Abstract

With the ever-increasing need for bandwidth in data centers and 5G mobile communications, technologies for rapid characterization of wide-band devices are in high demand. We report an instrument for extremely fast characterization of the electronic and optoelectronic devices with 27 ns frequency-response acquisition time at the effective sampling rate of 2.5 Tera-sample/s and an ultra-low effective timing jitter of 5.4 fs. This instrument features automated digital signal processing algorithms including time-series segmentation and frame alignment, impulse localization and Tikhonov regularized deconvolution for single-shot impulse and frequency response measurements. The system is based on the photonic time-stretch and features phase diversity to eliminate frequency fading and extend the bandwidth of the instrument.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-shot network analyzer for extremely fast measurements

Cejo Konuparamban Lonappan, Asad M. Madni, and Bahram Jalali
Appl. Opt. 55(30) 8406-8412 (2016)

Single-shot distributed Brillouin optical time domain analyzer

Jian Fang, Pengbai Xu, Yongkang Dong, and William Shieh
Opt. Express 25(13) 15188-15198 (2017)

Optical sampling transient analyzer system

Terence J. Davies and Melvin A. Nelson
Appl. Opt. 15(6) 1404-1410 (1976)

References

  • View by:
  • |
  • |
  • |

  1. Cisco Visual Networking Index, “The Zettabyte Era: Trends and Analysis,” https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html .
  2. Y. Xing and T. S. Rappaport, “Propagation measurement system and approach at 140 GHz-moving to 6G and above 100 GHz,” in 2018 IEEE Global Communications Conference (GLOBECOM), (IEEE, 2018), pp. 1–6.
    [Crossref]
  3. M. Agrawal and K. Chakrabarty, “Test-cost modeling and optimal test-flow selection of 3-D-stacked ICs,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 34(9), 1523–1536 (2015).
  4. F. Ziadé, A. Poletaeff, and D. Allal, “Primary standard for S-parameter measurements at intermediate frequencies (IFs),” IEEE Trans. Instrum. Meas. 62(3), 659–666 (2013).
    [Crossref]
  5. V. Teppati and A. Ferrero, “A Comparison of Uncertainty Evaluation Methods for On-Wafer S-Parameter Measurements,” IEEE Trans. Instrum. Meas. 63(4), 935–942 (2014).
    [Crossref]
  6. S. Pan and M. Xue, “Ultrahigh-resolution optical vector analysis based on optical single-sideband modulation,” J. Lightwave Technol. 35(4), 836–845 (2017).
    [Crossref]
  7. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall Press, 1997).
  8. P. Ferrari and G. Angenieux, “Calibration of a time-domain network analyzer: A new approach,” IEEE Trans. Instrum. Meas. 49(1), 178–187 (2000).
    [Crossref]
  9. J. Verspecht and K. Rush, “Individual characterization of broadband sampling Oscilloscopes with a nose-to-nose calibration procedure,” IEEE Trans. Instrum. Meas. 43(2), 347–354 (1994).
    [Crossref]
  10. J. A. Jargon, P. D. Hale, and C. M. Wang, “Correcting sampling oscilloscope timebase errors with a passively mode-locked laser phase locked to a microwave oscillator,” IEEE Trans. Instrum. Meas. 59(4), 916–922 (2010).
    [Crossref]
  11. A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(9), 839–841 (1998).
    [Crossref]
  12. A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
    [Crossref]
  13. A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
    [Crossref]
  14. A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, “130-GSa/s photonic analog-to-digital converter with time stretch preprocessor,” IEEE Photonics Technol. Lett. 14(5), 684–686 (2002).
    [Crossref]
  15. Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21(12), 3085–3103 (2003).
    [Crossref]
  16. J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
    [Crossref]
  17. C. K. Lonappan, A. M. Madni, and B. Jalali, “Single-shot network analyzer for extremely fast measurements,” Appl. Opt. 55(30), 8406–8412 (2016).
    [Crossref] [PubMed]
  18. C. K. Lonappan, “Time-Stretch Accelerated Instrumentation for High-Speed Signal Analysis and Ultra-fast Device Characterization,” PhD diss., UCLA (2018).
  19. Z. Bai, C. K. Lonappan, A. M. Madni, and B. Jalali, “Time-stretch Network Analyzer for Single-shot Characterization of Electronic Devices,” in CLEO: Applications and Technology, (Optical Society of America, 2019), pp. AF3K–6.
  20. Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch A/D converter Employing phase diversity,” IEEE T. Microw. Theory 53(4), 1404–1408 (2005).
    [Crossref]
  21. Y. Han and B. Jalali, “Time-bandwidth product of the photonic time-stretched analog-to-digital converter,” IEEE Trans. Microw. Theory Tech. 51(7), 1886–1892 (2003).
    [Crossref]
  22. A. M. Fard, B. Buckley, S. Zlatanovic, C. S. Bres, S. Radic, and B. Jalali, “All-optical time-stretch digitizer,” Appl. Phys. Lett. 101(5), 051113 (2012).
    [Crossref]
  23. B. W. Buckley, A. M. Madni, and B. Jalali, “Coherent time-stretch transformation for real-time capture of wideband signals,” Opt. Express 21(18), 21618–21627 (2013).
    [Crossref] [PubMed]
  24. J. Stigwall and S. Galt, “Signal reconstruction by phase retrieval and optical backpropagation in phase-diverse photonic time-stretch systems,” J. Lightwave Technol. 25(10), 3017–3027 (2007).
    [Crossref]
  25. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
    [Crossref] [PubMed]
  26. A. F. J. Runge, N. G. R. Broderick, and M. Erkintalo, “Observation of soliton explosions in a passively mode-locked fiber laser,” Optica 2(1), 36–39 (2015).
    [Crossref]
  27. G. Herink, B. Jalali, C. Ropers, and D. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
    [Crossref]
  28. G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
    [Crossref] [PubMed]
  29. E. Roussel, C. Evain, M. Le Parquier, C. Szwaj, S. Bielawski, L. Manceron, J.-B. Brubach, M.-A. Tordeux, J.-P. Ricaud, L. Cassinari, M. Labat, M.-E. Couprie, and P. Roy, “Observing microscopic structures of a relativistic object using a time-stretch strategy,” Sci. Rep. 5(1), 10330 (2015).
    [Crossref] [PubMed]
  30. C. Szwaj, C. Evain, M. Le Parquier, P. Roy, L. Manceron, J.-B. Brubach, M.-A. Tordeux, and S. Bielawski, “High sensitivity photonic time-stretch electro-optic sampling of terahertz pulses,” Rev. Sci. Instrum. 87(10), 103111 (2016).
    [Crossref] [PubMed]
  31. C. Evain, E. Roussel, M. Le Parquier, C. Szwaj, M.-A. Tordeux, J.-B. Brubach, L. Manceron, P. Roy, and S. Bielawski, “Direct observation of spatiotemporal dynamics of short electron bunches in storage rings,” Phys. Rev. Lett. 118(5), 054801 (2017).
    [Crossref] [PubMed]
  32. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
    [Crossref] [PubMed]
  33. K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
    [Crossref] [PubMed]
  34. A. Ayazi, K. Goda, J. Sadasivam, C. K. Lonappan, D. R. Gossett, E. Sollier, A. Fard, S. C. Hur, S. H. Kim, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “Real-time image processor for detection of rare cells and particles in flow at 37 MHz line scans per second,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XI, vol. 8587 (International Society for Optics and Photonics, 2013), p. 858713.
  35. A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express 4(9), 1618–1625 (2013).
    [Crossref] [PubMed]
  36. C. L. Chen, A. Mahjoubfar, L.-C. Tai, I. K. Blaby, A. Huang, K. R. Niazi, and B. Jalali, “Deep Learning in Label-free Cell Classification,” Sci. Rep. 6(1), 21471 (2016).
    [Crossref] [PubMed]
  37. C. K. Lonappan, B. W. Buckley, D. Lam, A. M. Madni, B. Jalali, and J. Adam, “Time-stretch accelerated processor for real-time, in-service, signal analysis,” in IEEE Global Conference on Signal and Information Processing (GlobalSIP), (IEEE, 2014), pp. 707–711.
    [Crossref]
  38. D. Lam, B. W. Buckley, C. K. Lonappan, A. M. Madni, and B. Jalali, “Ultra-wideband instantaneous frequency estimation,” IEEE Instrum. Meas. Mag. 18(2), 26–30 (2015).
    [Crossref]
  39. B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
    [Crossref] [PubMed]
  40. T. Konishi, K. Tanimura, K. Asano, Y. Oshita, and Y. Ichioka, “All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique,” J. Opt. Soc. Am. B 19(11), 2817–2823 (2002).
    [Crossref]
  41. T. Makino, H. Furukawa, M. H. Asghari, P. Trinh, B. Jalali, X. Wang, T. Kobayashi, W. S. Man, K. S. Tsang, and N. Wada, “High resolution single-shot time stretch spectroscopy with wavelength demultiplexer at one billion frames per second,” in CLEO: Science and Innovations, (Optical Society of America, 2017), pp. STu4I–6.
  42. M. Lei, W. Zou, X. Li, and J. Chen, “Ultrafast FBG interrogator based on time-stretch method,” IEEE Photonics Technol. Lett. 28(7), 778–781 (2016).
    [Crossref]
  43. W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
    [Crossref] [PubMed]
  44. X. Dong, X. Zhou, J. Kang, L. Chen, Z. Lei, C. Zhang, K. K. Y. Wong, and X. Zhang, “Ultrafast time-stretch microscopy based on dual-comb asynchronous optical sampling,” Opt. Lett. 43(9), 2118–2121 (2018).
    [Crossref] [PubMed]
  45. F. Xing, H. Chen, S. Xie, and J. Yao, “Ultrafast three-dimensional surface imaging based on short-time Fourier transform,” IEEE Photonics Technol. Lett. 27(21), 2264–2267 (2015).
    [Crossref]
  46. F. Saltarelli, V. Kumar, D. Viola, F. Crisafi, F. Preda, G. Cerullo, and D. Polli, “Broadband stimulated Raman scattering spectroscopy by a photonic time stretcher,” Opt. Express 24(19), 21264–21275 (2016).
    [Crossref] [PubMed]
  47. S. Sun, Z. Lin, W. Li, N. Zhu, and M. Li, “Time-stretch probing of ultra-fast soliton dynamics related to Q-switched instabilities in mode-locked fiber laser,” Opt. Express 26(16), 20888–20901 (2018).
    [Crossref] [PubMed]
  48. H. J. Chen, M. Liu, J. Yao, S. Hu, J. B. He, A. P. Luo, W. C. Xu, and Z. C. Luo, “Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion,” Opt. Express 26(3), 2972–2982 (2018).
    [Crossref] [PubMed]
  49. P. H. Hanzard, T. Godin, S. Idlahcen, C. Rozé, and A. Hideur, “Real-time tracking of single shockwaves via amplified time-stretch imaging,” Appl. Phys. Lett. 112(16), 161106 (2018).
    [Crossref]
  50. J. Mallari, C. Wei, D. Jin, G. Yu, A. Barklund, E. Miller, P. O’Mathuna, R. Dinu, A. Motafakker-Fard, and B. Jalali, “100Gbps EO polymer modulator product and its characterization using a real-time digitizer,” in Optical Fiber Communication Conference, (Optical Society of America, 2010), p. OThU2.
    [Crossref]
  51. C. Richard, Aster, Brian Borchers, and Clifford H. Thurber. Parameter estimation and inverse problems. Elsevier, 2018.
  52. P. C. Hansen, “The L-curve and its use in the numerical treatment of inverse problems,” in Computational Inverse Problems in Electrocardiology, P. D. Johnston, ed. (WIT Press, 2001), pp. 119–142.
  53. Picosecond Pulse Labs, Ultra-Broadband Amplifiers 5840A Datasheet, https://www.oequest.com/getDatasheet/id/2116-2116.pdf .
  54. Analog Devices, MZ Optical Modulator Driver, DC-20 GHz HMC870LC5 Datasheet, https://www.analog.com/media/en/technical-documentation/data-sheets/hmc870.pdf .
  55. R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
    [Crossref]
  56. B. Murmann, “ADC Performance Survey 1997-2019,” http://www.stanford.edu/~murmann/adcsurvey.html .
  57. T. Jiang, C. K. Lonappan, C. Evain, C. Szwaj, E. Roussel, M. Parquier, S. Bielawski, and B. Jalali, “Time Stretch Single-shot Terahertz Analyzer,” B. Am. Phys. Soc. (2019).
  58. E. Piuzzi, C. Merla, G. Cannazza, A. Zambotti, F. Apollonio, A. Cataldo, P. D’Atanasio, E. De Benedetto, and M. Liberti, “A comparative analysis between customized and commercial systems for complex permittivity measurements on liquid samples at microwave frequencies,” IEEE Trans. Instrum. Meas. 62(5), 1034–1046 (2013).
    [Crossref]
  59. X. Zeng, A. Fhager, Z. He, M. Persson, P. Linner, and H. Zirath, “Development of a time domain microwave system for medical diagnostics,” IEEE Trans. Instrum. Meas. 63(12), 2931–2939 (2014).
    [Crossref]

2018 (4)

2017 (4)

S. Pan and M. Xue, “Ultrahigh-resolution optical vector analysis based on optical single-sideband modulation,” J. Lightwave Technol. 35(4), 836–845 (2017).
[Crossref]

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

C. Evain, E. Roussel, M. Le Parquier, C. Szwaj, M.-A. Tordeux, J.-B. Brubach, L. Manceron, P. Roy, and S. Bielawski, “Direct observation of spatiotemporal dynamics of short electron bunches in storage rings,” Phys. Rev. Lett. 118(5), 054801 (2017).
[Crossref] [PubMed]

2016 (7)

G. Herink, B. Jalali, C. Ropers, and D. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

C. Szwaj, C. Evain, M. Le Parquier, P. Roy, L. Manceron, J.-B. Brubach, M.-A. Tordeux, and S. Bielawski, “High sensitivity photonic time-stretch electro-optic sampling of terahertz pulses,” Rev. Sci. Instrum. 87(10), 103111 (2016).
[Crossref] [PubMed]

C. L. Chen, A. Mahjoubfar, L.-C. Tai, I. K. Blaby, A. Huang, K. R. Niazi, and B. Jalali, “Deep Learning in Label-free Cell Classification,” Sci. Rep. 6(1), 21471 (2016).
[Crossref] [PubMed]

M. Lei, W. Zou, X. Li, and J. Chen, “Ultrafast FBG interrogator based on time-stretch method,” IEEE Photonics Technol. Lett. 28(7), 778–781 (2016).
[Crossref]

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

C. K. Lonappan, A. M. Madni, and B. Jalali, “Single-shot network analyzer for extremely fast measurements,” Appl. Opt. 55(30), 8406–8412 (2016).
[Crossref] [PubMed]

F. Saltarelli, V. Kumar, D. Viola, F. Crisafi, F. Preda, G. Cerullo, and D. Polli, “Broadband stimulated Raman scattering spectroscopy by a photonic time stretcher,” Opt. Express 24(19), 21264–21275 (2016).
[Crossref] [PubMed]

2015 (5)

F. Xing, H. Chen, S. Xie, and J. Yao, “Ultrafast three-dimensional surface imaging based on short-time Fourier transform,” IEEE Photonics Technol. Lett. 27(21), 2264–2267 (2015).
[Crossref]

M. Agrawal and K. Chakrabarty, “Test-cost modeling and optimal test-flow selection of 3-D-stacked ICs,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 34(9), 1523–1536 (2015).

D. Lam, B. W. Buckley, C. K. Lonappan, A. M. Madni, and B. Jalali, “Ultra-wideband instantaneous frequency estimation,” IEEE Instrum. Meas. Mag. 18(2), 26–30 (2015).
[Crossref]

E. Roussel, C. Evain, M. Le Parquier, C. Szwaj, S. Bielawski, L. Manceron, J.-B. Brubach, M.-A. Tordeux, J.-P. Ricaud, L. Cassinari, M. Labat, M.-E. Couprie, and P. Roy, “Observing microscopic structures of a relativistic object using a time-stretch strategy,” Sci. Rep. 5(1), 10330 (2015).
[Crossref] [PubMed]

A. F. J. Runge, N. G. R. Broderick, and M. Erkintalo, “Observation of soliton explosions in a passively mode-locked fiber laser,” Optica 2(1), 36–39 (2015).
[Crossref]

2014 (2)

V. Teppati and A. Ferrero, “A Comparison of Uncertainty Evaluation Methods for On-Wafer S-Parameter Measurements,” IEEE Trans. Instrum. Meas. 63(4), 935–942 (2014).
[Crossref]

X. Zeng, A. Fhager, Z. He, M. Persson, P. Linner, and H. Zirath, “Development of a time domain microwave system for medical diagnostics,” IEEE Trans. Instrum. Meas. 63(12), 2931–2939 (2014).
[Crossref]

2013 (5)

E. Piuzzi, C. Merla, G. Cannazza, A. Zambotti, F. Apollonio, A. Cataldo, P. D’Atanasio, E. De Benedetto, and M. Liberti, “A comparative analysis between customized and commercial systems for complex permittivity measurements on liquid samples at microwave frequencies,” IEEE Trans. Instrum. Meas. 62(5), 1034–1046 (2013).
[Crossref]

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

F. Ziadé, A. Poletaeff, and D. Allal, “Primary standard for S-parameter measurements at intermediate frequencies (IFs),” IEEE Trans. Instrum. Meas. 62(3), 659–666 (2013).
[Crossref]

B. W. Buckley, A. M. Madni, and B. Jalali, “Coherent time-stretch transformation for real-time capture of wideband signals,” Opt. Express 21(18), 21618–21627 (2013).
[Crossref] [PubMed]

A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express 4(9), 1618–1625 (2013).
[Crossref] [PubMed]

2012 (3)

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref] [PubMed]

A. M. Fard, B. Buckley, S. Zlatanovic, C. S. Bres, S. Radic, and B. Jalali, “All-optical time-stretch digitizer,” Appl. Phys. Lett. 101(5), 051113 (2012).
[Crossref]

2010 (1)

J. A. Jargon, P. D. Hale, and C. M. Wang, “Correcting sampling oscilloscope timebase errors with a passively mode-locked laser phase locked to a microwave oscillator,” IEEE Trans. Instrum. Meas. 59(4), 916–922 (2010).
[Crossref]

2009 (1)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

2007 (3)

J. Stigwall and S. Galt, “Signal reconstruction by phase retrieval and optical backpropagation in phase-diverse photonic time-stretch systems,” J. Lightwave Technol. 25(10), 3017–3027 (2007).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

2005 (1)

Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch A/D converter Employing phase diversity,” IEEE T. Microw. Theory 53(4), 1404–1408 (2005).
[Crossref]

2003 (2)

Y. Han and B. Jalali, “Time-bandwidth product of the photonic time-stretched analog-to-digital converter,” IEEE Trans. Microw. Theory Tech. 51(7), 1886–1892 (2003).
[Crossref]

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21(12), 3085–3103 (2003).
[Crossref]

2002 (2)

A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, “130-GSa/s photonic analog-to-digital converter with time stretch preprocessor,” IEEE Photonics Technol. Lett. 14(5), 684–686 (2002).
[Crossref]

T. Konishi, K. Tanimura, K. Asano, Y. Oshita, and Y. Ichioka, “All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique,” J. Opt. Soc. Am. B 19(11), 2817–2823 (2002).
[Crossref]

2000 (1)

P. Ferrari and G. Angenieux, “Calibration of a time-domain network analyzer: A new approach,” IEEE Trans. Instrum. Meas. 49(1), 178–187 (2000).
[Crossref]

1999 (1)

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
[Crossref]

1998 (1)

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(9), 839–841 (1998).
[Crossref]

1994 (1)

J. Verspecht and K. Rush, “Individual characterization of broadband sampling Oscilloscopes with a nose-to-nose calibration procedure,” IEEE Trans. Instrum. Meas. 43(2), 347–354 (1994).
[Crossref]

Adam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

C. K. Lonappan, B. W. Buckley, D. Lam, A. M. Madni, B. Jalali, and J. Adam, “Time-stretch accelerated processor for real-time, in-service, signal analysis,” in IEEE Global Conference on Signal and Information Processing (GlobalSIP), (IEEE, 2014), pp. 707–711.
[Crossref]

Agrawal, M.

M. Agrawal and K. Chakrabarty, “Test-cost modeling and optimal test-flow selection of 3-D-stacked ICs,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 34(9), 1523–1536 (2015).

Allal, D.

F. Ziadé, A. Poletaeff, and D. Allal, “Primary standard for S-parameter measurements at intermediate frequencies (IFs),” IEEE Trans. Instrum. Meas. 62(3), 659–666 (2013).
[Crossref]

Angenieux, G.

P. Ferrari and G. Angenieux, “Calibration of a time-domain network analyzer: A new approach,” IEEE Trans. Instrum. Meas. 49(1), 178–187 (2000).
[Crossref]

Apollonio, F.

E. Piuzzi, C. Merla, G. Cannazza, A. Zambotti, F. Apollonio, A. Cataldo, P. D’Atanasio, E. De Benedetto, and M. Liberti, “A comparative analysis between customized and commercial systems for complex permittivity measurements on liquid samples at microwave frequencies,” IEEE Trans. Instrum. Meas. 62(5), 1034–1046 (2013).
[Crossref]

Asano, K.

Ayazi, A.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Barklund, A.

J. Mallari, C. Wei, D. Jin, G. Yu, A. Barklund, E. Miller, P. O’Mathuna, R. Dinu, A. Motafakker-Fard, and B. Jalali, “100Gbps EO polymer modulator product and its characterization using a real-time digitizer,” in Optical Fiber Communication Conference, (Optical Society of America, 2010), p. OThU2.
[Crossref]

Barland, S.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Bhushan, A. S.

A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, “130-GSa/s photonic analog-to-digital converter with time stretch preprocessor,” IEEE Photonics Technol. Lett. 14(5), 684–686 (2002).
[Crossref]

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(9), 839–841 (1998).
[Crossref]

Bielawski, S.

C. Evain, E. Roussel, M. Le Parquier, C. Szwaj, M.-A. Tordeux, J.-B. Brubach, L. Manceron, P. Roy, and S. Bielawski, “Direct observation of spatiotemporal dynamics of short electron bunches in storage rings,” Phys. Rev. Lett. 118(5), 054801 (2017).
[Crossref] [PubMed]

C. Szwaj, C. Evain, M. Le Parquier, P. Roy, L. Manceron, J.-B. Brubach, M.-A. Tordeux, and S. Bielawski, “High sensitivity photonic time-stretch electro-optic sampling of terahertz pulses,” Rev. Sci. Instrum. 87(10), 103111 (2016).
[Crossref] [PubMed]

E. Roussel, C. Evain, M. Le Parquier, C. Szwaj, S. Bielawski, L. Manceron, J.-B. Brubach, M.-A. Tordeux, J.-P. Ricaud, L. Cassinari, M. Labat, M.-E. Couprie, and P. Roy, “Observing microscopic structures of a relativistic object using a time-stretch strategy,” Sci. Rep. 5(1), 10330 (2015).
[Crossref] [PubMed]

Blaby, I. K.

C. L. Chen, A. Mahjoubfar, L.-C. Tai, I. K. Blaby, A. Huang, K. R. Niazi, and B. Jalali, “Deep Learning in Label-free Cell Classification,” Sci. Rep. 6(1), 21471 (2016).
[Crossref] [PubMed]

Boyraz, O.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch A/D converter Employing phase diversity,” IEEE T. Microw. Theory 53(4), 1404–1408 (2005).
[Crossref]

A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, “130-GSa/s photonic analog-to-digital converter with time stretch preprocessor,” IEEE Photonics Technol. Lett. 14(5), 684–686 (2002).
[Crossref]

Brackbill, N.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Bres, C. S.

A. M. Fard, B. Buckley, S. Zlatanovic, C. S. Bres, S. Radic, and B. Jalali, “All-optical time-stretch digitizer,” Appl. Phys. Lett. 101(5), 051113 (2012).
[Crossref]

Broderick, N.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Broderick, N. G. R.

Brubach, J.-B.

C. Evain, E. Roussel, M. Le Parquier, C. Szwaj, M.-A. Tordeux, J.-B. Brubach, L. Manceron, P. Roy, and S. Bielawski, “Direct observation of spatiotemporal dynamics of short electron bunches in storage rings,” Phys. Rev. Lett. 118(5), 054801 (2017).
[Crossref] [PubMed]

C. Szwaj, C. Evain, M. Le Parquier, P. Roy, L. Manceron, J.-B. Brubach, M.-A. Tordeux, and S. Bielawski, “High sensitivity photonic time-stretch electro-optic sampling of terahertz pulses,” Rev. Sci. Instrum. 87(10), 103111 (2016).
[Crossref] [PubMed]

E. Roussel, C. Evain, M. Le Parquier, C. Szwaj, S. Bielawski, L. Manceron, J.-B. Brubach, M.-A. Tordeux, J.-P. Ricaud, L. Cassinari, M. Labat, M.-E. Couprie, and P. Roy, “Observing microscopic structures of a relativistic object using a time-stretch strategy,” Sci. Rep. 5(1), 10330 (2015).
[Crossref] [PubMed]

Buckley, B.

A. M. Fard, B. Buckley, S. Zlatanovic, C. S. Bres, S. Radic, and B. Jalali, “All-optical time-stretch digitizer,” Appl. Phys. Lett. 101(5), 051113 (2012).
[Crossref]

Buckley, B. W.

D. Lam, B. W. Buckley, C. K. Lonappan, A. M. Madni, and B. Jalali, “Ultra-wideband instantaneous frequency estimation,” IEEE Instrum. Meas. Mag. 18(2), 26–30 (2015).
[Crossref]

B. W. Buckley, A. M. Madni, and B. Jalali, “Coherent time-stretch transformation for real-time capture of wideband signals,” Opt. Express 21(18), 21618–21627 (2013).
[Crossref] [PubMed]

C. K. Lonappan, B. W. Buckley, D. Lam, A. M. Madni, B. Jalali, and J. Adam, “Time-stretch accelerated processor for real-time, in-service, signal analysis,” in IEEE Global Conference on Signal and Information Processing (GlobalSIP), (IEEE, 2014), pp. 707–711.
[Crossref]

Cannazza, G.

E. Piuzzi, C. Merla, G. Cannazza, A. Zambotti, F. Apollonio, A. Cataldo, P. D’Atanasio, E. De Benedetto, and M. Liberti, “A comparative analysis between customized and commercial systems for complex permittivity measurements on liquid samples at microwave frequencies,” IEEE Trans. Instrum. Meas. 62(5), 1034–1046 (2013).
[Crossref]

Cassinari, L.

E. Roussel, C. Evain, M. Le Parquier, C. Szwaj, S. Bielawski, L. Manceron, J.-B. Brubach, M.-A. Tordeux, J.-P. Ricaud, L. Cassinari, M. Labat, M.-E. Couprie, and P. Roy, “Observing microscopic structures of a relativistic object using a time-stretch strategy,” Sci. Rep. 5(1), 10330 (2015).
[Crossref] [PubMed]

Cataldo, A.

E. Piuzzi, C. Merla, G. Cannazza, A. Zambotti, F. Apollonio, A. Cataldo, P. D’Atanasio, E. De Benedetto, and M. Liberti, “A comparative analysis between customized and commercial systems for complex permittivity measurements on liquid samples at microwave frequencies,” IEEE Trans. Instrum. Meas. 62(5), 1034–1046 (2013).
[Crossref]

Cerullo, G.

Chakrabarty, K.

M. Agrawal and K. Chakrabarty, “Test-cost modeling and optimal test-flow selection of 3-D-stacked ICs,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 34(9), 1523–1536 (2015).

Chen, C.

Chen, C. L.

C. L. Chen, A. Mahjoubfar, L.-C. Tai, I. K. Blaby, A. Huang, K. R. Niazi, and B. Jalali, “Deep Learning in Label-free Cell Classification,” Sci. Rep. 6(1), 21471 (2016).
[Crossref] [PubMed]

Chen, H.

F. Xing, H. Chen, S. Xie, and J. Yao, “Ultrafast three-dimensional surface imaging based on short-time Fourier transform,” IEEE Photonics Technol. Lett. 27(21), 2264–2267 (2015).
[Crossref]

Chen, H. J.

Chen, J.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

M. Lei, W. Zou, X. Li, and J. Chen, “Ultrafast FBG interrogator based on time-stretch method,” IEEE Photonics Technol. Lett. 28(7), 778–781 (2016).
[Crossref]

Chen, L.

Chou, J.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

Churkin, D. V.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Coppinger, F.

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(9), 839–841 (1998).
[Crossref]

Couprie, M.-E.

E. Roussel, C. Evain, M. Le Parquier, C. Szwaj, S. Bielawski, L. Manceron, J.-B. Brubach, M.-A. Tordeux, J.-P. Ricaud, L. Cassinari, M. Labat, M.-E. Couprie, and P. Roy, “Observing microscopic structures of a relativistic object using a time-stretch strategy,” Sci. Rep. 5(1), 10330 (2015).
[Crossref] [PubMed]

Crisafi, F.

Cui, Y.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

D’Atanasio, P.

E. Piuzzi, C. Merla, G. Cannazza, A. Zambotti, F. Apollonio, A. Cataldo, P. D’Atanasio, E. De Benedetto, and M. Liberti, “A comparative analysis between customized and commercial systems for complex permittivity measurements on liquid samples at microwave frequencies,” IEEE Trans. Instrum. Meas. 62(5), 1034–1046 (2013).
[Crossref]

De Benedetto, E.

E. Piuzzi, C. Merla, G. Cannazza, A. Zambotti, F. Apollonio, A. Cataldo, P. D’Atanasio, E. De Benedetto, and M. Liberti, “A comparative analysis between customized and commercial systems for complex permittivity measurements on liquid samples at microwave frequencies,” IEEE Trans. Instrum. Meas. 62(5), 1034–1046 (2013).
[Crossref]

Di Carlo, D.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Dias, F.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref] [PubMed]

Dinu, R.

J. Mallari, C. Wei, D. Jin, G. Yu, A. Barklund, E. Miller, P. O’Mathuna, R. Dinu, A. Motafakker-Fard, and B. Jalali, “100Gbps EO polymer modulator product and its characterization using a real-time digitizer,” in Optical Fiber Communication Conference, (Optical Society of America, 2010), p. OThU2.
[Crossref]

Dong, X.

Dudley, J. M.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref] [PubMed]

Erkintalo, M.

Evain, C.

C. Evain, E. Roussel, M. Le Parquier, C. Szwaj, M.-A. Tordeux, J.-B. Brubach, L. Manceron, P. Roy, and S. Bielawski, “Direct observation of spatiotemporal dynamics of short electron bunches in storage rings,” Phys. Rev. Lett. 118(5), 054801 (2017).
[Crossref] [PubMed]

C. Szwaj, C. Evain, M. Le Parquier, P. Roy, L. Manceron, J.-B. Brubach, M.-A. Tordeux, and S. Bielawski, “High sensitivity photonic time-stretch electro-optic sampling of terahertz pulses,” Rev. Sci. Instrum. 87(10), 103111 (2016).
[Crossref] [PubMed]

E. Roussel, C. Evain, M. Le Parquier, C. Szwaj, S. Bielawski, L. Manceron, J.-B. Brubach, M.-A. Tordeux, J.-P. Ricaud, L. Cassinari, M. Labat, M.-E. Couprie, and P. Roy, “Observing microscopic structures of a relativistic object using a time-stretch strategy,” Sci. Rep. 5(1), 10330 (2015).
[Crossref] [PubMed]

Fard, A. M.

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

A. M. Fard, B. Buckley, S. Zlatanovic, C. S. Bres, S. Radic, and B. Jalali, “All-optical time-stretch digitizer,” Appl. Phys. Lett. 101(5), 051113 (2012).
[Crossref]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Ferrari, P.

P. Ferrari and G. Angenieux, “Calibration of a time-domain network analyzer: A new approach,” IEEE Trans. Instrum. Meas. 49(1), 178–187 (2000).
[Crossref]

Ferrero, A.

V. Teppati and A. Ferrero, “A Comparison of Uncertainty Evaluation Methods for On-Wafer S-Parameter Measurements,” IEEE Trans. Instrum. Meas. 63(4), 935–942 (2014).
[Crossref]

Fhager, A.

X. Zeng, A. Fhager, Z. He, M. Persson, P. Linner, and H. Zirath, “Development of a time domain microwave system for medical diagnostics,” IEEE Trans. Instrum. Meas. 63(12), 2931–2939 (2014).
[Crossref]

Galt, S.

Genty, G.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref] [PubMed]

Goda, K.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

Godin, T.

P. H. Hanzard, T. Godin, S. Idlahcen, C. Rozé, and A. Hideur, “Real-time tracking of single shockwaves via amplified time-stretch imaging,” Appl. Phys. Lett. 112(16), 161106 (2018).
[Crossref]

Gossett, D. R.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Gupta, S.

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

Hale, P. D.

J. A. Jargon, P. D. Hale, and C. M. Wang, “Correcting sampling oscilloscope timebase errors with a passively mode-locked laser phase locked to a microwave oscillator,” IEEE Trans. Instrum. Meas. 59(4), 916–922 (2010).
[Crossref]

Han, Y.

Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch A/D converter Employing phase diversity,” IEEE T. Microw. Theory 53(4), 1404–1408 (2005).
[Crossref]

Y. Han and B. Jalali, “Time-bandwidth product of the photonic time-stretched analog-to-digital converter,” IEEE Trans. Microw. Theory Tech. 51(7), 1886–1892 (2003).
[Crossref]

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21(12), 3085–3103 (2003).
[Crossref]

Hanzard, P. H.

P. H. Hanzard, T. Godin, S. Idlahcen, C. Rozé, and A. Hideur, “Real-time tracking of single shockwaves via amplified time-stretch imaging,” Appl. Phys. Lett. 112(16), 161106 (2018).
[Crossref]

He, J. B.

He, Z.

X. Zeng, A. Fhager, Z. He, M. Persson, P. Linner, and H. Zirath, “Development of a time domain microwave system for medical diagnostics,” IEEE Trans. Instrum. Meas. 63(12), 2931–2939 (2014).
[Crossref]

Herink, G.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

G. Herink, B. Jalali, C. Ropers, and D. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

Hideur, A.

P. H. Hanzard, T. Godin, S. Idlahcen, C. Rozé, and A. Hideur, “Real-time tracking of single shockwaves via amplified time-stretch imaging,” Appl. Phys. Lett. 112(16), 161106 (2018).
[Crossref]

Hu, S.

Huang, A.

C. L. Chen, A. Mahjoubfar, L.-C. Tai, I. K. Blaby, A. Huang, K. R. Niazi, and B. Jalali, “Deep Learning in Label-free Cell Classification,” Sci. Rep. 6(1), 21471 (2016).
[Crossref] [PubMed]

Hur, S. C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Ichioka, Y.

Idlahcen, S.

P. H. Hanzard, T. Godin, S. Idlahcen, C. Rozé, and A. Hideur, “Real-time tracking of single shockwaves via amplified time-stretch imaging,” Appl. Phys. Lett. 112(16), 161106 (2018).
[Crossref]

Islam, M.

A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, “130-GSa/s photonic analog-to-digital converter with time stretch preprocessor,” IEEE Photonics Technol. Lett. 14(5), 684–686 (2002).
[Crossref]

Jalali, B.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

C. L. Chen, A. Mahjoubfar, L.-C. Tai, I. K. Blaby, A. Huang, K. R. Niazi, and B. Jalali, “Deep Learning in Label-free Cell Classification,” Sci. Rep. 6(1), 21471 (2016).
[Crossref] [PubMed]

G. Herink, B. Jalali, C. Ropers, and D. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

C. K. Lonappan, A. M. Madni, and B. Jalali, “Single-shot network analyzer for extremely fast measurements,” Appl. Opt. 55(30), 8406–8412 (2016).
[Crossref] [PubMed]

D. Lam, B. W. Buckley, C. K. Lonappan, A. M. Madni, and B. Jalali, “Ultra-wideband instantaneous frequency estimation,” IEEE Instrum. Meas. Mag. 18(2), 26–30 (2015).
[Crossref]

A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express 4(9), 1618–1625 (2013).
[Crossref] [PubMed]

B. W. Buckley, A. M. Madni, and B. Jalali, “Coherent time-stretch transformation for real-time capture of wideband signals,” Opt. Express 21(18), 21618–21627 (2013).
[Crossref] [PubMed]

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

A. M. Fard, B. Buckley, S. Zlatanovic, C. S. Bres, S. Radic, and B. Jalali, “All-optical time-stretch digitizer,” Appl. Phys. Lett. 101(5), 051113 (2012).
[Crossref]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch A/D converter Employing phase diversity,” IEEE T. Microw. Theory 53(4), 1404–1408 (2005).
[Crossref]

Y. Han and B. Jalali, “Time-bandwidth product of the photonic time-stretched analog-to-digital converter,” IEEE Trans. Microw. Theory Tech. 51(7), 1886–1892 (2003).
[Crossref]

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21(12), 3085–3103 (2003).
[Crossref]

A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, “130-GSa/s photonic analog-to-digital converter with time stretch preprocessor,” IEEE Photonics Technol. Lett. 14(5), 684–686 (2002).
[Crossref]

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(9), 839–841 (1998).
[Crossref]

C. K. Lonappan, B. W. Buckley, D. Lam, A. M. Madni, B. Jalali, and J. Adam, “Time-stretch accelerated processor for real-time, in-service, signal analysis,” in IEEE Global Conference on Signal and Information Processing (GlobalSIP), (IEEE, 2014), pp. 707–711.
[Crossref]

J. Mallari, C. Wei, D. Jin, G. Yu, A. Barklund, E. Miller, P. O’Mathuna, R. Dinu, A. Motafakker-Fard, and B. Jalali, “100Gbps EO polymer modulator product and its characterization using a real-time digitizer,” in Optical Fiber Communication Conference, (Optical Society of America, 2010), p. OThU2.
[Crossref]

Jargon, J. A.

J. A. Jargon, P. D. Hale, and C. M. Wang, “Correcting sampling oscilloscope timebase errors with a passively mode-locked laser phase locked to a microwave oscillator,” IEEE Trans. Instrum. Meas. 59(4), 916–922 (2010).
[Crossref]

Jin, D.

J. Mallari, C. Wei, D. Jin, G. Yu, A. Barklund, E. Miller, P. O’Mathuna, R. Dinu, A. Motafakker-Fard, and B. Jalali, “100Gbps EO polymer modulator product and its characterization using a real-time digitizer,” in Optical Fiber Communication Conference, (Optical Society of America, 2010), p. OThU2.
[Crossref]

Kang, J.

Kelkar, P. V.

A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, “130-GSa/s photonic analog-to-digital converter with time stretch preprocessor,” IEEE Photonics Technol. Lett. 14(5), 684–686 (2002).
[Crossref]

Konishi, T.

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Kudlinski, A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref] [PubMed]

Kumar, V.

Kurtz, F.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

Labat, M.

E. Roussel, C. Evain, M. Le Parquier, C. Szwaj, S. Bielawski, L. Manceron, J.-B. Brubach, M.-A. Tordeux, J.-P. Ricaud, L. Cassinari, M. Labat, M.-E. Couprie, and P. Roy, “Observing microscopic structures of a relativistic object using a time-stretch strategy,” Sci. Rep. 5(1), 10330 (2015).
[Crossref] [PubMed]

Lacourt, P. A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref] [PubMed]

Lam, D.

D. Lam, B. W. Buckley, C. K. Lonappan, A. M. Madni, and B. Jalali, “Ultra-wideband instantaneous frequency estimation,” IEEE Instrum. Meas. Mag. 18(2), 26–30 (2015).
[Crossref]

C. K. Lonappan, B. W. Buckley, D. Lam, A. M. Madni, B. Jalali, and J. Adam, “Time-stretch accelerated processor for real-time, in-service, signal analysis,” in IEEE Global Conference on Signal and Information Processing (GlobalSIP), (IEEE, 2014), pp. 707–711.
[Crossref]

Larger, L.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref] [PubMed]

Le Parquier, M.

C. Evain, E. Roussel, M. Le Parquier, C. Szwaj, M.-A. Tordeux, J.-B. Brubach, L. Manceron, P. Roy, and S. Bielawski, “Direct observation of spatiotemporal dynamics of short electron bunches in storage rings,” Phys. Rev. Lett. 118(5), 054801 (2017).
[Crossref] [PubMed]

C. Szwaj, C. Evain, M. Le Parquier, P. Roy, L. Manceron, J.-B. Brubach, M.-A. Tordeux, and S. Bielawski, “High sensitivity photonic time-stretch electro-optic sampling of terahertz pulses,” Rev. Sci. Instrum. 87(10), 103111 (2016).
[Crossref] [PubMed]

E. Roussel, C. Evain, M. Le Parquier, C. Szwaj, S. Bielawski, L. Manceron, J.-B. Brubach, M.-A. Tordeux, J.-P. Ricaud, L. Cassinari, M. Labat, M.-E. Couprie, and P. Roy, “Observing microscopic structures of a relativistic object using a time-stretch strategy,” Sci. Rep. 5(1), 10330 (2015).
[Crossref] [PubMed]

Lei, M.

M. Lei, W. Zou, X. Li, and J. Chen, “Ultrafast FBG interrogator based on time-stretch method,” IEEE Photonics Technol. Lett. 28(7), 778–781 (2016).
[Crossref]

Lei, Z.

Li, M.

Li, W.

Li, X.

M. Lei, W. Zou, X. Li, and J. Chen, “Ultrafast FBG interrogator based on time-stretch method,” IEEE Photonics Technol. Lett. 28(7), 778–781 (2016).
[Crossref]

Liberti, M.

E. Piuzzi, C. Merla, G. Cannazza, A. Zambotti, F. Apollonio, A. Cataldo, P. D’Atanasio, E. De Benedetto, and M. Liberti, “A comparative analysis between customized and commercial systems for complex permittivity measurements on liquid samples at microwave frequencies,” IEEE Trans. Instrum. Meas. 62(5), 1034–1046 (2013).
[Crossref]

Lin, Z.

Linner, P.

X. Zeng, A. Fhager, Z. He, M. Persson, P. Linner, and H. Zirath, “Development of a time domain microwave system for medical diagnostics,” IEEE Trans. Instrum. Meas. 63(12), 2931–2939 (2014).
[Crossref]

Liu, M.

Lonappan, C. K.

C. K. Lonappan, A. M. Madni, and B. Jalali, “Single-shot network analyzer for extremely fast measurements,” Appl. Opt. 55(30), 8406–8412 (2016).
[Crossref] [PubMed]

D. Lam, B. W. Buckley, C. K. Lonappan, A. M. Madni, and B. Jalali, “Ultra-wideband instantaneous frequency estimation,” IEEE Instrum. Meas. Mag. 18(2), 26–30 (2015).
[Crossref]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

C. K. Lonappan, B. W. Buckley, D. Lam, A. M. Madni, B. Jalali, and J. Adam, “Time-stretch accelerated processor for real-time, in-service, signal analysis,” in IEEE Global Conference on Signal and Information Processing (GlobalSIP), (IEEE, 2014), pp. 707–711.
[Crossref]

Long, X.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Luo, A. P.

Luo, Z. C.

Madni, A. M.

C. K. Lonappan, A. M. Madni, and B. Jalali, “Single-shot network analyzer for extremely fast measurements,” Appl. Opt. 55(30), 8406–8412 (2016).
[Crossref] [PubMed]

D. Lam, B. W. Buckley, C. K. Lonappan, A. M. Madni, and B. Jalali, “Ultra-wideband instantaneous frequency estimation,” IEEE Instrum. Meas. Mag. 18(2), 26–30 (2015).
[Crossref]

B. W. Buckley, A. M. Madni, and B. Jalali, “Coherent time-stretch transformation for real-time capture of wideband signals,” Opt. Express 21(18), 21618–21627 (2013).
[Crossref] [PubMed]

C. K. Lonappan, B. W. Buckley, D. Lam, A. M. Madni, B. Jalali, and J. Adam, “Time-stretch accelerated processor for real-time, in-service, signal analysis,” in IEEE Global Conference on Signal and Information Processing (GlobalSIP), (IEEE, 2014), pp. 707–711.
[Crossref]

Mahjoubfar, A.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

C. L. Chen, A. Mahjoubfar, L.-C. Tai, I. K. Blaby, A. Huang, K. R. Niazi, and B. Jalali, “Deep Learning in Label-free Cell Classification,” Sci. Rep. 6(1), 21471 (2016).
[Crossref] [PubMed]

A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express 4(9), 1618–1625 (2013).
[Crossref] [PubMed]

Mallari, J.

J. Mallari, C. Wei, D. Jin, G. Yu, A. Barklund, E. Miller, P. O’Mathuna, R. Dinu, A. Motafakker-Fard, and B. Jalali, “100Gbps EO polymer modulator product and its characterization using a real-time digitizer,” in Optical Fiber Communication Conference, (Optical Society of America, 2010), p. OThU2.
[Crossref]

Manceron, L.

C. Evain, E. Roussel, M. Le Parquier, C. Szwaj, M.-A. Tordeux, J.-B. Brubach, L. Manceron, P. Roy, and S. Bielawski, “Direct observation of spatiotemporal dynamics of short electron bunches in storage rings,” Phys. Rev. Lett. 118(5), 054801 (2017).
[Crossref] [PubMed]

C. Szwaj, C. Evain, M. Le Parquier, P. Roy, L. Manceron, J.-B. Brubach, M.-A. Tordeux, and S. Bielawski, “High sensitivity photonic time-stretch electro-optic sampling of terahertz pulses,” Rev. Sci. Instrum. 87(10), 103111 (2016).
[Crossref] [PubMed]

E. Roussel, C. Evain, M. Le Parquier, C. Szwaj, S. Bielawski, L. Manceron, J.-B. Brubach, M.-A. Tordeux, J.-P. Ricaud, L. Cassinari, M. Labat, M.-E. Couprie, and P. Roy, “Observing microscopic structures of a relativistic object using a time-stretch strategy,” Sci. Rep. 5(1), 10330 (2015).
[Crossref] [PubMed]

Merla, C.

E. Piuzzi, C. Merla, G. Cannazza, A. Zambotti, F. Apollonio, A. Cataldo, P. D’Atanasio, E. De Benedetto, and M. Liberti, “A comparative analysis between customized and commercial systems for complex permittivity measurements on liquid samples at microwave frequencies,” IEEE Trans. Instrum. Meas. 62(5), 1034–1046 (2013).
[Crossref]

Merolla, J. M.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref] [PubMed]

Miller, E.

J. Mallari, C. Wei, D. Jin, G. Yu, A. Barklund, E. Miller, P. O’Mathuna, R. Dinu, A. Motafakker-Fard, and B. Jalali, “100Gbps EO polymer modulator product and its characterization using a real-time digitizer,” in Optical Fiber Communication Conference, (Optical Society of America, 2010), p. OThU2.
[Crossref]

Motafakker-Fard, A.

J. Mallari, C. Wei, D. Jin, G. Yu, A. Barklund, E. Miller, P. O’Mathuna, R. Dinu, A. Motafakker-Fard, and B. Jalali, “100Gbps EO polymer modulator product and its characterization using a real-time digitizer,” in Optical Fiber Communication Conference, (Optical Society of America, 2010), p. OThU2.
[Crossref]

Murray, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Mussot, A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref] [PubMed]

Niazi, K. R.

C. L. Chen, A. Mahjoubfar, L.-C. Tai, I. K. Blaby, A. Huang, K. R. Niazi, and B. Jalali, “Deep Learning in Label-free Cell Classification,” Sci. Rep. 6(1), 21471 (2016).
[Crossref] [PubMed]

A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express 4(9), 1618–1625 (2013).
[Crossref] [PubMed]

O’Mathuna, P.

J. Mallari, C. Wei, D. Jin, G. Yu, A. Barklund, E. Miller, P. O’Mathuna, R. Dinu, A. Motafakker-Fard, and B. Jalali, “100Gbps EO polymer modulator product and its characterization using a real-time digitizer,” in Optical Fiber Communication Conference, (Optical Society of America, 2010), p. OThU2.
[Crossref]

Oshita, Y.

Pan, S.

Persson, M.

X. Zeng, A. Fhager, Z. He, M. Persson, P. Linner, and H. Zirath, “Development of a time domain microwave system for medical diagnostics,” IEEE Trans. Instrum. Meas. 63(12), 2931–2939 (2014).
[Crossref]

Piuzzi, E.

E. Piuzzi, C. Merla, G. Cannazza, A. Zambotti, F. Apollonio, A. Cataldo, P. D’Atanasio, E. De Benedetto, and M. Liberti, “A comparative analysis between customized and commercial systems for complex permittivity measurements on liquid samples at microwave frequencies,” IEEE Trans. Instrum. Meas. 62(5), 1034–1046 (2013).
[Crossref]

Poletaeff, A.

F. Ziadé, A. Poletaeff, and D. Allal, “Primary standard for S-parameter measurements at intermediate frequencies (IFs),” IEEE Trans. Instrum. Meas. 62(3), 659–666 (2013).
[Crossref]

Polli, D.

Preda, F.

Rabizadeh, S.

Radic, S.

A. M. Fard, B. Buckley, S. Zlatanovic, C. S. Bres, S. Radic, and B. Jalali, “All-optical time-stretch digitizer,” Appl. Phys. Lett. 101(5), 051113 (2012).
[Crossref]

Rappaport, T. S.

Y. Xing and T. S. Rappaport, “Propagation measurement system and approach at 140 GHz-moving to 6G and above 100 GHz,” in 2018 IEEE Global Communications Conference (GLOBECOM), (IEEE, 2018), pp. 1–6.
[Crossref]

Ricaud, J.-P.

E. Roussel, C. Evain, M. Le Parquier, C. Szwaj, S. Bielawski, L. Manceron, J.-B. Brubach, M.-A. Tordeux, J.-P. Ricaud, L. Cassinari, M. Labat, M.-E. Couprie, and P. Roy, “Observing microscopic structures of a relativistic object using a time-stretch strategy,” Sci. Rep. 5(1), 10330 (2015).
[Crossref] [PubMed]

Ropers, C.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

G. Herink, B. Jalali, C. Ropers, and D. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Roussel, E.

C. Evain, E. Roussel, M. Le Parquier, C. Szwaj, M.-A. Tordeux, J.-B. Brubach, L. Manceron, P. Roy, and S. Bielawski, “Direct observation of spatiotemporal dynamics of short electron bunches in storage rings,” Phys. Rev. Lett. 118(5), 054801 (2017).
[Crossref] [PubMed]

E. Roussel, C. Evain, M. Le Parquier, C. Szwaj, S. Bielawski, L. Manceron, J.-B. Brubach, M.-A. Tordeux, J.-P. Ricaud, L. Cassinari, M. Labat, M.-E. Couprie, and P. Roy, “Observing microscopic structures of a relativistic object using a time-stretch strategy,” Sci. Rep. 5(1), 10330 (2015).
[Crossref] [PubMed]

Roy, P.

C. Evain, E. Roussel, M. Le Parquier, C. Szwaj, M.-A. Tordeux, J.-B. Brubach, L. Manceron, P. Roy, and S. Bielawski, “Direct observation of spatiotemporal dynamics of short electron bunches in storage rings,” Phys. Rev. Lett. 118(5), 054801 (2017).
[Crossref] [PubMed]

C. Szwaj, C. Evain, M. Le Parquier, P. Roy, L. Manceron, J.-B. Brubach, M.-A. Tordeux, and S. Bielawski, “High sensitivity photonic time-stretch electro-optic sampling of terahertz pulses,” Rev. Sci. Instrum. 87(10), 103111 (2016).
[Crossref] [PubMed]

E. Roussel, C. Evain, M. Le Parquier, C. Szwaj, S. Bielawski, L. Manceron, J.-B. Brubach, M.-A. Tordeux, J.-P. Ricaud, L. Cassinari, M. Labat, M.-E. Couprie, and P. Roy, “Observing microscopic structures of a relativistic object using a time-stretch strategy,” Sci. Rep. 5(1), 10330 (2015).
[Crossref] [PubMed]

Rozé, C.

P. H. Hanzard, T. Godin, S. Idlahcen, C. Rozé, and A. Hideur, “Real-time tracking of single shockwaves via amplified time-stretch imaging,” Appl. Phys. Lett. 112(16), 161106 (2018).
[Crossref]

Runge, A. F. J.

Rush, K.

J. Verspecht and K. Rush, “Individual characterization of broadband sampling Oscilloscopes with a nose-to-nose calibration procedure,” IEEE Trans. Instrum. Meas. 43(2), 347–354 (1994).
[Crossref]

Sadasivam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Saltarelli, F.

Solli, D.

G. Herink, B. Jalali, C. Ropers, and D. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

Solli, D. R.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Sollier, E.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Stefani, A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref] [PubMed]

Stigwall, J.

Sun, S.

Sylvestre, T.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref] [PubMed]

Szwaj, C.

C. Evain, E. Roussel, M. Le Parquier, C. Szwaj, M.-A. Tordeux, J.-B. Brubach, L. Manceron, P. Roy, and S. Bielawski, “Direct observation of spatiotemporal dynamics of short electron bunches in storage rings,” Phys. Rev. Lett. 118(5), 054801 (2017).
[Crossref] [PubMed]

C. Szwaj, C. Evain, M. Le Parquier, P. Roy, L. Manceron, J.-B. Brubach, M.-A. Tordeux, and S. Bielawski, “High sensitivity photonic time-stretch electro-optic sampling of terahertz pulses,” Rev. Sci. Instrum. 87(10), 103111 (2016).
[Crossref] [PubMed]

E. Roussel, C. Evain, M. Le Parquier, C. Szwaj, S. Bielawski, L. Manceron, J.-B. Brubach, M.-A. Tordeux, J.-P. Ricaud, L. Cassinari, M. Labat, M.-E. Couprie, and P. Roy, “Observing microscopic structures of a relativistic object using a time-stretch strategy,” Sci. Rep. 5(1), 10330 (2015).
[Crossref] [PubMed]

Tai, L.-C.

C. L. Chen, A. Mahjoubfar, L.-C. Tai, I. K. Blaby, A. Huang, K. R. Niazi, and B. Jalali, “Deep Learning in Label-free Cell Classification,” Sci. Rep. 6(1), 21471 (2016).
[Crossref] [PubMed]

Tanimura, K.

Teppati, V.

V. Teppati and A. Ferrero, “A Comparison of Uncertainty Evaluation Methods for On-Wafer S-Parameter Measurements,” IEEE Trans. Instrum. Meas. 63(4), 935–942 (2014).
[Crossref]

Tordeux, M.-A.

C. Evain, E. Roussel, M. Le Parquier, C. Szwaj, M.-A. Tordeux, J.-B. Brubach, L. Manceron, P. Roy, and S. Bielawski, “Direct observation of spatiotemporal dynamics of short electron bunches in storage rings,” Phys. Rev. Lett. 118(5), 054801 (2017).
[Crossref] [PubMed]

C. Szwaj, C. Evain, M. Le Parquier, P. Roy, L. Manceron, J.-B. Brubach, M.-A. Tordeux, and S. Bielawski, “High sensitivity photonic time-stretch electro-optic sampling of terahertz pulses,” Rev. Sci. Instrum. 87(10), 103111 (2016).
[Crossref] [PubMed]

E. Roussel, C. Evain, M. Le Parquier, C. Szwaj, S. Bielawski, L. Manceron, J.-B. Brubach, M.-A. Tordeux, J.-P. Ricaud, L. Cassinari, M. Labat, M.-E. Couprie, and P. Roy, “Observing microscopic structures of a relativistic object using a time-stretch strategy,” Sci. Rep. 5(1), 10330 (2015).
[Crossref] [PubMed]

Tsia, K. K.

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

Turitsyn, S. K.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Verspecht, J.

J. Verspecht and K. Rush, “Individual characterization of broadband sampling Oscilloscopes with a nose-to-nose calibration procedure,” IEEE Trans. Instrum. Meas. 43(2), 347–354 (1994).
[Crossref]

Viola, D.

Walden, R. H.

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
[Crossref]

Wang, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Wang, C. M.

J. A. Jargon, P. D. Hale, and C. M. Wang, “Correcting sampling oscilloscope timebase errors with a passively mode-locked laser phase locked to a microwave oscillator,” IEEE Trans. Instrum. Meas. 59(4), 916–922 (2010).
[Crossref]

Wei, C.

J. Mallari, C. Wei, D. Jin, G. Yu, A. Barklund, E. Miller, P. O’Mathuna, R. Dinu, A. Motafakker-Fard, and B. Jalali, “100Gbps EO polymer modulator product and its characterization using a real-time digitizer,” in Optical Fiber Communication Conference, (Optical Society of America, 2010), p. OThU2.
[Crossref]

Wetzel, B.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref] [PubMed]

Wong, K. K. Y.

Xie, S.

F. Xing, H. Chen, S. Xie, and J. Yao, “Ultrafast three-dimensional surface imaging based on short-time Fourier transform,” IEEE Photonics Technol. Lett. 27(21), 2264–2267 (2015).
[Crossref]

Xing, F.

F. Xing, H. Chen, S. Xie, and J. Yao, “Ultrafast three-dimensional surface imaging based on short-time Fourier transform,” IEEE Photonics Technol. Lett. 27(21), 2264–2267 (2015).
[Crossref]

Xing, Y.

Y. Xing and T. S. Rappaport, “Propagation measurement system and approach at 140 GHz-moving to 6G and above 100 GHz,” in 2018 IEEE Global Communications Conference (GLOBECOM), (IEEE, 2018), pp. 1–6.
[Crossref]

Xu, W. C.

Xue, M.

Yao, J.

H. J. Chen, M. Liu, J. Yao, S. Hu, J. B. He, A. P. Luo, W. C. Xu, and Z. C. Luo, “Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion,” Opt. Express 26(3), 2972–2982 (2018).
[Crossref] [PubMed]

F. Xing, H. Chen, S. Xie, and J. Yao, “Ultrafast three-dimensional surface imaging based on short-time Fourier transform,” IEEE Photonics Technol. Lett. 27(21), 2264–2267 (2015).
[Crossref]

Yu, G.

J. Mallari, C. Wei, D. Jin, G. Yu, A. Barklund, E. Miller, P. O’Mathuna, R. Dinu, A. Motafakker-Fard, and B. Jalali, “100Gbps EO polymer modulator product and its characterization using a real-time digitizer,” in Optical Fiber Communication Conference, (Optical Society of America, 2010), p. OThU2.
[Crossref]

Zambotti, A.

E. Piuzzi, C. Merla, G. Cannazza, A. Zambotti, F. Apollonio, A. Cataldo, P. D’Atanasio, E. De Benedetto, and M. Liberti, “A comparative analysis between customized and commercial systems for complex permittivity measurements on liquid samples at microwave frequencies,” IEEE Trans. Instrum. Meas. 62(5), 1034–1046 (2013).
[Crossref]

Zeng, X.

X. Zeng, A. Fhager, Z. He, M. Persson, P. Linner, and H. Zirath, “Development of a time domain microwave system for medical diagnostics,” IEEE Trans. Instrum. Meas. 63(12), 2931–2939 (2014).
[Crossref]

Zhang, C.

Zhang, H.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Zhang, S.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Zhang, X.

Zhou, X.

Zhu, N.

Ziadé, F.

F. Ziadé, A. Poletaeff, and D. Allal, “Primary standard for S-parameter measurements at intermediate frequencies (IFs),” IEEE Trans. Instrum. Meas. 62(3), 659–666 (2013).
[Crossref]

Zirath, H.

X. Zeng, A. Fhager, Z. He, M. Persson, P. Linner, and H. Zirath, “Development of a time domain microwave system for medical diagnostics,” IEEE Trans. Instrum. Meas. 63(12), 2931–2939 (2014).
[Crossref]

Zlatanovic, S.

A. M. Fard, B. Buckley, S. Zlatanovic, C. S. Bres, S. Radic, and B. Jalali, “All-optical time-stretch digitizer,” Appl. Phys. Lett. 101(5), 051113 (2012).
[Crossref]

Zou, W.

M. Lei, W. Zou, X. Li, and J. Chen, “Ultrafast FBG interrogator based on time-stretch method,” IEEE Photonics Technol. Lett. 28(7), 778–781 (2016).
[Crossref]

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

A. M. Fard, B. Buckley, S. Zlatanovic, C. S. Bres, S. Radic, and B. Jalali, “All-optical time-stretch digitizer,” Appl. Phys. Lett. 101(5), 051113 (2012).
[Crossref]

P. H. Hanzard, T. Godin, S. Idlahcen, C. Rozé, and A. Hideur, “Real-time tracking of single shockwaves via amplified time-stretch imaging,” Appl. Phys. Lett. 112(16), 161106 (2018).
[Crossref]

Biomed. Opt. Express (1)

Electron. Lett. (1)

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(9), 839–841 (1998).
[Crossref]

IEEE Instrum. Meas. Mag. (1)

D. Lam, B. W. Buckley, C. K. Lonappan, A. M. Madni, and B. Jalali, “Ultra-wideband instantaneous frequency estimation,” IEEE Instrum. Meas. Mag. 18(2), 26–30 (2015).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M. Lei, W. Zou, X. Li, and J. Chen, “Ultrafast FBG interrogator based on time-stretch method,” IEEE Photonics Technol. Lett. 28(7), 778–781 (2016).
[Crossref]

F. Xing, H. Chen, S. Xie, and J. Yao, “Ultrafast three-dimensional surface imaging based on short-time Fourier transform,” IEEE Photonics Technol. Lett. 27(21), 2264–2267 (2015).
[Crossref]

A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, “130-GSa/s photonic analog-to-digital converter with time stretch preprocessor,” IEEE Photonics Technol. Lett. 14(5), 684–686 (2002).
[Crossref]

IEEE T. Microw. Theory (1)

Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch A/D converter Employing phase diversity,” IEEE T. Microw. Theory 53(4), 1404–1408 (2005).
[Crossref]

IEEE Trans. Computer-Aided Design Integr. Circuits Syst. (1)

M. Agrawal and K. Chakrabarty, “Test-cost modeling and optimal test-flow selection of 3-D-stacked ICs,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 34(9), 1523–1536 (2015).

IEEE Trans. Instrum. Meas. (7)

F. Ziadé, A. Poletaeff, and D. Allal, “Primary standard for S-parameter measurements at intermediate frequencies (IFs),” IEEE Trans. Instrum. Meas. 62(3), 659–666 (2013).
[Crossref]

V. Teppati and A. Ferrero, “A Comparison of Uncertainty Evaluation Methods for On-Wafer S-Parameter Measurements,” IEEE Trans. Instrum. Meas. 63(4), 935–942 (2014).
[Crossref]

P. Ferrari and G. Angenieux, “Calibration of a time-domain network analyzer: A new approach,” IEEE Trans. Instrum. Meas. 49(1), 178–187 (2000).
[Crossref]

J. Verspecht and K. Rush, “Individual characterization of broadband sampling Oscilloscopes with a nose-to-nose calibration procedure,” IEEE Trans. Instrum. Meas. 43(2), 347–354 (1994).
[Crossref]

J. A. Jargon, P. D. Hale, and C. M. Wang, “Correcting sampling oscilloscope timebase errors with a passively mode-locked laser phase locked to a microwave oscillator,” IEEE Trans. Instrum. Meas. 59(4), 916–922 (2010).
[Crossref]

E. Piuzzi, C. Merla, G. Cannazza, A. Zambotti, F. Apollonio, A. Cataldo, P. D’Atanasio, E. De Benedetto, and M. Liberti, “A comparative analysis between customized and commercial systems for complex permittivity measurements on liquid samples at microwave frequencies,” IEEE Trans. Instrum. Meas. 62(5), 1034–1046 (2013).
[Crossref]

X. Zeng, A. Fhager, Z. He, M. Persson, P. Linner, and H. Zirath, “Development of a time domain microwave system for medical diagnostics,” IEEE Trans. Instrum. Meas. 63(12), 2931–2939 (2014).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

Y. Han and B. Jalali, “Time-bandwidth product of the photonic time-stretched analog-to-digital converter,” IEEE Trans. Microw. Theory Tech. 51(7), 1886–1892 (2003).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

Nat. Photonics (2)

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

G. Herink, B. Jalali, C. Ropers, and D. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

Nature (2)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Optica (1)

Phys. Rev. Lett. (1)

C. Evain, E. Roussel, M. Le Parquier, C. Szwaj, M.-A. Tordeux, J.-B. Brubach, L. Manceron, P. Roy, and S. Bielawski, “Direct observation of spatiotemporal dynamics of short electron bunches in storage rings,” Phys. Rev. Lett. 118(5), 054801 (2017).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

C. Szwaj, C. Evain, M. Le Parquier, P. Roy, L. Manceron, J.-B. Brubach, M.-A. Tordeux, and S. Bielawski, “High sensitivity photonic time-stretch electro-optic sampling of terahertz pulses,” Rev. Sci. Instrum. 87(10), 103111 (2016).
[Crossref] [PubMed]

Sci. Rep. (4)

E. Roussel, C. Evain, M. Le Parquier, C. Szwaj, S. Bielawski, L. Manceron, J.-B. Brubach, M.-A. Tordeux, J.-P. Ricaud, L. Cassinari, M. Labat, M.-E. Couprie, and P. Roy, “Observing microscopic structures of a relativistic object using a time-stretch strategy,” Sci. Rep. 5(1), 10330 (2015).
[Crossref] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref] [PubMed]

C. L. Chen, A. Mahjoubfar, L.-C. Tai, I. K. Blaby, A. Huang, K. R. Niazi, and B. Jalali, “Deep Learning in Label-free Cell Classification,” Sci. Rep. 6(1), 21471 (2016).
[Crossref] [PubMed]

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Science (1)

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

Other (15)

A. Ayazi, K. Goda, J. Sadasivam, C. K. Lonappan, D. R. Gossett, E. Sollier, A. Fard, S. C. Hur, S. H. Kim, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “Real-time image processor for detection of rare cells and particles in flow at 37 MHz line scans per second,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XI, vol. 8587 (International Society for Optics and Photonics, 2013), p. 858713.

C. K. Lonappan, B. W. Buckley, D. Lam, A. M. Madni, B. Jalali, and J. Adam, “Time-stretch accelerated processor for real-time, in-service, signal analysis,” in IEEE Global Conference on Signal and Information Processing (GlobalSIP), (IEEE, 2014), pp. 707–711.
[Crossref]

T. Makino, H. Furukawa, M. H. Asghari, P. Trinh, B. Jalali, X. Wang, T. Kobayashi, W. S. Man, K. S. Tsang, and N. Wada, “High resolution single-shot time stretch spectroscopy with wavelength demultiplexer at one billion frames per second,” in CLEO: Science and Innovations, (Optical Society of America, 2017), pp. STu4I–6.

J. Mallari, C. Wei, D. Jin, G. Yu, A. Barklund, E. Miller, P. O’Mathuna, R. Dinu, A. Motafakker-Fard, and B. Jalali, “100Gbps EO polymer modulator product and its characterization using a real-time digitizer,” in Optical Fiber Communication Conference, (Optical Society of America, 2010), p. OThU2.
[Crossref]

C. Richard, Aster, Brian Borchers, and Clifford H. Thurber. Parameter estimation and inverse problems. Elsevier, 2018.

P. C. Hansen, “The L-curve and its use in the numerical treatment of inverse problems,” in Computational Inverse Problems in Electrocardiology, P. D. Johnston, ed. (WIT Press, 2001), pp. 119–142.

Picosecond Pulse Labs, Ultra-Broadband Amplifiers 5840A Datasheet, https://www.oequest.com/getDatasheet/id/2116-2116.pdf .

Analog Devices, MZ Optical Modulator Driver, DC-20 GHz HMC870LC5 Datasheet, https://www.analog.com/media/en/technical-documentation/data-sheets/hmc870.pdf .

C. K. Lonappan, “Time-Stretch Accelerated Instrumentation for High-Speed Signal Analysis and Ultra-fast Device Characterization,” PhD diss., UCLA (2018).

Z. Bai, C. K. Lonappan, A. M. Madni, and B. Jalali, “Time-stretch Network Analyzer for Single-shot Characterization of Electronic Devices,” in CLEO: Applications and Technology, (Optical Society of America, 2019), pp. AF3K–6.

Cisco Visual Networking Index, “The Zettabyte Era: Trends and Analysis,” https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html .

Y. Xing and T. S. Rappaport, “Propagation measurement system and approach at 140 GHz-moving to 6G and above 100 GHz,” in 2018 IEEE Global Communications Conference (GLOBECOM), (IEEE, 2018), pp. 1–6.
[Crossref]

D. Derickson, Fiber Optic Test and Measurement (Prentice Hall Press, 1997).

B. Murmann, “ADC Performance Survey 1997-2019,” http://www.stanford.edu/~murmann/adcsurvey.html .

T. Jiang, C. K. Lonappan, C. Evain, C. Szwaj, E. Roussel, M. Parquier, S. Bielawski, and B. Jalali, “Time Stretch Single-shot Terahertz Analyzer,” B. Am. Phys. Soc. (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Time-stretch device analyzer for single-shot measurement of the complex response of an electronic device under test (DUT). Phase diversity has been implemented using a dual-drive EOM with different chirps in outputs to produce 90° phase shifts between them, which enables overcoming the limitation in RF bandwidth caused by dispersion penalty. Bias controller enables the EOM operates in the linear region. D1, D2: dispersive elements; PD1, PD2, PD3, PD4: photo-detectors; PC: polarization controller; C1, C2: optical circulators; DSP: digital signal processing.
Fig. 2
Fig. 2 A simulation of RF fading due to dispersion penalty in a time-stretched data acquisition system. This RF fading would limit the 3-dB analog bandwidth of the device analyzer. The RF fading due to dispersion penalty can be overcome by using phase diversity employing an EOM that produces two outputs that have complementary fading characteristics and combining them [20]. This mitigates the effect of the dispersion penalty and extends the bandwidth of the time-stretch device analyzer.
Fig. 3
Fig. 3 Raw time series data collected by the time-stretch data acquisition system. Time-stretch can be used to perform ultra-fast single-shot measurements of frequency response from a single pulse as well as collect statistical fluctuations of the DUT from the raw time series data of multiple pulses. For studying statistical fluctuations of the DUT, (a) the frames from time series data are collected and (b) undergo automated jitter removal, segmentation and alignment.
Fig. 4
Fig. 4 The measured transfer function of the phase diversity time-stretch system. The plot shows the electrical RF power. The outputs exhibit complementary fading characteristics. The frequency fading is removed after applying the maximum ratio combining (MRC) algorithm in Eq. (3). The remaining 15 dB of roll-off is not a property of the time-stretch systems. It is due to the roll-off in the electro-optic modulator as well as the RF generator. The half wave voltage of the EO modulator increases with frequency resulting in a measured reduction in the optical signal of 5 dB (10 dB electrical RF power). In addition, the RF signal generator power has 5 dB of roll-off beyond 25 GHz (measured) resulting in the observed 15 dB roll-off. This roll-off is device-dependent and is not an intrinsic property of the time-stretch device analyzer.
Fig. 5
Fig. 5 The measured instrument (a) impulse response and (b) frequency response. The measured instrument response is a convolution of the impulse response of the 30 GHz photodiode (PD1) with the time-stretch system.
Fig. 6
Fig. 6 Single-shot frequency response measurements of high bandwidth electrical devices at an effective sampling rate of 2.5 Tera-sample/s with a low effective timing jitter of 5.4 fs enabled by the time-stretch device analyzer. The (a) frequency response and (b) time-domain impulse response of a low noise amplifier. The (c) frequency response and (d) time-domain impulse response of a wide-band power amplifier. The acquisition time for the frequency response measurements at single-shot is 27 ns.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

H 1 ( ω )=cos( ω 2 β 2 L 2M π 4 )
H 2 ( ω )=cos( ω 2 β 2 L 2M + π 4 )
Y( ω )= H 1 ( ω ) Y 1 ( ω )+ H 2 ( ω ) Y 2 ( ω ) | H 1 ( ω ) | 2 + | H 2 ( ω ) | 2
y( t )=h( t )x( t )
H( s )= Y( s ) X( s )
H( z )= X ( z ) Y( z ) ( X ( z ) X( z )+λ )Δt
min XHY 2 2 +λ H 2 2
τ j,eff = τ j,laser 2 + ( τ j,clock M ) 2
τ j,singleshot = τ j,clock M

Metrics