Abstract

Fluorescence correlation spectroscopy in combination with super-resolution stimulated emission depletion microscopy (STED-FCS) is a powerful tool to investigate molecular diffusion with sub-diffraction resolution. It has been of particular use for investigations of two dimensional systems like cell membranes, but has so far seen very limited applications to studies of three-dimensional diffusion. One reason for this is the extreme sensitivity of the axial (z) STED depletion pattern to optical aberrations. We present here an adaptive optics-based correction method that compensates for these aberrations and allows STED-FCS measurements in the cytoplasm of living cells.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Adaptive optics enables 3D STED microscopy in aberrating specimens

Travis J. Gould, Daniel Burke, Joerg Bewersdorf, and Martin J. Booth
Opt. Express 20(19) 20998-21009 (2012)

Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS)

Marcel Leutenegger, Christian Ringemann, Theo Lasser, Stefan W. Hell, and Christian Eggeling
Opt. Express 20(5) 5243-5263 (2012)

Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics

Brian R. Patton, Daniel Burke, David Owald, Travis J. Gould, Joerg Bewersdorf, and Martin J. Booth
Opt. Express 24(8) 8862-8876 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Magde and E. L. Elson, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13, 29–61 (1974).
    [Crossref] [PubMed]
  2. P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77, 2251–2265 (1999).
    [Crossref] [PubMed]
  3. L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94, 1–4 (2005).
    [Crossref]
  4. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. Von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
    [Crossref]
  5. C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schönle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11, 103054 (2009).
    [Crossref]
  6. E. Sezgin, F. Schneider, S. Galiani, I. Urbančič, D. Waithe, B. C. Lagerholm, and C. Eggeling, “Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED–FCS,” Nat. Protoc. 14, 1054–1083 (2019).
    [Crossref] [PubMed]
  7. K. Sozanski, E. Sisamakis, X. Zhang, and R. Holyst, “Quantitative fluorescence correlation spectroscopy in three-dimensional systems under stimulated emission depletion conditions,” Optica 4, 982–988 (2017).
    [Crossref]
  8. R. Wang, S. Brustlein, S. Mailfert, R. Fabre, M. Fallet, S. Sivankutty, H. Rigneault, and D. Marguet, “A straightforward STED-background corrected fitting model for unbiased STED-FCS analyses,” Sci. Direct 140–141, 212–222 (2018).
  9. L. Lanzanò, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 1–9 (2017).
    [Crossref]
  10. P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
    [Crossref]
  11. S. Deng, L. Liu, Y. Cheng, R. Li, and Z. Xu, “Investigation of the influence of the aberration induced by a plane interface on STED microscopy,” Opt. Express 17, 1714–1725 (2009).
    [Crossref] [PubMed]
  12. S. Deng, L. Liu, Y. Cheng, R. Li, and Z. Xu, “Effects of primary aberrations on the fluorescence depletion patterns of STED microscopy,” Opt. express 18, 1657–1666 (2010).
    [Crossref] [PubMed]
  13. J. Antonello, D. Burke, and M. J. Booth, “Aberrations in stimulated emission depletion (STED) microscopy,” Opt. Commun. 404, 203–209 (2017).
    [Crossref]
  14. Y. Li, H. Zhou, X. Liu, Y. Li, and L. Wang, “Effects of aberrations on effective point spread function in STED microscopy,” Appl. Opt. 57, 4164–4170 (2018).
    [Crossref] [PubMed]
  15. M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci. 365, 2829–2843 (2007).
    [Crossref]
  16. T. J. Gould, D. Burke, J. Bewersdorf, and M. J. Booth, “Adaptive optics enables 3D STED microscopy in aberrating specimens,” Opt. Express 20, 20998–21109 (2012).
    [Crossref] [PubMed]
  17. M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophotonics 7, 29–36 (2014).
    [Crossref]
  18. B. R. Patton, D. Burke, D. Owald, T. J. Gould, J. Bewersdorf, and M. J. Booth, “Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics,” Opt. Express 24, 8862–8876 (2016).
    [Crossref] [PubMed]
  19. C.-E. Leroux, I. Wang, J. Derouard, and A. Delon, “Adaptive Optics for fluorescence correlation spectroscopy,” Opt. Express 19, 26839–26849 (2011).
    [Crossref]
  20. C.-E. Leroux, A. Grichine, I. Wang, and A. Delon, “Correction of cell-induced optical aberrations in a fluorescence fluctuation microscope,” Opt. letters 38, 2401–2403 (2013).
    [Crossref]
  21. C.-E. Leroux, S. Monnier, I. Wang, G. Cappello, and A. Delon, “Fluorescent correlation spectroscopy measurements with adaptive optics in the intercellular space of spheroids,” Biomed. Opt. Express 5, 3730–3738 (2014).
    [Crossref] [PubMed]
  22. J. Gallagher, A. Delon, P. Moreau, and I. Wang, “Optimizing the metric in sensorless adaptive optical microscopy with fluorescence fluctuations,” Opt. Express 25, 15558–15571 (2017).
    [Crossref] [PubMed]
  23. M. P. Clausen, S. Galiani, J. B. de la Serna, M. Fritzsche, J. Chojnacki, K. Gehmlich, B. C. Lagerholm, and C. Eggeling, “Pathways to optical STED microscopy,” NanoBioImaging 1, 1–12 (2014).
    [Crossref]
  24. T. J. Gould, E. B. Kromann, D. Burke, M. J. Booth, and J. Bewersdorf, “Auto-aligning stimulated emission depletion microscope using adaptive optics,” Opt. Lett. 38, 1860–1862 (2013).
    [Crossref] [PubMed]
  25. J. Antonello, X. Hao, E. S. Allgeyer, J. Bewersdorf, J. Rittscher, and M. J. Booth, “Sensorless adaptive optics for isoSTED nanoscopy,” in Adaptive Optics and Wavefront Control for Biological Systems IV, vol. 10502 (International Society for Optics and Photonics, 2018), p. 1050206.
    [Crossref]
  26. P. Müller, “Python multiple-tau algorithm (Version 0.1.9) [Computer program],” (2012).
  27. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. 99, 5788–5792 (2002).
    [Crossref] [PubMed]
  28. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34, 2495–2497 (2009).
    [Crossref] [PubMed]
  29. J. Antonello, E. B. Kromann, D. Burke, J. Bewersdorf, and M. J. Booth, “Coma aberrations in combined two- and three-dimensional STED nanoscopy,” Opt. Lett. 41, 3631–3634 (2016).
    [Crossref] [PubMed]
  30. B. M. Hanser, M. G. L. Gustafsson, D. a. Agard, and J. W. Sedat, “Phase retrieval for high-numerical-aperture optical systems,” Opt. Lett. 28, 801–803 (2003).
    [Crossref] [PubMed]
  31. M. Schwertner, M. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540–6552 (2004).
    [Crossref] [PubMed]
  32. H. Qian and E. L. Elson, “On the analysis of high order moments of fluorescence fluctuations,” Biophys. J. 57, 375–380 (1990).
    [Crossref] [PubMed]
  33. P. Kask, R. Günther, and P. Axhausen, “Statistical accuracy in fluorescence fluctuation experiments,” Eur. Biophys. J. 25, 163–169 (1997).
    [Crossref]
  34. K. Palo, Ü. Mets, S. Jäger, P. Kask, and K. Gall, “Fluorescence intensity multiple distributions analysis: concurrent determination of diffusion times and molecular brightness,” Biophys. J. 79, 2858–2866 (2000).
    [Crossref] [PubMed]
  35. S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300–2317 (2002).
    [Crossref] [PubMed]
  36. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [Crossref]
  37. D. Burke, B. Patton, F. Huang, J. Bewersdorf, and M. J. Booth, “Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy,” Optica 2, 177–185 (2015).
    [Crossref]
  38. D. Waithe, F. Schneider, J. Chojnacki, M. P. Clausen, D. Shrestha, J. B. de la Serna, and C. Eggeling, “Optimized processing and analysis of conventional confocal microscopy generated scanning FCS data,” Methods 140–141, 62–73 (2018).
    [Crossref]
  39. M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson, “Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells,” Biophys. J. 87, 3518–3524 (2004).
    [Crossref] [PubMed]
  40. K. D. Niswender, S. M. Blackman, L. Rohde, M. A. Magnuson, and D. W. Piston, “Quantitative imaging of green fluorescent protein in cultured cells: Comparison of microscopic techniques, use in fusion proteins and detection limits,” J. Microsc. 180, 109–116 (1995).
    [Crossref] [PubMed]
  41. F. Görlitz, S. Guldbrand, T. H. Runcorn, R. T. Murray, A. L. Jaso-Tamame, H. G. Sinclair, E. Martinez-Perez, J. R. Taylor, M. A. A. Neil, C. Dunsby, and P. M. W. French, “easySLM-STED: stimulated emission depletion microscopy with aberration correction, extended field of view and multiple beam scanning,” J. Biophotonics p. e201800087 (2018).
    [Crossref] [PubMed]
  42. P. Mahou, N. Curry, D. Pinotsi, G. Kaminski Schierle, and C. Kaminski, “Stimulated emission depletion microscopy to study amyloid fibril formation,” Proc. SPIE 9331, 93310U (2015).
    [Crossref]
  43. C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytom. Part A 65, 88–92 (2005).
    [Crossref]
  44. B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
    [Crossref] [PubMed]

2019 (1)

E. Sezgin, F. Schneider, S. Galiani, I. Urbančič, D. Waithe, B. C. Lagerholm, and C. Eggeling, “Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED–FCS,” Nat. Protoc. 14, 1054–1083 (2019).
[Crossref] [PubMed]

2018 (3)

Y. Li, H. Zhou, X. Liu, Y. Li, and L. Wang, “Effects of aberrations on effective point spread function in STED microscopy,” Appl. Opt. 57, 4164–4170 (2018).
[Crossref] [PubMed]

R. Wang, S. Brustlein, S. Mailfert, R. Fabre, M. Fallet, S. Sivankutty, H. Rigneault, and D. Marguet, “A straightforward STED-background corrected fitting model for unbiased STED-FCS analyses,” Sci. Direct 140–141, 212–222 (2018).

D. Waithe, F. Schneider, J. Chojnacki, M. P. Clausen, D. Shrestha, J. B. de la Serna, and C. Eggeling, “Optimized processing and analysis of conventional confocal microscopy generated scanning FCS data,” Methods 140–141, 62–73 (2018).
[Crossref]

2017 (5)

L. Lanzanò, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

J. Antonello, D. Burke, and M. J. Booth, “Aberrations in stimulated emission depletion (STED) microscopy,” Opt. Commun. 404, 203–209 (2017).
[Crossref]

K. Sozanski, E. Sisamakis, X. Zhang, and R. Holyst, “Quantitative fluorescence correlation spectroscopy in three-dimensional systems under stimulated emission depletion conditions,” Optica 4, 982–988 (2017).
[Crossref]

J. Gallagher, A. Delon, P. Moreau, and I. Wang, “Optimizing the metric in sensorless adaptive optical microscopy with fluorescence fluctuations,” Opt. Express 25, 15558–15571 (2017).
[Crossref] [PubMed]

2016 (2)

2015 (2)

P. Mahou, N. Curry, D. Pinotsi, G. Kaminski Schierle, and C. Kaminski, “Stimulated emission depletion microscopy to study amyloid fibril formation,” Proc. SPIE 9331, 93310U (2015).
[Crossref]

D. Burke, B. Patton, F. Huang, J. Bewersdorf, and M. J. Booth, “Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy,” Optica 2, 177–185 (2015).
[Crossref]

2014 (3)

C.-E. Leroux, S. Monnier, I. Wang, G. Cappello, and A. Delon, “Fluorescent correlation spectroscopy measurements with adaptive optics in the intercellular space of spheroids,” Biomed. Opt. Express 5, 3730–3738 (2014).
[Crossref] [PubMed]

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophotonics 7, 29–36 (2014).
[Crossref]

M. P. Clausen, S. Galiani, J. B. de la Serna, M. Fritzsche, J. Chojnacki, K. Gehmlich, B. C. Lagerholm, and C. Eggeling, “Pathways to optical STED microscopy,” NanoBioImaging 1, 1–12 (2014).
[Crossref]

2013 (2)

T. J. Gould, E. B. Kromann, D. Burke, M. J. Booth, and J. Bewersdorf, “Auto-aligning stimulated emission depletion microscope using adaptive optics,” Opt. Lett. 38, 1860–1862 (2013).
[Crossref] [PubMed]

C.-E. Leroux, A. Grichine, I. Wang, and A. Delon, “Correction of cell-induced optical aberrations in a fluorescence fluctuation microscope,” Opt. letters 38, 2401–2403 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (1)

2009 (4)

S. Deng, L. Liu, Y. Cheng, R. Li, and Z. Xu, “Investigation of the influence of the aberration induced by a plane interface on STED microscopy,” Opt. Express 17, 1714–1725 (2009).
[Crossref] [PubMed]

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. Von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schönle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11, 103054 (2009).
[Crossref]

D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34, 2495–2497 (2009).
[Crossref] [PubMed]

2007 (2)

M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci. 365, 2829–2843 (2007).
[Crossref]

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref] [PubMed]

2005 (2)

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytom. Part A 65, 88–92 (2005).
[Crossref]

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94, 1–4 (2005).
[Crossref]

2004 (2)

M. Schwertner, M. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540–6552 (2004).
[Crossref] [PubMed]

M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson, “Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells,” Biophys. J. 87, 3518–3524 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (2)

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. 99, 5788–5792 (2002).
[Crossref] [PubMed]

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300–2317 (2002).
[Crossref] [PubMed]

2000 (1)

K. Palo, Ü. Mets, S. Jäger, P. Kask, and K. Gall, “Fluorescence intensity multiple distributions analysis: concurrent determination of diffusion times and molecular brightness,” Biophys. J. 79, 2858–2866 (2000).
[Crossref] [PubMed]

1999 (1)

P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77, 2251–2265 (1999).
[Crossref] [PubMed]

1997 (1)

P. Kask, R. Günther, and P. Axhausen, “Statistical accuracy in fluorescence fluctuation experiments,” Eur. Biophys. J. 25, 163–169 (1997).
[Crossref]

1995 (1)

K. D. Niswender, S. M. Blackman, L. Rohde, M. A. Magnuson, and D. W. Piston, “Quantitative imaging of green fluorescent protein in cultured cells: Comparison of microscopic techniques, use in fusion proteins and detection limits,” J. Microsc. 180, 109–116 (1995).
[Crossref] [PubMed]

1990 (1)

H. Qian and E. L. Elson, “On the analysis of high order moments of fluorescence fluctuations,” Biophys. J. 57, 375–380 (1990).
[Crossref] [PubMed]

1976 (1)

1974 (1)

D. Magde and E. L. Elson, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13, 29–61 (1974).
[Crossref] [PubMed]

Agard, D. a.

Allgeyer, E. S.

J. Antonello, X. Hao, E. S. Allgeyer, J. Bewersdorf, J. Rittscher, and M. J. Booth, “Sensorless adaptive optics for isoSTED nanoscopy,” in Adaptive Optics and Wavefront Control for Biological Systems IV, vol. 10502 (International Society for Optics and Photonics, 2018), p. 1050206.
[Crossref]

Allman, B. E.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytom. Part A 65, 88–92 (2005).
[Crossref]

Antonello, J.

J. Antonello, D. Burke, and M. J. Booth, “Aberrations in stimulated emission depletion (STED) microscopy,” Opt. Commun. 404, 203–209 (2017).
[Crossref]

J. Antonello, E. B. Kromann, D. Burke, J. Bewersdorf, and M. J. Booth, “Coma aberrations in combined two- and three-dimensional STED nanoscopy,” Opt. Lett. 41, 3631–3634 (2016).
[Crossref] [PubMed]

J. Antonello, X. Hao, E. S. Allgeyer, J. Bewersdorf, J. Rittscher, and M. J. Booth, “Sensorless adaptive optics for isoSTED nanoscopy,” in Adaptive Optics and Wavefront Control for Biological Systems IV, vol. 10502 (International Society for Optics and Photonics, 2018), p. 1050206.
[Crossref]

Axhausen, P.

P. Kask, R. Günther, and P. Axhausen, “Statistical accuracy in fluorescence fluctuation experiments,” Eur. Biophys. J. 25, 163–169 (1997).
[Crossref]

Bellair, C. J.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytom. Part A 65, 88–92 (2005).
[Crossref]

Belov, V. N.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. Von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

Bewersdorf, J.

Bianchini, P.

L. Lanzanò, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Bizzarri, R.

L. Lanzanò, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Blackman, S. M.

K. D. Niswender, S. M. Blackman, L. Rohde, M. A. Magnuson, and D. W. Piston, “Quantitative imaging of green fluorescent protein in cultured cells: Comparison of microscopic techniques, use in fusion proteins and detection limits,” J. Microsc. 180, 109–116 (1995).
[Crossref] [PubMed]

Blom, H.

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94, 1–4 (2005).
[Crossref]

Booth, M.

Booth, M. J.

J. Antonello, D. Burke, and M. J. Booth, “Aberrations in stimulated emission depletion (STED) microscopy,” Opt. Commun. 404, 203–209 (2017).
[Crossref]

J. Antonello, E. B. Kromann, D. Burke, J. Bewersdorf, and M. J. Booth, “Coma aberrations in combined two- and three-dimensional STED nanoscopy,” Opt. Lett. 41, 3631–3634 (2016).
[Crossref] [PubMed]

B. R. Patton, D. Burke, D. Owald, T. J. Gould, J. Bewersdorf, and M. J. Booth, “Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics,” Opt. Express 24, 8862–8876 (2016).
[Crossref] [PubMed]

D. Burke, B. Patton, F. Huang, J. Bewersdorf, and M. J. Booth, “Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy,” Optica 2, 177–185 (2015).
[Crossref]

T. J. Gould, E. B. Kromann, D. Burke, M. J. Booth, and J. Bewersdorf, “Auto-aligning stimulated emission depletion microscope using adaptive optics,” Opt. Lett. 38, 1860–1862 (2013).
[Crossref] [PubMed]

T. J. Gould, D. Burke, J. Bewersdorf, and M. J. Booth, “Adaptive optics enables 3D STED microscopy in aberrating specimens,” Opt. Express 20, 20998–21109 (2012).
[Crossref] [PubMed]

D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34, 2495–2497 (2009).
[Crossref] [PubMed]

M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci. 365, 2829–2843 (2007).
[Crossref]

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. 99, 5788–5792 (2002).
[Crossref] [PubMed]

J. Antonello, X. Hao, E. S. Allgeyer, J. Bewersdorf, J. Rittscher, and M. J. Booth, “Sensorless adaptive optics for isoSTED nanoscopy,” in Adaptive Optics and Wavefront Control for Biological Systems IV, vol. 10502 (International Society for Optics and Photonics, 2018), p. 1050206.
[Crossref]

Botcherby, E. J.

Bredebusch, I.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref] [PubMed]

Brown, A. C.

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophotonics 7, 29–36 (2014).
[Crossref]

Brustlein, S.

R. Wang, S. Brustlein, S. Mailfert, R. Fabre, M. Fallet, S. Sivankutty, H. Rigneault, and D. Marguet, “A straightforward STED-background corrected fitting model for unbiased STED-FCS analyses,” Sci. Direct 140–141, 212–222 (2018).

Burke, D.

Cappello, G.

Cardarelli, F.

L. Lanzanò, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Cheng, Y.

Chojnacki, J.

D. Waithe, F. Schneider, J. Chojnacki, M. P. Clausen, D. Shrestha, J. B. de la Serna, and C. Eggeling, “Optimized processing and analysis of conventional confocal microscopy generated scanning FCS data,” Methods 140–141, 62–73 (2018).
[Crossref]

M. P. Clausen, S. Galiani, J. B. de la Serna, M. Fritzsche, J. Chojnacki, K. Gehmlich, B. C. Lagerholm, and C. Eggeling, “Pathways to optical STED microscopy,” NanoBioImaging 1, 1–12 (2014).
[Crossref]

Clausen, M. P.

D. Waithe, F. Schneider, J. Chojnacki, M. P. Clausen, D. Shrestha, J. B. de la Serna, and C. Eggeling, “Optimized processing and analysis of conventional confocal microscopy generated scanning FCS data,” Methods 140–141, 62–73 (2018).
[Crossref]

M. P. Clausen, S. Galiani, J. B. de la Serna, M. Fritzsche, J. Chojnacki, K. Gehmlich, B. C. Lagerholm, and C. Eggeling, “Pathways to optical STED microscopy,” NanoBioImaging 1, 1–12 (2014).
[Crossref]

Clegg, J. H.

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophotonics 7, 29–36 (2014).
[Crossref]

Curl, C. L.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytom. Part A 65, 88–92 (2005).
[Crossref]

Curry, N.

P. Mahou, N. Curry, D. Pinotsi, G. Kaminski Schierle, and C. Kaminski, “Stimulated emission depletion microscopy to study amyloid fibril formation,” Proc. SPIE 9331, 93310U (2015).
[Crossref]

Davis, D. M.

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophotonics 7, 29–36 (2014).
[Crossref]

de la Serna, J. B.

D. Waithe, F. Schneider, J. Chojnacki, M. P. Clausen, D. Shrestha, J. B. de la Serna, and C. Eggeling, “Optimized processing and analysis of conventional confocal microscopy generated scanning FCS data,” Methods 140–141, 62–73 (2018).
[Crossref]

M. P. Clausen, S. Galiani, J. B. de la Serna, M. Fritzsche, J. Chojnacki, K. Gehmlich, B. C. Lagerholm, and C. Eggeling, “Pathways to optical STED microscopy,” NanoBioImaging 1, 1–12 (2014).
[Crossref]

Débarre, D.

Delbridge, L. M.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytom. Part A 65, 88–92 (2005).
[Crossref]

Delon, A.

Deng, S.

Derouard, J.

Di Bona, M.

L. Lanzanò, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Diaspro, A.

L. Lanzanò, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Domschke, W.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref] [PubMed]

Dunsby, C.

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophotonics 7, 29–36 (2014).
[Crossref]

F. Görlitz, S. Guldbrand, T. H. Runcorn, R. T. Murray, A. L. Jaso-Tamame, H. G. Sinclair, E. Martinez-Perez, J. R. Taylor, M. A. A. Neil, C. Dunsby, and P. M. W. French, “easySLM-STED: stimulated emission depletion microscopy with aberration correction, extended field of view and multiple beam scanning,” J. Biophotonics p. e201800087 (2018).
[Crossref] [PubMed]

Eggeling, C.

E. Sezgin, F. Schneider, S. Galiani, I. Urbančič, D. Waithe, B. C. Lagerholm, and C. Eggeling, “Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED–FCS,” Nat. Protoc. 14, 1054–1083 (2019).
[Crossref] [PubMed]

D. Waithe, F. Schneider, J. Chojnacki, M. P. Clausen, D. Shrestha, J. B. de la Serna, and C. Eggeling, “Optimized processing and analysis of conventional confocal microscopy generated scanning FCS data,” Methods 140–141, 62–73 (2018).
[Crossref]

M. P. Clausen, S. Galiani, J. B. de la Serna, M. Fritzsche, J. Chojnacki, K. Gehmlich, B. C. Lagerholm, and C. Eggeling, “Pathways to optical STED microscopy,” NanoBioImaging 1, 1–12 (2014).
[Crossref]

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. Von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schönle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11, 103054 (2009).
[Crossref]

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94, 1–4 (2005).
[Crossref]

Elsner, M.

M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson, “Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells,” Biophys. J. 87, 3518–3524 (2004).
[Crossref] [PubMed]

Elson, E. L.

H. Qian and E. L. Elson, “On the analysis of high order moments of fluorescence fluctuations,” Biophys. J. 57, 375–380 (1990).
[Crossref] [PubMed]

D. Magde and E. L. Elson, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13, 29–61 (1974).
[Crossref] [PubMed]

Fabre, R.

R. Wang, S. Brustlein, S. Mailfert, R. Fabre, M. Fallet, S. Sivankutty, H. Rigneault, and D. Marguet, “A straightforward STED-background corrected fitting model for unbiased STED-FCS analyses,” Sci. Direct 140–141, 212–222 (2018).

Fallet, M.

R. Wang, S. Brustlein, S. Mailfert, R. Fabre, M. Fallet, S. Sivankutty, H. Rigneault, and D. Marguet, “A straightforward STED-background corrected fitting model for unbiased STED-FCS analyses,” Sci. Direct 140–141, 212–222 (2018).

French, P. M.

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophotonics 7, 29–36 (2014).
[Crossref]

French, P. M. W.

F. Görlitz, S. Guldbrand, T. H. Runcorn, R. T. Murray, A. L. Jaso-Tamame, H. G. Sinclair, E. Martinez-Perez, J. R. Taylor, M. A. A. Neil, C. Dunsby, and P. M. W. French, “easySLM-STED: stimulated emission depletion microscopy with aberration correction, extended field of view and multiple beam scanning,” J. Biophotonics p. e201800087 (2018).
[Crossref] [PubMed]

Fritzsche, M.

M. P. Clausen, S. Galiani, J. B. de la Serna, M. Fritzsche, J. Chojnacki, K. Gehmlich, B. C. Lagerholm, and C. Eggeling, “Pathways to optical STED microscopy,” NanoBioImaging 1, 1–12 (2014).
[Crossref]

Galiani, S.

E. Sezgin, F. Schneider, S. Galiani, I. Urbančič, D. Waithe, B. C. Lagerholm, and C. Eggeling, “Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED–FCS,” Nat. Protoc. 14, 1054–1083 (2019).
[Crossref] [PubMed]

M. P. Clausen, S. Galiani, J. B. de la Serna, M. Fritzsche, J. Chojnacki, K. Gehmlich, B. C. Lagerholm, and C. Eggeling, “Pathways to optical STED microscopy,” NanoBioImaging 1, 1–12 (2014).
[Crossref]

Gall, K.

K. Palo, Ü. Mets, S. Jäger, P. Kask, and K. Gall, “Fluorescence intensity multiple distributions analysis: concurrent determination of diffusion times and molecular brightness,” Biophys. J. 79, 2858–2866 (2000).
[Crossref] [PubMed]

Gallagher, J.

Gao, P.

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

Gehmlich, K.

M. P. Clausen, S. Galiani, J. B. de la Serna, M. Fritzsche, J. Chojnacki, K. Gehmlich, B. C. Lagerholm, and C. Eggeling, “Pathways to optical STED microscopy,” NanoBioImaging 1, 1–12 (2014).
[Crossref]

Görlitz, F.

F. Görlitz, S. Guldbrand, T. H. Runcorn, R. T. Murray, A. L. Jaso-Tamame, H. G. Sinclair, E. Martinez-Perez, J. R. Taylor, M. A. A. Neil, C. Dunsby, and P. M. W. French, “easySLM-STED: stimulated emission depletion microscopy with aberration correction, extended field of view and multiple beam scanning,” J. Biophotonics p. e201800087 (2018).
[Crossref] [PubMed]

Gould, T. J.

Grichine, A.

C.-E. Leroux, A. Grichine, I. Wang, and A. Delon, “Correction of cell-induced optical aberrations in a fluorescence fluctuation microscope,” Opt. letters 38, 2401–2403 (2013).
[Crossref]

Guldbrand, S.

F. Görlitz, S. Guldbrand, T. H. Runcorn, R. T. Murray, A. L. Jaso-Tamame, H. G. Sinclair, E. Martinez-Perez, J. R. Taylor, M. A. A. Neil, C. Dunsby, and P. M. W. French, “easySLM-STED: stimulated emission depletion microscopy with aberration correction, extended field of view and multiple beam scanning,” J. Biophotonics p. e201800087 (2018).
[Crossref] [PubMed]

Günther, R.

P. Kask, R. Günther, and P. Axhausen, “Statistical accuracy in fluorescence fluctuation experiments,” Eur. Biophys. J. 25, 163–169 (1997).
[Crossref]

Gustafsson, M. G. L.

Hanser, B. M.

Hao, X.

J. Antonello, X. Hao, E. S. Allgeyer, J. Bewersdorf, J. Rittscher, and M. J. Booth, “Sensorless adaptive optics for isoSTED nanoscopy,” in Adaptive Optics and Wavefront Control for Biological Systems IV, vol. 10502 (International Society for Optics and Photonics, 2018), p. 1050206.
[Crossref]

Harke, B.

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schönle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11, 103054 (2009).
[Crossref]

Harris, P. J.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytom. Part A 65, 88–92 (2005).
[Crossref]

Harris, T.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytom. Part A 65, 88–92 (2005).
[Crossref]

Haupts, U.

P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77, 2251–2265 (1999).
[Crossref] [PubMed]

Hein, B.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. Von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

Hell, S. W.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. Von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schönle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11, 103054 (2009).
[Crossref]

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94, 1–4 (2005).
[Crossref]

Hess, S. T.

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300–2317 (2002).
[Crossref] [PubMed]

Holyst, R.

Honigmann, A.

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schönle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11, 103054 (2009).
[Crossref]

Huang, F.

Jäger, S.

K. Palo, Ü. Mets, S. Jäger, P. Kask, and K. Gall, “Fluorescence intensity multiple distributions analysis: concurrent determination of diffusion times and molecular brightness,” Biophys. J. 79, 2858–2866 (2000).
[Crossref] [PubMed]

Jaso-Tamame, A. L.

F. Görlitz, S. Guldbrand, T. H. Runcorn, R. T. Murray, A. L. Jaso-Tamame, H. G. Sinclair, E. Martinez-Perez, J. R. Taylor, M. A. A. Neil, C. Dunsby, and P. M. W. French, “easySLM-STED: stimulated emission depletion microscopy with aberration correction, extended field of view and multiple beam scanning,” J. Biophotonics p. e201800087 (2018).
[Crossref] [PubMed]

Juskaitis, R.

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. 99, 5788–5792 (2002).
[Crossref] [PubMed]

Kaminski, C.

P. Mahou, N. Curry, D. Pinotsi, G. Kaminski Schierle, and C. Kaminski, “Stimulated emission depletion microscopy to study amyloid fibril formation,” Proc. SPIE 9331, 93310U (2015).
[Crossref]

Kaminski Schierle, G.

P. Mahou, N. Curry, D. Pinotsi, G. Kaminski Schierle, and C. Kaminski, “Stimulated emission depletion microscopy to study amyloid fibril formation,” Proc. SPIE 9331, 93310U (2015).
[Crossref]

Kartberg, F.

M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson, “Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells,” Biophys. J. 87, 3518–3524 (2004).
[Crossref] [PubMed]

Kask, P.

K. Palo, Ü. Mets, S. Jäger, P. Kask, and K. Gall, “Fluorescence intensity multiple distributions analysis: concurrent determination of diffusion times and molecular brightness,” Biophys. J. 79, 2858–2866 (2000).
[Crossref] [PubMed]

P. Kask, R. Günther, and P. Axhausen, “Statistical accuracy in fluorescence fluctuation experiments,” Eur. Biophys. J. 25, 163–169 (1997).
[Crossref]

Kastrup, L.

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94, 1–4 (2005).
[Crossref]

Kemper, B.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref] [PubMed]

Kosmeier, S.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref] [PubMed]

Kromann, E. B.

Lagerholm, B. C.

E. Sezgin, F. Schneider, S. Galiani, I. Urbančič, D. Waithe, B. C. Lagerholm, and C. Eggeling, “Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED–FCS,” Nat. Protoc. 14, 1054–1083 (2019).
[Crossref] [PubMed]

M. P. Clausen, S. Galiani, J. B. de la Serna, M. Fritzsche, J. Chojnacki, K. Gehmlich, B. C. Lagerholm, and C. Eggeling, “Pathways to optical STED microscopy,” NanoBioImaging 1, 1–12 (2014).
[Crossref]

Langehanenberg, P.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref] [PubMed]

Lanzanò, L.

L. Lanzanò, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Lenz, M. O.

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophotonics 7, 29–36 (2014).
[Crossref]

Leroux, C.-E.

Leutenegger, M.

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schönle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11, 103054 (2009).
[Crossref]

Li, R.

Li, Y.

Liu, L.

Liu, X.

Magde, D.

D. Magde and E. L. Elson, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13, 29–61 (1974).
[Crossref] [PubMed]

Magnuson, M. A.

K. D. Niswender, S. M. Blackman, L. Rohde, M. A. Magnuson, and D. W. Piston, “Quantitative imaging of green fluorescent protein in cultured cells: Comparison of microscopic techniques, use in fusion proteins and detection limits,” J. Microsc. 180, 109–116 (1995).
[Crossref] [PubMed]

Mahou, P.

P. Mahou, N. Curry, D. Pinotsi, G. Kaminski Schierle, and C. Kaminski, “Stimulated emission depletion microscopy to study amyloid fibril formation,” Proc. SPIE 9331, 93310U (2015).
[Crossref]

Mailfert, S.

R. Wang, S. Brustlein, S. Mailfert, R. Fabre, M. Fallet, S. Sivankutty, H. Rigneault, and D. Marguet, “A straightforward STED-background corrected fitting model for unbiased STED-FCS analyses,” Sci. Direct 140–141, 212–222 (2018).

Maiti, S.

P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77, 2251–2265 (1999).
[Crossref] [PubMed]

Marguet, D.

R. Wang, S. Brustlein, S. Mailfert, R. Fabre, M. Fallet, S. Sivankutty, H. Rigneault, and D. Marguet, “A straightforward STED-background corrected fitting model for unbiased STED-FCS analyses,” Sci. Direct 140–141, 212–222 (2018).

Martinez-Perez, E.

F. Görlitz, S. Guldbrand, T. H. Runcorn, R. T. Murray, A. L. Jaso-Tamame, H. G. Sinclair, E. Martinez-Perez, J. R. Taylor, M. A. A. Neil, C. Dunsby, and P. M. W. French, “easySLM-STED: stimulated emission depletion microscopy with aberration correction, extended field of view and multiple beam scanning,” J. Biophotonics p. e201800087 (2018).
[Crossref] [PubMed]

Medda, R.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. Von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schönle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11, 103054 (2009).
[Crossref]

Mets, Ü.

K. Palo, Ü. Mets, S. Jäger, P. Kask, and K. Gall, “Fluorescence intensity multiple distributions analysis: concurrent determination of diffusion times and molecular brightness,” Biophys. J. 79, 2858–2866 (2000).
[Crossref] [PubMed]

Monnier, S.

Moreau, P.

Müller, P.

P. Müller, “Python multiple-tau algorithm (Version 0.1.9) [Computer program],” (2012).

Murray, R. T.

F. Görlitz, S. Guldbrand, T. H. Runcorn, R. T. Murray, A. L. Jaso-Tamame, H. G. Sinclair, E. Martinez-Perez, J. R. Taylor, M. A. A. Neil, C. Dunsby, and P. M. W. French, “easySLM-STED: stimulated emission depletion microscopy with aberration correction, extended field of view and multiple beam scanning,” J. Biophotonics p. e201800087 (2018).
[Crossref] [PubMed]

Neil, M. A.

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophotonics 7, 29–36 (2014).
[Crossref]

Neil, M. A. A.

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. 99, 5788–5792 (2002).
[Crossref] [PubMed]

F. Görlitz, S. Guldbrand, T. H. Runcorn, R. T. Murray, A. L. Jaso-Tamame, H. G. Sinclair, E. Martinez-Perez, J. R. Taylor, M. A. A. Neil, C. Dunsby, and P. M. W. French, “easySLM-STED: stimulated emission depletion microscopy with aberration correction, extended field of view and multiple beam scanning,” J. Biophotonics p. e201800087 (2018).
[Crossref] [PubMed]

Nienhaus, G. U.

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

Nienhaus, K.

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

Nilsson, T.

M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson, “Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells,” Biophys. J. 87, 3518–3524 (2004).
[Crossref] [PubMed]

Niswender, K. D.

K. D. Niswender, S. M. Blackman, L. Rohde, M. A. Magnuson, and D. W. Piston, “Quantitative imaging of green fluorescent protein in cultured cells: Comparison of microscopic techniques, use in fusion proteins and detection limits,” J. Microsc. 180, 109–116 (1995).
[Crossref] [PubMed]

Noll, R. J.

Nugent, K. A.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytom. Part A 65, 88–92 (2005).
[Crossref]

Owald, D.

Palo, K.

K. Palo, Ü. Mets, S. Jäger, P. Kask, and K. Gall, “Fluorescence intensity multiple distributions analysis: concurrent determination of diffusion times and molecular brightness,” Biophys. J. 79, 2858–2866 (2000).
[Crossref] [PubMed]

Patton, B.

Patton, B. R.

Pinotsi, D.

P. Mahou, N. Curry, D. Pinotsi, G. Kaminski Schierle, and C. Kaminski, “Stimulated emission depletion microscopy to study amyloid fibril formation,” Proc. SPIE 9331, 93310U (2015).
[Crossref]

Piston, D. W.

K. D. Niswender, S. M. Blackman, L. Rohde, M. A. Magnuson, and D. W. Piston, “Quantitative imaging of green fluorescent protein in cultured cells: Comparison of microscopic techniques, use in fusion proteins and detection limits,” J. Microsc. 180, 109–116 (1995).
[Crossref] [PubMed]

Polyakova, S.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. Von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

Prunsche, B.

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

Qian, H.

H. Qian and E. L. Elson, “On the analysis of high order moments of fluorescence fluctuations,” Biophys. J. 57, 375–380 (1990).
[Crossref] [PubMed]

Rigneault, H.

R. Wang, S. Brustlein, S. Mailfert, R. Fabre, M. Fallet, S. Sivankutty, H. Rigneault, and D. Marguet, “A straightforward STED-background corrected fitting model for unbiased STED-FCS analyses,” Sci. Direct 140–141, 212–222 (2018).

Ringemann, C.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. Von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schönle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11, 103054 (2009).
[Crossref]

Rittscher, J.

J. Antonello, X. Hao, E. S. Allgeyer, J. Bewersdorf, J. Rittscher, and M. J. Booth, “Sensorless adaptive optics for isoSTED nanoscopy,” in Adaptive Optics and Wavefront Control for Biological Systems IV, vol. 10502 (International Society for Optics and Photonics, 2018), p. 1050206.
[Crossref]

Roberts, A.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytom. Part A 65, 88–92 (2005).
[Crossref]

Rohde, L.

K. D. Niswender, S. M. Blackman, L. Rohde, M. A. Magnuson, and D. W. Piston, “Quantitative imaging of green fluorescent protein in cultured cells: Comparison of microscopic techniques, use in fusion proteins and detection limits,” J. Microsc. 180, 109–116 (1995).
[Crossref] [PubMed]

Runcorn, T. H.

F. Görlitz, S. Guldbrand, T. H. Runcorn, R. T. Murray, A. L. Jaso-Tamame, H. G. Sinclair, E. Martinez-Perez, J. R. Taylor, M. A. A. Neil, C. Dunsby, and P. M. W. French, “easySLM-STED: stimulated emission depletion microscopy with aberration correction, extended field of view and multiple beam scanning,” J. Biophotonics p. e201800087 (2018).
[Crossref] [PubMed]

Sandhoff, K.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. Von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

Savell, A.

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophotonics 7, 29–36 (2014).
[Crossref]

Schneider, F.

E. Sezgin, F. Schneider, S. Galiani, I. Urbančič, D. Waithe, B. C. Lagerholm, and C. Eggeling, “Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED–FCS,” Nat. Protoc. 14, 1054–1083 (2019).
[Crossref] [PubMed]

D. Waithe, F. Schneider, J. Chojnacki, M. P. Clausen, D. Shrestha, J. B. de la Serna, and C. Eggeling, “Optimized processing and analysis of conventional confocal microscopy generated scanning FCS data,” Methods 140–141, 62–73 (2018).
[Crossref]

Schnekenburger, J.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref] [PubMed]

Schönle, A.

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schönle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11, 103054 (2009).
[Crossref]

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. Von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

Schwarzmann, G.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. Von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

Schwertner, M.

Schwille, P.

P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77, 2251–2265 (1999).
[Crossref] [PubMed]

Scipioni, L.

L. Lanzanò, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Sedat, J. W.

Sezgin, E.

E. Sezgin, F. Schneider, S. Galiani, I. Urbančič, D. Waithe, B. C. Lagerholm, and C. Eggeling, “Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED–FCS,” Nat. Protoc. 14, 1054–1083 (2019).
[Crossref] [PubMed]

Shrestha, D.

D. Waithe, F. Schneider, J. Chojnacki, M. P. Clausen, D. Shrestha, J. B. de la Serna, and C. Eggeling, “Optimized processing and analysis of conventional confocal microscopy generated scanning FCS data,” Methods 140–141, 62–73 (2018).
[Crossref]

Sinclair, H. G.

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophotonics 7, 29–36 (2014).
[Crossref]

F. Görlitz, S. Guldbrand, T. H. Runcorn, R. T. Murray, A. L. Jaso-Tamame, H. G. Sinclair, E. Martinez-Perez, J. R. Taylor, M. A. A. Neil, C. Dunsby, and P. M. W. French, “easySLM-STED: stimulated emission depletion microscopy with aberration correction, extended field of view and multiple beam scanning,” J. Biophotonics p. e201800087 (2018).
[Crossref] [PubMed]

Sisamakis, E.

Sivankutty, S.

R. Wang, S. Brustlein, S. Mailfert, R. Fabre, M. Fallet, S. Sivankutty, H. Rigneault, and D. Marguet, “A straightforward STED-background corrected fitting model for unbiased STED-FCS analyses,” Sci. Direct 140–141, 212–222 (2018).

Sozanski, K.

Srinivas, S.

Stewart, A. G.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytom. Part A 65, 88–92 (2005).
[Crossref]

Taylor, J. R.

F. Görlitz, S. Guldbrand, T. H. Runcorn, R. T. Murray, A. L. Jaso-Tamame, H. G. Sinclair, E. Martinez-Perez, J. R. Taylor, M. A. A. Neil, C. Dunsby, and P. M. W. French, “easySLM-STED: stimulated emission depletion microscopy with aberration correction, extended field of view and multiple beam scanning,” J. Biophotonics p. e201800087 (2018).
[Crossref] [PubMed]

Urbancic, I.

E. Sezgin, F. Schneider, S. Galiani, I. Urbančič, D. Waithe, B. C. Lagerholm, and C. Eggeling, “Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED–FCS,” Nat. Protoc. 14, 1054–1083 (2019).
[Crossref] [PubMed]

Vicidomini, G.

L. Lanzanò, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

von Bally, G.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref] [PubMed]

Von Middendorff, C.

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schönle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11, 103054 (2009).
[Crossref]

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. Von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

Wagner, R.

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schönle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11, 103054 (2009).
[Crossref]

Waithe, D.

E. Sezgin, F. Schneider, S. Galiani, I. Urbančič, D. Waithe, B. C. Lagerholm, and C. Eggeling, “Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED–FCS,” Nat. Protoc. 14, 1054–1083 (2019).
[Crossref] [PubMed]

D. Waithe, F. Schneider, J. Chojnacki, M. P. Clausen, D. Shrestha, J. B. de la Serna, and C. Eggeling, “Optimized processing and analysis of conventional confocal microscopy generated scanning FCS data,” Methods 140–141, 62–73 (2018).
[Crossref]

Wang, I.

Wang, L.

Wang, R.

R. Wang, S. Brustlein, S. Mailfert, R. Fabre, M. Fallet, S. Sivankutty, H. Rigneault, and D. Marguet, “A straightforward STED-background corrected fitting model for unbiased STED-FCS analyses,” Sci. Direct 140–141, 212–222 (2018).

Watanabe, T.

Webb, W. W.

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300–2317 (2002).
[Crossref] [PubMed]

P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77, 2251–2265 (1999).
[Crossref] [PubMed]

Weiss, M.

M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson, “Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells,” Biophys. J. 87, 3518–3524 (2004).
[Crossref] [PubMed]

Wilson, T.

Xu, Z.

Zhang, X.

Zhou, H.

Zhou, L.

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Biophys. J. (5)

P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77, 2251–2265 (1999).
[Crossref] [PubMed]

H. Qian and E. L. Elson, “On the analysis of high order moments of fluorescence fluctuations,” Biophys. J. 57, 375–380 (1990).
[Crossref] [PubMed]

K. Palo, Ü. Mets, S. Jäger, P. Kask, and K. Gall, “Fluorescence intensity multiple distributions analysis: concurrent determination of diffusion times and molecular brightness,” Biophys. J. 79, 2858–2866 (2000).
[Crossref] [PubMed]

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300–2317 (2002).
[Crossref] [PubMed]

M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson, “Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells,” Biophys. J. 87, 3518–3524 (2004).
[Crossref] [PubMed]

Biopolymers (1)

D. Magde and E. L. Elson, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13, 29–61 (1974).
[Crossref] [PubMed]

Cytom. Part A (1)

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytom. Part A 65, 88–92 (2005).
[Crossref]

Eur. Biophys. J. (1)

P. Kask, R. Günther, and P. Axhausen, “Statistical accuracy in fluorescence fluctuation experiments,” Eur. Biophys. J. 25, 163–169 (1997).
[Crossref]

J. Biomed. Opt. (1)

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref] [PubMed]

J. Biophotonics (1)

M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, and P. M. French, “3-D stimulated emission depletion microscopy with programmable aberration correction,” J. Biophotonics 7, 29–36 (2014).
[Crossref]

J. Microsc. (1)

K. D. Niswender, S. M. Blackman, L. Rohde, M. A. Magnuson, and D. W. Piston, “Quantitative imaging of green fluorescent protein in cultured cells: Comparison of microscopic techniques, use in fusion proteins and detection limits,” J. Microsc. 180, 109–116 (1995).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

Methods (1)

D. Waithe, F. Schneider, J. Chojnacki, M. P. Clausen, D. Shrestha, J. B. de la Serna, and C. Eggeling, “Optimized processing and analysis of conventional confocal microscopy generated scanning FCS data,” Methods 140–141, 62–73 (2018).
[Crossref]

NanoBioImaging (1)

M. P. Clausen, S. Galiani, J. B. de la Serna, M. Fritzsche, J. Chojnacki, K. Gehmlich, B. C. Lagerholm, and C. Eggeling, “Pathways to optical STED microscopy,” NanoBioImaging 1, 1–12 (2014).
[Crossref]

Nat. Commun. (1)

L. Lanzanò, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 1–9 (2017).
[Crossref]

Nat. Photonics (1)

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

Nat. Protoc. (1)

E. Sezgin, F. Schneider, S. Galiani, I. Urbančič, D. Waithe, B. C. Lagerholm, and C. Eggeling, “Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED–FCS,” Nat. Protoc. 14, 1054–1083 (2019).
[Crossref] [PubMed]

Nature (1)

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. Von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

New J. Phys. (1)

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schönle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11, 103054 (2009).
[Crossref]

Opt. Commun. (1)

J. Antonello, D. Burke, and M. J. Booth, “Aberrations in stimulated emission depletion (STED) microscopy,” Opt. Commun. 404, 203–209 (2017).
[Crossref]

Opt. express (1)

Opt. Lett. (4)

Opt. letters (1)

C.-E. Leroux, A. Grichine, I. Wang, and A. Delon, “Correction of cell-induced optical aberrations in a fluorescence fluctuation microscope,” Opt. letters 38, 2401–2403 (2013).
[Crossref]

Optica (2)

Philos. Transact. A Math. Phys. Eng. Sci. (1)

M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci. 365, 2829–2843 (2007).
[Crossref]

Phys. Rev. Lett. (1)

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94, 1–4 (2005).
[Crossref]

Proc. Natl. Acad. Sci. (1)

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. 99, 5788–5792 (2002).
[Crossref] [PubMed]

Proc. SPIE (1)

P. Mahou, N. Curry, D. Pinotsi, G. Kaminski Schierle, and C. Kaminski, “Stimulated emission depletion microscopy to study amyloid fibril formation,” Proc. SPIE 9331, 93310U (2015).
[Crossref]

Sci. Direct (1)

R. Wang, S. Brustlein, S. Mailfert, R. Fabre, M. Fallet, S. Sivankutty, H. Rigneault, and D. Marguet, “A straightforward STED-background corrected fitting model for unbiased STED-FCS analyses,” Sci. Direct 140–141, 212–222 (2018).

Other (3)

J. Antonello, X. Hao, E. S. Allgeyer, J. Bewersdorf, J. Rittscher, and M. J. Booth, “Sensorless adaptive optics for isoSTED nanoscopy,” in Adaptive Optics and Wavefront Control for Biological Systems IV, vol. 10502 (International Society for Optics and Photonics, 2018), p. 1050206.
[Crossref]

P. Müller, “Python multiple-tau algorithm (Version 0.1.9) [Computer program],” (2012).

F. Görlitz, S. Guldbrand, T. H. Runcorn, R. T. Murray, A. L. Jaso-Tamame, H. G. Sinclair, E. Martinez-Perez, J. R. Taylor, M. A. A. Neil, C. Dunsby, and P. M. W. French, “easySLM-STED: stimulated emission depletion microscopy with aberration correction, extended field of view and multiple beam scanning,” J. Biophotonics p. e201800087 (2018).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Optical configuration of the AO STED-FCS setup. (a) Schematic of STED-FCS setup with 755 nm STED and 640 nm excitation lasers (blue boxes and red and green beam paths), fluorescence detection (blue box and orange beam path), lenses (blue ellipses), mirrors (black lines), spatial light modulator (SLM), dichroic beam splitters (DBS 1 and 2), and objective lens (Obj). The inset shows a phase mask applied on the spatial light modulator (SLM), created from a flatness correction, a blazed grating to transport the pupil in an off-axis hologram, a central π phase shift to create a z-STED depletion pattern, and a phase aberration correction. (b,c) Experimental images of the depletion pattern, (b) without aberrations and (c) with 1 rad rms of coma (see section 3.1) introduced by the SLM. Scalebar: 1μm.
Fig. 2
Fig. 2 Variations in the shape of the effective observation volume with STED laser power. (a) Determination of lateral and axial dimensions (full-width-at-half-maximum, FWHM) of the effective observation spot at different STED laser powers using images of fluorescent beads. Top: xz images of fluorescent beads acquired at different STED laser powers (scale bar 200 nm). Bottom: Values of axial and lateral FWHM from gaussian fits to intensity profiles over images of individual beads returning axial and lateral resolution variations with STED laser power (mean +/− s.d., n = 10 beads). (b) Values of the lateral beam waist ωxy (normalized to the value ωxy,confocal) as a function of the aspect ratio K = ωz/ωxy as determined from the bead images of (a) (black dots) were fitted with an exponential function (grey curve) describing the variations of the shape of the observation volume with STED laser power to design a novel STED-FCS fitting model. The previous model neglecting the reduction in lateral dimension (blue line) is also plotted for comparison.
Fig. 3
Fig. 3 Finding an experimental metric for AO z-STED-FCS. (a) Principle of our experimental procedure. A set of aberration modes (bias) are applied to the STED laser beam using the SLM creating “bottle beam” foci of different quality (top: respective simulated focal STED laser intensity pattern, middle: simulated effective observation volume. Scalebar: 400 nm). Bottom: Sketch of expected outcome; metric values (blue) against introduced bias and quadratic fit (dashed purple line) for determining the optimum (vertical red line), and (inset) sketch of expected FCS curves GD(τ) for optimal (green) and maximum biased (purple) conditions highlighting the expected aberration-introduced decrease in amplitude and increase in transit time. (b), (c) Experimental data from AO z-STED-FCS: calculated values of number of molecules (N) and molecular brightness () for different binning times as labeled (orange, blue points, left y-axis) as well as axial transit time τz (red cross, right y-axis) (mean +/− s.d., n=5 points) against introduced bias (tilt (b) and horizontal coma (c) in rad). STED laser power = 16 mW.
Fig. 4
Fig. 4 Aberration correction for z-STED-FCS diffusion measurements of Abberior Star Red in water:glycerol solution, measured 3 μm above the coverslip. (a) FCS curves (G(τ)) for confocal mode only (grey) and with a STED laser power of 55 mW without (magenta, AO off) and with (green, AO on) AO correction, and with fits (Eq. (2), dashed black lines). (b–d) Resulting values of (b) average number of molecules N in the observation volume, (c) ratio ωz/ωz0 of axial diameters of the observation volume (ωz, Eq. (4)) for the respective STED laser power (ωz) and for the confocal recordings (ωz0 at 0mW STED laser power), and (d) the squared sum of residuals from the fit to the data (normalised by the square of the ACF amplitude, as a measure of the noise and deviation from the fit model) as a function of the STED laser power without (magenta triangles) and with (green dots) AO correction.
Fig. 5
Fig. 5 AO correction of depth-induced aberrations in z-STED-FCS measurements: diffusion of Abberior Star Red in a water:glycerol solution. (a),(d) Representative FCS data G(τ) at a STED laser power of 55 mW (dashed lines: fits to the data), (b),(e) number of molecules N as determined from FCS data recorded for different STED laser powers, and (c),(f) ratio ωz/ωz0 of axial diameters of the observation volume (Eq. (4)) as determined from the FCS data at different STED laser powers (ωz) and confocal recordings (ωz0) with ((d)–(f)) and without ((a)–(c)) AO aberration correction and for different depths as detailed in the colour legend in panel (f). (g) Depth-dependent spatial repositioning of the depletion pattern using tip, tilt and defocus (x,y,z). (h) Determined depth-dependent correction values for aberrations modes. Zernike modes were numbered following the convention defined by Noll [36].
Fig. 6
Fig. 6 Aberration correction of live-cell z-STED-FCS measurements: cytoplasmic 647-SiR diffusion. (a) Confocal image of a representative cell where aberrations were corrected for (scalebar: 5 μm). (b) Spatial shifts of the depletion pattern and (c) aberration values measured in cells (mean +/− s.d, n=17 measurements in 15 cells, 1–2 measurements per cell). (d) Representative FCS curves with and without aberration correction at a STED power of 33 mW (dashed lines: fits to the data). (e) Ratio wz/wz0 of axial diameters of the observation volume (Eq. (4)) as determined from the FCS data at different STED laser powers (wz) and confocal recordings (wz0) (mean +/− s.d., from 16–19 curves per datapoint).
Fig. 7
Fig. 7 Comparison between fitting methods for estimation of z-STED-FCS parameters in solution ((a)–(b)) and in cells ((c)–(e)). (a) Estimation of observation volumes of z-STED-FCS experiments in solution with adaptive correction, by either fitting the aspect ratio only (blue, circles) or fitting the entire volume (orange, triangles). (b) Comparison of both fitters on a STED-FCS curve obtained in solution at a STED laser power of 55 mW. Residuals are plotted above the FCS curve. (c) Comparison of observation volumes measured in z-STED-FCS experiments in cells with both fitting methods. Outliers are represented on the top part of the graph with a different scale. (d)–(e) Fitting curves acquired in cells at a STED laser power of 7 mW with both models. (d) Representative curve that can be fitted with both fitters. Focal volumes were both equal to 0.47Vconfocal. (e) Representative curve leading to a fitting artefact when fitting aspect ratio only and not when fitting the volume. Observation volumes determined by each method were respectively equal to 247Vconfocal and 0.7Vconfocal.
Fig. 8
Fig. 8 AO-enhanced z-STED-FCS at different depths. (a) FCS curves (bottom) and fitting residuals (top) at different STED laser powers and at different depths, as described in panel titles and in the legend. (b) Evolution of the average number of molecules in the observation volume, in confocal mode (STED laser power 0 mW), and at low (16 mW) and high (55 mW) STED laser powers.

Tables (2)

Tables Icon

Table 1 Theoretical spatial shifts induced by 1 radian rms of Tip, Tilt and High NA Defocus

Tables Icon

Table 2 Reduction in observation volume size obtained from different STED-FCS approaches for 3D diffusion.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

G ( τ ) = δ I ( t ) δ I ( t + τ ) I ( t ) 2
G ( τ ) = G D ( τ ) G T ( τ )
G T ( τ ) = 1 + T 1 T exp τ / τ T
G D ( τ ) = 1 N 1 1 + ( τ / τ x y ) α 1 1 + 1 K 2 ( τ τ x y ) α + δ
Z ( ρ , ϕ ) = 2 π λ OPD ( ρ , ϕ )
Φ defocus ( ρ , ϕ ) = a 1 ( NA n ρ ) 2
N = Φ 2 ( Δ Φ ) 2 Φ
= Φ N = ( Δ Φ ) 2 Φ Φ

Metrics