 GbE,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP), (IEEE, 2015), 9–10.
[Crossref]

R. K. Gupta, S. Chandran, and B. Krishna, “Integrated silicon photonics directional couplers for WDM applications,” in 2018 3rd International Conference on Microwave and Photonics (ICMAP), (IEEE, 2018), 1–2.
[Crossref]

“CWDM4 MSA” (November 24, 2015), retrieved www.cwdm4-msa.org .

M. P. A. Bechtolsheim, “100G CLR4 Industry Alliance” (2014, April 4), retrieved https://www.intel.com/content/dam/www/public/us/en/documents/presentation/clr4-press-deck.pdf .

L. Nunes, T. Liang, H. Tsang, M. Tsuchiya, D. Van Thourhout, P. Dumon, and R. Baets, “Ultrafast non-inverting wavelength conversion by cross-absorption modulation in silicon wire waveguides,” in IEEE International Conference on Group IV Photonics,2005. 2nd, (IEEE, 2005), 154–156.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic and (b) scanning electron micrograph of a single CWDM block. (c) Calculated effective index versus waveguide width and (d) sum of propagation constants versus wavelength. The dashed lines denote wavelengths at which Eq. (2) is satisfied and the corresponding CWDM wavelengths.
Fig. 2
Fig. 2 Transmission spectrum of the 1 by 8 CWDM device.
Fig. 3
Fig. 3 (a) Performance Evaluation using Commercial SFP + transceiver at 10Gb/s, (b) Measured eye diagram and (c) Plot of -log(BER) as a function of power
Fig. 4
Fig. 4 (a) Experimental setup for 30Gb/s high speed BER Eye diagram evaluation (b) Measured eye diagram and (c) plot of -log(BER) as a function of power.
Fig. 5
Fig. 5 (a) Schematic of Supercontinumm preceding CWDM b) Spectral plots of (blue) 500 fs laser source (blue)., (b) supercontinuum of 6mm waveguide (black) and (c) individual CWDM output with 6mm waveguide preceding the 1 by 8 CWDM.

Tables (1)

Tables Icon

Table 1 Results of designed and measured center wavelength and 3dB Bandwidth

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ d =( n eff1 + n eff2 )Λ
2π Λ =( β 1 + β 2 )
β 1, 2
w 1, 2

Metrics