Abstract

In this paper we demonstrate a simple and new fibre optic technique for measuring detonation velocities using uniform fibre Bragg gratings. We compare this new system with chirped fibre Bragg grating diagnostics and show how coherent source illumination can yield spatial uncertainties below ±10 μm – a percentage error that is an order of magnitude lower than the broadband ASE methods we have tested.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Detection of high explosive detonation across material interfaces with chirped fiber Bragg gratings

Steve Gilbertson, Scott I. Jackson, Samuel W. Vincent, and George Rodriguez
Appl. Opt. 54(13) 3849-3854 (2015)

Nonlinear switching in fibre Bragg gratings

N. G. R. Broderick, D. Taverner, and D. J. Richardson
Opt. Express 3(11) 447-453 (1998)

Laser-shocked energetic materials with metal additives: evaluation of chemistry and detonation performance

Jennifer L. Gottfried and Eric J. Bukowski
Appl. Opt. 56(3) B47-B57 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Sućeska, “Experimental determination of detonation velocity,” Fragblast 1, 261 (1997).
    [Crossref] [PubMed]
  2. C. A. Handley, B. D. Lambourn, N. J. Whitworth, H. R. James, and W. J. Belfield, “Understanding the shock and detonation response of high explosives at the continuum and meso scales,” Appl. Phys. Rev. 5, 011303 (2018).
    [Crossref]
  3. M. Shinas and D. Doty, “1550nm fiber optic toad (time of arrival diagnostic) for measuring sub-nanosecond resolution of detonation break out,” in AIP Conference Proceedings, vol. 1979 (AIP Publishing, 2018), p. 160025.
    [Crossref]
  4. J. Benterou, E. Udd, P. Wilkins, F. Roeske, E. Roos, and D. Jackson, “In-situ continuous detonation velocity measurements using fiber-optic Bragg grating sensors,” in EuroPyro 2007, 34th International Pyrotechnics Seminar, (Beaune, France, 8–11 Oct.2007).
  5. S. Gilbertson, S. I. Jackson, S. W. Vincent, and G. Rodriguez, “Detection of high explosive detonation across material interfaces with chirped fiber Bragg gratings,” Appl. Opt. 54, 3849 (2015).
    [Crossref]
  6. S. Magne, A. Lefrancois, J. Luc, G. Laffont, and P. Ferdinand, “Real-time, distributed measurement of detonation velocities inside high explosives with the help of chirped fiber Bragg gratings,” Proc. SPIE 8794, 87942K (2013).
    [Crossref]
  7. P. Wei, H. Lang, T. Liu, and D. Xia, “Detonation velocity measurement with chirped fiber Bragg grating,” Sensors 17, 2552 (2017).
    [Crossref]
  8. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647 (1978).
    [Crossref]
  9. A. Othonos and K. Kalli, Fiber Bragg gratings (Artech House, 1999).
  10. R. Feced and M. N. Zervas, “Effects of random phase and amplitude errors in optical fiber Bragg gratings,” J. Light. Technol. 18, 90 (2000).
    [Crossref]
  11. P. Sargis, N. Molau, D. Sweider, M. Lowry, and O. Strand, “Photonic Doppler velocimetry, 1999,” https://e-reports-ext.llnl.gov/pdf/234901.pdf . Accessed: 4 October 2019.
  12. P. A. Frugier, P. Mercier, J. Bénier, J. Veaux, M. Debruyne, C. Rion, and E. Dubreuil, “PDV and shock physics: application to nitro methane shock-detonation transition and particles ejection,” Proc. SPIE 7429, 742913 (2009).
  13. G. Nahmani and Y. Manheimer, “Detonation of nitromethane,” The J. Chem. Phys. 24, 1074 (1956).
    [Crossref]
  14. P. D. Dragic, “The acoustic velocity of Ge-doped silica fibers: A comparison of two models,” Int. J. Appl. Glass Sci. 1, 330 (2010).
    [Crossref]

2018 (1)

C. A. Handley, B. D. Lambourn, N. J. Whitworth, H. R. James, and W. J. Belfield, “Understanding the shock and detonation response of high explosives at the continuum and meso scales,” Appl. Phys. Rev. 5, 011303 (2018).
[Crossref]

2017 (1)

P. Wei, H. Lang, T. Liu, and D. Xia, “Detonation velocity measurement with chirped fiber Bragg grating,” Sensors 17, 2552 (2017).
[Crossref]

2015 (1)

2013 (1)

S. Magne, A. Lefrancois, J. Luc, G. Laffont, and P. Ferdinand, “Real-time, distributed measurement of detonation velocities inside high explosives with the help of chirped fiber Bragg gratings,” Proc. SPIE 8794, 87942K (2013).
[Crossref]

2010 (1)

P. D. Dragic, “The acoustic velocity of Ge-doped silica fibers: A comparison of two models,” Int. J. Appl. Glass Sci. 1, 330 (2010).
[Crossref]

2009 (1)

P. A. Frugier, P. Mercier, J. Bénier, J. Veaux, M. Debruyne, C. Rion, and E. Dubreuil, “PDV and shock physics: application to nitro methane shock-detonation transition and particles ejection,” Proc. SPIE 7429, 742913 (2009).

2000 (1)

R. Feced and M. N. Zervas, “Effects of random phase and amplitude errors in optical fiber Bragg gratings,” J. Light. Technol. 18, 90 (2000).
[Crossref]

1997 (1)

M. Sućeska, “Experimental determination of detonation velocity,” Fragblast 1, 261 (1997).
[Crossref] [PubMed]

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

1956 (1)

G. Nahmani and Y. Manheimer, “Detonation of nitromethane,” The J. Chem. Phys. 24, 1074 (1956).
[Crossref]

Belfield, W. J.

C. A. Handley, B. D. Lambourn, N. J. Whitworth, H. R. James, and W. J. Belfield, “Understanding the shock and detonation response of high explosives at the continuum and meso scales,” Appl. Phys. Rev. 5, 011303 (2018).
[Crossref]

Bénier, J.

P. A. Frugier, P. Mercier, J. Bénier, J. Veaux, M. Debruyne, C. Rion, and E. Dubreuil, “PDV and shock physics: application to nitro methane shock-detonation transition and particles ejection,” Proc. SPIE 7429, 742913 (2009).

Benterou, J.

J. Benterou, E. Udd, P. Wilkins, F. Roeske, E. Roos, and D. Jackson, “In-situ continuous detonation velocity measurements using fiber-optic Bragg grating sensors,” in EuroPyro 2007, 34th International Pyrotechnics Seminar, (Beaune, France, 8–11 Oct.2007).

Debruyne, M.

P. A. Frugier, P. Mercier, J. Bénier, J. Veaux, M. Debruyne, C. Rion, and E. Dubreuil, “PDV and shock physics: application to nitro methane shock-detonation transition and particles ejection,” Proc. SPIE 7429, 742913 (2009).

Doty, D.

M. Shinas and D. Doty, “1550nm fiber optic toad (time of arrival diagnostic) for measuring sub-nanosecond resolution of detonation break out,” in AIP Conference Proceedings, vol. 1979 (AIP Publishing, 2018), p. 160025.
[Crossref]

Dragic, P. D.

P. D. Dragic, “The acoustic velocity of Ge-doped silica fibers: A comparison of two models,” Int. J. Appl. Glass Sci. 1, 330 (2010).
[Crossref]

Dubreuil, E.

P. A. Frugier, P. Mercier, J. Bénier, J. Veaux, M. Debruyne, C. Rion, and E. Dubreuil, “PDV and shock physics: application to nitro methane shock-detonation transition and particles ejection,” Proc. SPIE 7429, 742913 (2009).

Feced, R.

R. Feced and M. N. Zervas, “Effects of random phase and amplitude errors in optical fiber Bragg gratings,” J. Light. Technol. 18, 90 (2000).
[Crossref]

Ferdinand, P.

S. Magne, A. Lefrancois, J. Luc, G. Laffont, and P. Ferdinand, “Real-time, distributed measurement of detonation velocities inside high explosives with the help of chirped fiber Bragg gratings,” Proc. SPIE 8794, 87942K (2013).
[Crossref]

Frugier, P. A.

P. A. Frugier, P. Mercier, J. Bénier, J. Veaux, M. Debruyne, C. Rion, and E. Dubreuil, “PDV and shock physics: application to nitro methane shock-detonation transition and particles ejection,” Proc. SPIE 7429, 742913 (2009).

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Gilbertson, S.

Handley, C. A.

C. A. Handley, B. D. Lambourn, N. J. Whitworth, H. R. James, and W. J. Belfield, “Understanding the shock and detonation response of high explosives at the continuum and meso scales,” Appl. Phys. Rev. 5, 011303 (2018).
[Crossref]

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Jackson, D.

J. Benterou, E. Udd, P. Wilkins, F. Roeske, E. Roos, and D. Jackson, “In-situ continuous detonation velocity measurements using fiber-optic Bragg grating sensors,” in EuroPyro 2007, 34th International Pyrotechnics Seminar, (Beaune, France, 8–11 Oct.2007).

Jackson, S. I.

James, H. R.

C. A. Handley, B. D. Lambourn, N. J. Whitworth, H. R. James, and W. J. Belfield, “Understanding the shock and detonation response of high explosives at the continuum and meso scales,” Appl. Phys. Rev. 5, 011303 (2018).
[Crossref]

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg gratings (Artech House, 1999).

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Laffont, G.

S. Magne, A. Lefrancois, J. Luc, G. Laffont, and P. Ferdinand, “Real-time, distributed measurement of detonation velocities inside high explosives with the help of chirped fiber Bragg gratings,” Proc. SPIE 8794, 87942K (2013).
[Crossref]

Lambourn, B. D.

C. A. Handley, B. D. Lambourn, N. J. Whitworth, H. R. James, and W. J. Belfield, “Understanding the shock and detonation response of high explosives at the continuum and meso scales,” Appl. Phys. Rev. 5, 011303 (2018).
[Crossref]

Lang, H.

P. Wei, H. Lang, T. Liu, and D. Xia, “Detonation velocity measurement with chirped fiber Bragg grating,” Sensors 17, 2552 (2017).
[Crossref]

Lefrancois, A.

S. Magne, A. Lefrancois, J. Luc, G. Laffont, and P. Ferdinand, “Real-time, distributed measurement of detonation velocities inside high explosives with the help of chirped fiber Bragg gratings,” Proc. SPIE 8794, 87942K (2013).
[Crossref]

Liu, T.

P. Wei, H. Lang, T. Liu, and D. Xia, “Detonation velocity measurement with chirped fiber Bragg grating,” Sensors 17, 2552 (2017).
[Crossref]

Luc, J.

S. Magne, A. Lefrancois, J. Luc, G. Laffont, and P. Ferdinand, “Real-time, distributed measurement of detonation velocities inside high explosives with the help of chirped fiber Bragg gratings,” Proc. SPIE 8794, 87942K (2013).
[Crossref]

Magne, S.

S. Magne, A. Lefrancois, J. Luc, G. Laffont, and P. Ferdinand, “Real-time, distributed measurement of detonation velocities inside high explosives with the help of chirped fiber Bragg gratings,” Proc. SPIE 8794, 87942K (2013).
[Crossref]

Manheimer, Y.

G. Nahmani and Y. Manheimer, “Detonation of nitromethane,” The J. Chem. Phys. 24, 1074 (1956).
[Crossref]

Mercier, P.

P. A. Frugier, P. Mercier, J. Bénier, J. Veaux, M. Debruyne, C. Rion, and E. Dubreuil, “PDV and shock physics: application to nitro methane shock-detonation transition and particles ejection,” Proc. SPIE 7429, 742913 (2009).

Nahmani, G.

G. Nahmani and Y. Manheimer, “Detonation of nitromethane,” The J. Chem. Phys. 24, 1074 (1956).
[Crossref]

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg gratings (Artech House, 1999).

Rion, C.

P. A. Frugier, P. Mercier, J. Bénier, J. Veaux, M. Debruyne, C. Rion, and E. Dubreuil, “PDV and shock physics: application to nitro methane shock-detonation transition and particles ejection,” Proc. SPIE 7429, 742913 (2009).

Rodriguez, G.

Roeske, F.

J. Benterou, E. Udd, P. Wilkins, F. Roeske, E. Roos, and D. Jackson, “In-situ continuous detonation velocity measurements using fiber-optic Bragg grating sensors,” in EuroPyro 2007, 34th International Pyrotechnics Seminar, (Beaune, France, 8–11 Oct.2007).

Roos, E.

J. Benterou, E. Udd, P. Wilkins, F. Roeske, E. Roos, and D. Jackson, “In-situ continuous detonation velocity measurements using fiber-optic Bragg grating sensors,” in EuroPyro 2007, 34th International Pyrotechnics Seminar, (Beaune, France, 8–11 Oct.2007).

Shinas, M.

M. Shinas and D. Doty, “1550nm fiber optic toad (time of arrival diagnostic) for measuring sub-nanosecond resolution of detonation break out,” in AIP Conference Proceedings, vol. 1979 (AIP Publishing, 2018), p. 160025.
[Crossref]

Suceska, M.

M. Sućeska, “Experimental determination of detonation velocity,” Fragblast 1, 261 (1997).
[Crossref] [PubMed]

Udd, E.

J. Benterou, E. Udd, P. Wilkins, F. Roeske, E. Roos, and D. Jackson, “In-situ continuous detonation velocity measurements using fiber-optic Bragg grating sensors,” in EuroPyro 2007, 34th International Pyrotechnics Seminar, (Beaune, France, 8–11 Oct.2007).

Veaux, J.

P. A. Frugier, P. Mercier, J. Bénier, J. Veaux, M. Debruyne, C. Rion, and E. Dubreuil, “PDV and shock physics: application to nitro methane shock-detonation transition and particles ejection,” Proc. SPIE 7429, 742913 (2009).

Vincent, S. W.

Wei, P.

P. Wei, H. Lang, T. Liu, and D. Xia, “Detonation velocity measurement with chirped fiber Bragg grating,” Sensors 17, 2552 (2017).
[Crossref]

Whitworth, N. J.

C. A. Handley, B. D. Lambourn, N. J. Whitworth, H. R. James, and W. J. Belfield, “Understanding the shock and detonation response of high explosives at the continuum and meso scales,” Appl. Phys. Rev. 5, 011303 (2018).
[Crossref]

Wilkins, P.

J. Benterou, E. Udd, P. Wilkins, F. Roeske, E. Roos, and D. Jackson, “In-situ continuous detonation velocity measurements using fiber-optic Bragg grating sensors,” in EuroPyro 2007, 34th International Pyrotechnics Seminar, (Beaune, France, 8–11 Oct.2007).

Xia, D.

P. Wei, H. Lang, T. Liu, and D. Xia, “Detonation velocity measurement with chirped fiber Bragg grating,” Sensors 17, 2552 (2017).
[Crossref]

Zervas, M. N.

R. Feced and M. N. Zervas, “Effects of random phase and amplitude errors in optical fiber Bragg gratings,” J. Light. Technol. 18, 90 (2000).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Appl. Phys. Rev. (1)

C. A. Handley, B. D. Lambourn, N. J. Whitworth, H. R. James, and W. J. Belfield, “Understanding the shock and detonation response of high explosives at the continuum and meso scales,” Appl. Phys. Rev. 5, 011303 (2018).
[Crossref]

Fragblast (1)

M. Sućeska, “Experimental determination of detonation velocity,” Fragblast 1, 261 (1997).
[Crossref] [PubMed]

Int. J. Appl. Glass Sci. (1)

P. D. Dragic, “The acoustic velocity of Ge-doped silica fibers: A comparison of two models,” Int. J. Appl. Glass Sci. 1, 330 (2010).
[Crossref]

J. Light. Technol. (1)

R. Feced and M. N. Zervas, “Effects of random phase and amplitude errors in optical fiber Bragg gratings,” J. Light. Technol. 18, 90 (2000).
[Crossref]

Proc. SPIE (2)

P. A. Frugier, P. Mercier, J. Bénier, J. Veaux, M. Debruyne, C. Rion, and E. Dubreuil, “PDV and shock physics: application to nitro methane shock-detonation transition and particles ejection,” Proc. SPIE 7429, 742913 (2009).

S. Magne, A. Lefrancois, J. Luc, G. Laffont, and P. Ferdinand, “Real-time, distributed measurement of detonation velocities inside high explosives with the help of chirped fiber Bragg gratings,” Proc. SPIE 8794, 87942K (2013).
[Crossref]

Sensors (1)

P. Wei, H. Lang, T. Liu, and D. Xia, “Detonation velocity measurement with chirped fiber Bragg grating,” Sensors 17, 2552 (2017).
[Crossref]

The J. Chem. Phys. (1)

G. Nahmani and Y. Manheimer, “Detonation of nitromethane,” The J. Chem. Phys. 24, 1074 (1956).
[Crossref]

Other (4)

P. Sargis, N. Molau, D. Sweider, M. Lowry, and O. Strand, “Photonic Doppler velocimetry, 1999,” https://e-reports-ext.llnl.gov/pdf/234901.pdf . Accessed: 4 October 2019.

A. Othonos and K. Kalli, Fiber Bragg gratings (Artech House, 1999).

M. Shinas and D. Doty, “1550nm fiber optic toad (time of arrival diagnostic) for measuring sub-nanosecond resolution of detonation break out,” in AIP Conference Proceedings, vol. 1979 (AIP Publishing, 2018), p. 160025.
[Crossref]

J. Benterou, E. Udd, P. Wilkins, F. Roeske, E. Roos, and D. Jackson, “In-situ continuous detonation velocity measurements using fiber-optic Bragg grating sensors,” in EuroPyro 2007, 34th International Pyrotechnics Seminar, (Beaune, France, 8–11 Oct.2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Shows the simulated spectra of four UFBGs, each with a different peak-reflectivity. (b) Shows how the peak-reflectivity of each UFBG scales with length. (c) Shows spectra for a simulated 10 mm long UFBG, which has an initial reflectivity of 90%. Each successive plot shows the grating shortened by 2.5 mm, with a dot highlighting the peak-reflectivity.
Fig. 2
Fig. 2 Schematic showing the interrogation setup for UFBG velocity probes. A narrow bandwidth source is tuned to the Bragg wavelength of a grating. The reflected signal passes through a circulator and is collected on a photodetector.
Fig. 3
Fig. 3 Photograph of the test setup, with a diagram showing how the probes hang inside the copper cylinder.
Fig. 4
Fig. 4 Reflection spectra for the three UFBGs used in these tests. The gratings have an initial peak-reflectivity of 73%, 84% and 93%.
Fig. 5
Fig. 5 (a)–(c) shows the normalised raw DAQ data from the three UFBG tests. The gratings have an initial peak-reflectivity of (a) 73%, (b) 84% and (c) 93%. (d)–(f) shows the corresponding simulations that were used to calibrate the raw data.
Fig. 6
Fig. 6 Plots of the fully calibrated UFBG test data. A linear regression has been calculated and plotted to show the linearity of the results, as well as to get an average velocity reading for each test.
Fig. 7
Fig. 7 Plots comparing all three diagnostics (UFBG, CFBG and HetV) for each test. The results from each probe have been overlayed for comparison. A magnification of the UFBG data is shown in the bottom right of each plot.
Fig. 8
Fig. 8 Plot showing a comparison between two UFBG tests. One has been illuminated with a coherent, narrow bandwidth source and the other has been illuminated with a broad bandwidth ASE source.

Tables (1)

Tables Icon

Table 1 Velocity comparisons between each measurement technique. “Velocity Difference” is the percentage difference between the grating probes and the HetV probe measurements. “Noise Percentage” is the noise:signal ratio for the data, based on the standard deviation of the signal prior to detonation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R = tanh 2 ( π δ n λ B × L )

Metrics