Abstract

Reactive ion etching (RIE) is crucial for fabricating high-quality fused silica optics since this technique can be used as a first step before dynamic chemical etching (DCE) for tracelessly removing the fractured defects in subsurface layer. The final quality of the optics is dramatically influenced by the plasma etching condition but still lacks sufficient information for practical application. In this work, combination of RIE and DCE was investigated deeply on polished fused silica surface by changing the gas type and flow rate. We show that the proper choice of fluorine-containing plasma condition during the RIE process allows the simultaneous occurrence of high surface quality and a low concentration of etching-introduced defects on fused silica. This leads to an ultrahigh laser-induced damage threshold at 355 nm while substantially keeping the surface roughness unchanged. This study paves the way for designing and developing a next-generation surface modification ability of high-quality fused silica with the great potential for high-power laser application.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effects of combined process of reactive ion etching and dynamic chemical etching on UV laser damage resistance and surface quality of fused silica optics

Laixi Sun, Jin Huang, Ting Shao, Xin Ye, Qingzhi Li, Xiaodong Jiang, Weidong Wu, Liming Yang, and Wanguo Zheng
Opt. Express 26(14) 18006-18018 (2018)

Reaction ion etching process for improving laser damage resistance of fused silica optical surface

Laixi Sun, Hongjie Liu, Jin Huang, Xin Ye, Handing Xia, Qingzhi Li, Xiaodong Jiang, Weidong Wu, Liming Yang, and Wanguo Zheng
Opt. Express 24(1) 199-211 (2016)

Capping a glass thin layer on the etched surface via plasma chemical vapor deposition for improving the laser damage performance of fused silica

Changpeng Li, Yuancheng Sun, Xuefu Song, Xiaoqiang Zhang, Zhaohua Shi, Fengrui Wang, Xin Ye, Shufan Chen, Laixi Sun, Jin Huang, Weidong Wu, and Xiaodong Jiang
Opt. Express 27(3) 2268-2280 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. I. Moses, “Ignition on the National Ignition Facility: a path towards inertial fusion energy,” Nucl. Fusion 49(10), 104022 (2009).
    [Crossref]
  2. J. L. Miquel, C. Lion, and P. Vivini, “The Laser Mega-Joule: LMJ & PETAL status and program overview,” J. Phys. Conf. Ser. 688, 012067 (2016).
    [Crossref]
  3. F. Shi, Y. Zhong, Y. Dai, X. Peng, M. Xu, and T. Sui, “Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica,” Opt. Express 24(18), 20842–20854 (2016).
    [Crossref] [PubMed]
  4. J. Neauport, C. Ambard, H. Bercegol, O. Cahuc, J. Champreux, J. Charles, P. Cormont, N. Darbois, P. Darnis, and J. Destribats, “Optimizing fused silica polishing processes for 351nm high-power laser application,” in Boulder Damage Symposium XL Annual Symposium on Optical Materials for High Power Lasers (International Society for Optics and Photonics, 2008), pp. 71321I.
    [Crossref]
  5. S. Baxamusa, P. E. Miller, L. Wong, R. Steele, N. Shen, and J. Bude, “Mitigation of organic laser damage precursors from chemical processing of fused silica,” Opt. Express 22(24), 29568–29577 (2014).
    [Crossref] [PubMed]
  6. F. Shi, Y. Tian, X. Peng, and Y. Dai, “Combined technique of elastic magnetorheological finishing and HF etching for high-efficiency improving of the laser-induced damage threshold of fused silica optics,” Appl. Opt. 53(4), 598–604 (2014).
    [Crossref] [PubMed]
  7. X. Ye, J. Huang, H. Liu, F. Geng, L. Sun, X. Jiang, W. Wu, L. Qiao, X. Zu, and W. Zheng, “Advanced mitigation process (AMP) for improving laser damage threshold of fused silica optics,” Sci. Rep. 6(1), 31111 (2016).
    [Crossref] [PubMed]
  8. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
    [Crossref]
  9. J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
    [Crossref] [PubMed]
  10. J. Bude, C. W. Carr, P. E. Miller, T. Parham, P. Whitman, M. Monticelli, R. Raman, D. Cross, B. Welday, F. Ravizza, T. Suratwala, J. Davis, M. Fischer, R. Hawley, H. Lee, M. Matthews, M. Norton, M. Nostrand, D. VanBlarcom, and S. Sommer, “Particle damage sources for fused silica optics and their mitigation on high energy laser systems,” Opt. Express 25(10), 11414–11435 (2017).
    [Crossref] [PubMed]
  11. B. Da Costa Fernandes, M. Pfiffer, P. Cormont, M. Dussauze, B. Bousquet, E. Fargin, and J. Neauport, “Understanding the effect of wet etching on damage resistance of surface scratches,” Sci. Rep. 8(1), 1337 (2018).
    [Crossref] [PubMed]
  12. L. Wong, T. Suratwala, M. Feit, P. Miller, and R. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
    [Crossref]
  13. W. Wang, P. Lu, L. Han, C. Zhang, C. Yang, R. Sui, and J. Chen, “Diffusion behavior of ammonium group and its interaction mechanisms with intrinsic defects in fused silica,” Appl. Phys., A Mater. Sci. Process. 122(10), 929 (2016).
    [Crossref]
  14. M. Pfiffer, P. Cormont, E. Fargin, B. Bousquet, M. Dussauze, S. Lambert, and J. Néauport, “Effects of deep wet etching in HF/HNO3 and KOH solutions on the laser damage resistance and surface quality of fused silica optics at 351 nm,” Opt. Express 25(5), 4607–4620 (2017).
    [Crossref] [PubMed]
  15. L. Sun, J. Huang, H. Liu, X. Ye, J. Wu, X. Jiang, L. Yang, W. Zheng, and W. Wu, “Combination of reaction ion etching and dynamic chemical etching for improving laser damage resistance of fused silica optical surfaces,” Opt. Lett. 41(19), 4464–4467 (2016).
    [Crossref] [PubMed]
  16. S. J. Fonash, “An Overview of Dry Etching Damage and Contamination Effects,” J. Electrochem. Soc. 137(12), 3885–3892 (1990).
    [Crossref]
  17. L. Sun, J. Huang, T. Shao, X. Ye, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Effects of combined process of reactive ion etching and dynamic chemical etching on UV laser damage resistance and surface quality of fused silica optics,” Opt. Express 26(14), 18006–18018 (2018).
    [Crossref] [PubMed]
  18. A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etch models based on different plasma chemistry for micro-electro-mechanical-systems application,” Vacuum 68(2), 191–196 (2002).
    [Crossref]
  19. L. Lallement, C. Gosse, C. Cardinaud, M.-C. Peignon-Fernandez, and A. Rhallabi, “Etching studies of silica glasses in SF6/Ar inductively coupled plasmas: Implications for microfluidic devices fabrication,” J. Vac. Sci. Technol. A 28(2), 277–286 (2010).
    [Crossref]
  20. P. Chabert, G. Cunge, J.-P. Booth, and J. Perrin, “Reactive ion etching of silicon carbide in SF6 gas: Detection of CF, CF2, and SiF2 etch products,” Appl. Phys. Lett. 79(7), 916–918 (2001).
    [Crossref]
  21. D. Bose, M. Rao, T. Govindan, and M. Meyyappan, “Uncertainty and sensitivity analysis of gas-phase chemistry in a CHF3 plasma,” Plasma Sources Sci. Technol. 12(2), 225–234 (2003).
    [Crossref]
  22. L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
    [Crossref] [PubMed]
  23. R. Salh, “Defect related luminescence in silicon dioxide network: a review” in Crystalline Silicon – Properties and uses, (INTECH Open Access Publisher, 2011).
  24. I. A. Buyanova, A. Henry, B. Monemar, J. L. Lindstrom, and G. S. Oehrlein, “Photoluminescence of defects induced in silicon by SF6/O2 reactive-ion etching,” J. Appl. Phys. 78(5), 3348–3352 (1995).
    [Crossref]
  25. A. Belkacem, E. André, J. C. Oberlin, C. Pomot, B. Pajot, and A. Chantre, “Electronic defects induced in silicon by SF 6 plasma etching,” Mater. Sci. Eng. B 4(1–4), 451–455 (1989).
    [Crossref]

2018 (2)

B. Da Costa Fernandes, M. Pfiffer, P. Cormont, M. Dussauze, B. Bousquet, E. Fargin, and J. Neauport, “Understanding the effect of wet etching on damage resistance of surface scratches,” Sci. Rep. 8(1), 1337 (2018).
[Crossref] [PubMed]

L. Sun, J. Huang, T. Shao, X. Ye, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Effects of combined process of reactive ion etching and dynamic chemical etching on UV laser damage resistance and surface quality of fused silica optics,” Opt. Express 26(14), 18006–18018 (2018).
[Crossref] [PubMed]

2017 (2)

2016 (6)

X. Ye, J. Huang, H. Liu, F. Geng, L. Sun, X. Jiang, W. Wu, L. Qiao, X. Zu, and W. Zheng, “Advanced mitigation process (AMP) for improving laser damage threshold of fused silica optics,” Sci. Rep. 6(1), 31111 (2016).
[Crossref] [PubMed]

J. L. Miquel, C. Lion, and P. Vivini, “The Laser Mega-Joule: LMJ & PETAL status and program overview,” J. Phys. Conf. Ser. 688, 012067 (2016).
[Crossref]

F. Shi, Y. Zhong, Y. Dai, X. Peng, M. Xu, and T. Sui, “Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica,” Opt. Express 24(18), 20842–20854 (2016).
[Crossref] [PubMed]

L. Sun, J. Huang, H. Liu, X. Ye, J. Wu, X. Jiang, L. Yang, W. Zheng, and W. Wu, “Combination of reaction ion etching and dynamic chemical etching for improving laser damage resistance of fused silica optical surfaces,” Opt. Lett. 41(19), 4464–4467 (2016).
[Crossref] [PubMed]

W. Wang, P. Lu, L. Han, C. Zhang, C. Yang, R. Sui, and J. Chen, “Diffusion behavior of ammonium group and its interaction mechanisms with intrinsic defects in fused silica,” Appl. Phys., A Mater. Sci. Process. 122(10), 929 (2016).
[Crossref]

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

2014 (2)

2011 (1)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

2010 (1)

L. Lallement, C. Gosse, C. Cardinaud, M.-C. Peignon-Fernandez, and A. Rhallabi, “Etching studies of silica glasses in SF6/Ar inductively coupled plasmas: Implications for microfluidic devices fabrication,” J. Vac. Sci. Technol. A 28(2), 277–286 (2010).
[Crossref]

2009 (3)

L. Wong, T. Suratwala, M. Feit, P. Miller, and R. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
[Crossref]

J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
[Crossref] [PubMed]

E. I. Moses, “Ignition on the National Ignition Facility: a path towards inertial fusion energy,” Nucl. Fusion 49(10), 104022 (2009).
[Crossref]

2003 (1)

D. Bose, M. Rao, T. Govindan, and M. Meyyappan, “Uncertainty and sensitivity analysis of gas-phase chemistry in a CHF3 plasma,” Plasma Sources Sci. Technol. 12(2), 225–234 (2003).
[Crossref]

2002 (1)

A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etch models based on different plasma chemistry for micro-electro-mechanical-systems application,” Vacuum 68(2), 191–196 (2002).
[Crossref]

2001 (1)

P. Chabert, G. Cunge, J.-P. Booth, and J. Perrin, “Reactive ion etching of silicon carbide in SF6 gas: Detection of CF, CF2, and SiF2 etch products,” Appl. Phys. Lett. 79(7), 916–918 (2001).
[Crossref]

1995 (1)

I. A. Buyanova, A. Henry, B. Monemar, J. L. Lindstrom, and G. S. Oehrlein, “Photoluminescence of defects induced in silicon by SF6/O2 reactive-ion etching,” J. Appl. Phys. 78(5), 3348–3352 (1995).
[Crossref]

1990 (1)

S. J. Fonash, “An Overview of Dry Etching Damage and Contamination Effects,” J. Electrochem. Soc. 137(12), 3885–3892 (1990).
[Crossref]

1989 (1)

A. Belkacem, E. André, J. C. Oberlin, C. Pomot, B. Pajot, and A. Chantre, “Electronic defects induced in silicon by SF 6 plasma etching,” Mater. Sci. Eng. B 4(1–4), 451–455 (1989).
[Crossref]

Ambard, C.

J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
[Crossref] [PubMed]

J. Neauport, C. Ambard, H. Bercegol, O. Cahuc, J. Champreux, J. Charles, P. Cormont, N. Darbois, P. Darnis, and J. Destribats, “Optimizing fused silica polishing processes for 351nm high-power laser application,” in Boulder Damage Symposium XL Annual Symposium on Optical Materials for High Power Lasers (International Society for Optics and Photonics, 2008), pp. 71321I.
[Crossref]

André, E.

A. Belkacem, E. André, J. C. Oberlin, C. Pomot, B. Pajot, and A. Chantre, “Electronic defects induced in silicon by SF 6 plasma etching,” Mater. Sci. Eng. B 4(1–4), 451–455 (1989).
[Crossref]

Bajpai, R. P.

A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etch models based on different plasma chemistry for micro-electro-mechanical-systems application,” Vacuum 68(2), 191–196 (2002).
[Crossref]

Baxamusa, S.

Belkacem, A.

A. Belkacem, E. André, J. C. Oberlin, C. Pomot, B. Pajot, and A. Chantre, “Electronic defects induced in silicon by SF 6 plasma etching,” Mater. Sci. Eng. B 4(1–4), 451–455 (1989).
[Crossref]

Bercegol, H.

J. Neauport, C. Ambard, H. Bercegol, O. Cahuc, J. Champreux, J. Charles, P. Cormont, N. Darbois, P. Darnis, and J. Destribats, “Optimizing fused silica polishing processes for 351nm high-power laser application,” in Boulder Damage Symposium XL Annual Symposium on Optical Materials for High Power Lasers (International Society for Optics and Photonics, 2008), pp. 71321I.
[Crossref]

Booth, J.-P.

P. Chabert, G. Cunge, J.-P. Booth, and J. Perrin, “Reactive ion etching of silicon carbide in SF6 gas: Detection of CF, CF2, and SiF2 etch products,” Appl. Phys. Lett. 79(7), 916–918 (2001).
[Crossref]

Bose, D.

D. Bose, M. Rao, T. Govindan, and M. Meyyappan, “Uncertainty and sensitivity analysis of gas-phase chemistry in a CHF3 plasma,” Plasma Sources Sci. Technol. 12(2), 225–234 (2003).
[Crossref]

Bousquet, B.

B. Da Costa Fernandes, M. Pfiffer, P. Cormont, M. Dussauze, B. Bousquet, E. Fargin, and J. Neauport, “Understanding the effect of wet etching on damage resistance of surface scratches,” Sci. Rep. 8(1), 1337 (2018).
[Crossref] [PubMed]

M. Pfiffer, P. Cormont, E. Fargin, B. Bousquet, M. Dussauze, S. Lambert, and J. Néauport, “Effects of deep wet etching in HF/HNO3 and KOH solutions on the laser damage resistance and surface quality of fused silica optics at 351 nm,” Opt. Express 25(5), 4607–4620 (2017).
[Crossref] [PubMed]

Bude, J.

Bude, J. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Buyanova, I. A.

I. A. Buyanova, A. Henry, B. Monemar, J. L. Lindstrom, and G. S. Oehrlein, “Photoluminescence of defects induced in silicon by SF6/O2 reactive-ion etching,” J. Appl. Phys. 78(5), 3348–3352 (1995).
[Crossref]

Cahuc, O.

J. Neauport, C. Ambard, H. Bercegol, O. Cahuc, J. Champreux, J. Charles, P. Cormont, N. Darbois, P. Darnis, and J. Destribats, “Optimizing fused silica polishing processes for 351nm high-power laser application,” in Boulder Damage Symposium XL Annual Symposium on Optical Materials for High Power Lasers (International Society for Optics and Photonics, 2008), pp. 71321I.
[Crossref]

Cardinaud, C.

L. Lallement, C. Gosse, C. Cardinaud, M.-C. Peignon-Fernandez, and A. Rhallabi, “Etching studies of silica glasses in SF6/Ar inductively coupled plasmas: Implications for microfluidic devices fabrication,” J. Vac. Sci. Technol. A 28(2), 277–286 (2010).
[Crossref]

Carr, C. W.

J. Bude, C. W. Carr, P. E. Miller, T. Parham, P. Whitman, M. Monticelli, R. Raman, D. Cross, B. Welday, F. Ravizza, T. Suratwala, J. Davis, M. Fischer, R. Hawley, H. Lee, M. Matthews, M. Norton, M. Nostrand, D. VanBlarcom, and S. Sommer, “Particle damage sources for fused silica optics and their mitigation on high energy laser systems,” Opt. Express 25(10), 11414–11435 (2017).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Chabert, P.

P. Chabert, G. Cunge, J.-P. Booth, and J. Perrin, “Reactive ion etching of silicon carbide in SF6 gas: Detection of CF, CF2, and SiF2 etch products,” Appl. Phys. Lett. 79(7), 916–918 (2001).
[Crossref]

Champreux, J.

J. Neauport, C. Ambard, H. Bercegol, O. Cahuc, J. Champreux, J. Charles, P. Cormont, N. Darbois, P. Darnis, and J. Destribats, “Optimizing fused silica polishing processes for 351nm high-power laser application,” in Boulder Damage Symposium XL Annual Symposium on Optical Materials for High Power Lasers (International Society for Optics and Photonics, 2008), pp. 71321I.
[Crossref]

Chantre, A.

A. Belkacem, E. André, J. C. Oberlin, C. Pomot, B. Pajot, and A. Chantre, “Electronic defects induced in silicon by SF 6 plasma etching,” Mater. Sci. Eng. B 4(1–4), 451–455 (1989).
[Crossref]

Charles, J.

J. Neauport, C. Ambard, H. Bercegol, O. Cahuc, J. Champreux, J. Charles, P. Cormont, N. Darbois, P. Darnis, and J. Destribats, “Optimizing fused silica polishing processes for 351nm high-power laser application,” in Boulder Damage Symposium XL Annual Symposium on Optical Materials for High Power Lasers (International Society for Optics and Photonics, 2008), pp. 71321I.
[Crossref]

Chen, J.

W. Wang, P. Lu, L. Han, C. Zhang, C. Yang, R. Sui, and J. Chen, “Diffusion behavior of ammonium group and its interaction mechanisms with intrinsic defects in fused silica,” Appl. Phys., A Mater. Sci. Process. 122(10), 929 (2016).
[Crossref]

Cormont, P.

B. Da Costa Fernandes, M. Pfiffer, P. Cormont, M. Dussauze, B. Bousquet, E. Fargin, and J. Neauport, “Understanding the effect of wet etching on damage resistance of surface scratches,” Sci. Rep. 8(1), 1337 (2018).
[Crossref] [PubMed]

M. Pfiffer, P. Cormont, E. Fargin, B. Bousquet, M. Dussauze, S. Lambert, and J. Néauport, “Effects of deep wet etching in HF/HNO3 and KOH solutions on the laser damage resistance and surface quality of fused silica optics at 351 nm,” Opt. Express 25(5), 4607–4620 (2017).
[Crossref] [PubMed]

J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
[Crossref] [PubMed]

J. Neauport, C. Ambard, H. Bercegol, O. Cahuc, J. Champreux, J. Charles, P. Cormont, N. Darbois, P. Darnis, and J. Destribats, “Optimizing fused silica polishing processes for 351nm high-power laser application,” in Boulder Damage Symposium XL Annual Symposium on Optical Materials for High Power Lasers (International Society for Optics and Photonics, 2008), pp. 71321I.
[Crossref]

Cross, D.

Cunge, G.

P. Chabert, G. Cunge, J.-P. Booth, and J. Perrin, “Reactive ion etching of silicon carbide in SF6 gas: Detection of CF, CF2, and SiF2 etch products,” Appl. Phys. Lett. 79(7), 916–918 (2001).
[Crossref]

Da Costa Fernandes, B.

B. Da Costa Fernandes, M. Pfiffer, P. Cormont, M. Dussauze, B. Bousquet, E. Fargin, and J. Neauport, “Understanding the effect of wet etching on damage resistance of surface scratches,” Sci. Rep. 8(1), 1337 (2018).
[Crossref] [PubMed]

Dai, Y.

Darbois, N.

J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
[Crossref] [PubMed]

J. Neauport, C. Ambard, H. Bercegol, O. Cahuc, J. Champreux, J. Charles, P. Cormont, N. Darbois, P. Darnis, and J. Destribats, “Optimizing fused silica polishing processes for 351nm high-power laser application,” in Boulder Damage Symposium XL Annual Symposium on Optical Materials for High Power Lasers (International Society for Optics and Photonics, 2008), pp. 71321I.
[Crossref]

Darnis, P.

J. Neauport, C. Ambard, H. Bercegol, O. Cahuc, J. Champreux, J. Charles, P. Cormont, N. Darbois, P. Darnis, and J. Destribats, “Optimizing fused silica polishing processes for 351nm high-power laser application,” in Boulder Damage Symposium XL Annual Symposium on Optical Materials for High Power Lasers (International Society for Optics and Photonics, 2008), pp. 71321I.
[Crossref]

Davis, J.

Destribats, J.

J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
[Crossref] [PubMed]

J. Neauport, C. Ambard, H. Bercegol, O. Cahuc, J. Champreux, J. Charles, P. Cormont, N. Darbois, P. Darnis, and J. Destribats, “Optimizing fused silica polishing processes for 351nm high-power laser application,” in Boulder Damage Symposium XL Annual Symposium on Optical Materials for High Power Lasers (International Society for Optics and Photonics, 2008), pp. 71321I.
[Crossref]

Dimri, A. K.

A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etch models based on different plasma chemistry for micro-electro-mechanical-systems application,” Vacuum 68(2), 191–196 (2002).
[Crossref]

Dussauze, M.

B. Da Costa Fernandes, M. Pfiffer, P. Cormont, M. Dussauze, B. Bousquet, E. Fargin, and J. Neauport, “Understanding the effect of wet etching on damage resistance of surface scratches,” Sci. Rep. 8(1), 1337 (2018).
[Crossref] [PubMed]

M. Pfiffer, P. Cormont, E. Fargin, B. Bousquet, M. Dussauze, S. Lambert, and J. Néauport, “Effects of deep wet etching in HF/HNO3 and KOH solutions on the laser damage resistance and surface quality of fused silica optics at 351 nm,” Opt. Express 25(5), 4607–4620 (2017).
[Crossref] [PubMed]

Fargin, E.

B. Da Costa Fernandes, M. Pfiffer, P. Cormont, M. Dussauze, B. Bousquet, E. Fargin, and J. Neauport, “Understanding the effect of wet etching on damage resistance of surface scratches,” Sci. Rep. 8(1), 1337 (2018).
[Crossref] [PubMed]

M. Pfiffer, P. Cormont, E. Fargin, B. Bousquet, M. Dussauze, S. Lambert, and J. Néauport, “Effects of deep wet etching in HF/HNO3 and KOH solutions on the laser damage resistance and surface quality of fused silica optics at 351 nm,” Opt. Express 25(5), 4607–4620 (2017).
[Crossref] [PubMed]

Feit, M.

L. Wong, T. Suratwala, M. Feit, P. Miller, and R. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
[Crossref]

Feit, M. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Fischer, M.

Fonash, S. J.

S. J. Fonash, “An Overview of Dry Etching Damage and Contamination Effects,” J. Electrochem. Soc. 137(12), 3885–3892 (1990).
[Crossref]

Geng, F.

X. Ye, J. Huang, H. Liu, F. Geng, L. Sun, X. Jiang, W. Wu, L. Qiao, X. Zu, and W. Zheng, “Advanced mitigation process (AMP) for improving laser damage threshold of fused silica optics,” Sci. Rep. 6(1), 31111 (2016).
[Crossref] [PubMed]

Gosse, C.

L. Lallement, C. Gosse, C. Cardinaud, M.-C. Peignon-Fernandez, and A. Rhallabi, “Etching studies of silica glasses in SF6/Ar inductively coupled plasmas: Implications for microfluidic devices fabrication,” J. Vac. Sci. Technol. A 28(2), 277–286 (2010).
[Crossref]

Govindan, T.

D. Bose, M. Rao, T. Govindan, and M. Meyyappan, “Uncertainty and sensitivity analysis of gas-phase chemistry in a CHF3 plasma,” Plasma Sources Sci. Technol. 12(2), 225–234 (2003).
[Crossref]

Han, L.

W. Wang, P. Lu, L. Han, C. Zhang, C. Yang, R. Sui, and J. Chen, “Diffusion behavior of ammonium group and its interaction mechanisms with intrinsic defects in fused silica,” Appl. Phys., A Mater. Sci. Process. 122(10), 929 (2016).
[Crossref]

Hawley, R.

Henry, A.

I. A. Buyanova, A. Henry, B. Monemar, J. L. Lindstrom, and G. S. Oehrlein, “Photoluminescence of defects induced in silicon by SF6/O2 reactive-ion etching,” J. Appl. Phys. 78(5), 3348–3352 (1995).
[Crossref]

Huang, J.

Jiang, X.

Lallement, L.

L. Lallement, C. Gosse, C. Cardinaud, M.-C. Peignon-Fernandez, and A. Rhallabi, “Etching studies of silica glasses in SF6/Ar inductively coupled plasmas: Implications for microfluidic devices fabrication,” J. Vac. Sci. Technol. A 28(2), 277–286 (2010).
[Crossref]

Lambert, S.

Laurence, T. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Lee, H.

Li, Q.

Lindstrom, J. L.

I. A. Buyanova, A. Henry, B. Monemar, J. L. Lindstrom, and G. S. Oehrlein, “Photoluminescence of defects induced in silicon by SF6/O2 reactive-ion etching,” J. Appl. Phys. 78(5), 3348–3352 (1995).
[Crossref]

Lion, C.

J. L. Miquel, C. Lion, and P. Vivini, “The Laser Mega-Joule: LMJ & PETAL status and program overview,” J. Phys. Conf. Ser. 688, 012067 (2016).
[Crossref]

Liu, H.

Lu, P.

W. Wang, P. Lu, L. Han, C. Zhang, C. Yang, R. Sui, and J. Chen, “Diffusion behavior of ammonium group and its interaction mechanisms with intrinsic defects in fused silica,” Appl. Phys., A Mater. Sci. Process. 122(10), 929 (2016).
[Crossref]

Luitot, C.

Matthews, M.

Meyyappan, M.

D. Bose, M. Rao, T. Govindan, and M. Meyyappan, “Uncertainty and sensitivity analysis of gas-phase chemistry in a CHF3 plasma,” Plasma Sources Sci. Technol. 12(2), 225–234 (2003).
[Crossref]

Miller, P.

L. Wong, T. Suratwala, M. Feit, P. Miller, and R. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
[Crossref]

Miller, P. E.

Miquel, J. L.

J. L. Miquel, C. Lion, and P. Vivini, “The Laser Mega-Joule: LMJ & PETAL status and program overview,” J. Phys. Conf. Ser. 688, 012067 (2016).
[Crossref]

Monemar, B.

I. A. Buyanova, A. Henry, B. Monemar, J. L. Lindstrom, and G. S. Oehrlein, “Photoluminescence of defects induced in silicon by SF6/O2 reactive-ion etching,” J. Appl. Phys. 78(5), 3348–3352 (1995).
[Crossref]

Monticelli, M.

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Moses, E. I.

E. I. Moses, “Ignition on the National Ignition Facility: a path towards inertial fusion energy,” Nucl. Fusion 49(10), 104022 (2009).
[Crossref]

Neauport, J.

B. Da Costa Fernandes, M. Pfiffer, P. Cormont, M. Dussauze, B. Bousquet, E. Fargin, and J. Neauport, “Understanding the effect of wet etching on damage resistance of surface scratches,” Sci. Rep. 8(1), 1337 (2018).
[Crossref] [PubMed]

J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
[Crossref] [PubMed]

J. Neauport, C. Ambard, H. Bercegol, O. Cahuc, J. Champreux, J. Charles, P. Cormont, N. Darbois, P. Darnis, and J. Destribats, “Optimizing fused silica polishing processes for 351nm high-power laser application,” in Boulder Damage Symposium XL Annual Symposium on Optical Materials for High Power Lasers (International Society for Optics and Photonics, 2008), pp. 71321I.
[Crossref]

Néauport, J.

Norton, M.

Norton, M. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Nostrand, M.

Oberlin, J. C.

A. Belkacem, E. André, J. C. Oberlin, C. Pomot, B. Pajot, and A. Chantre, “Electronic defects induced in silicon by SF 6 plasma etching,” Mater. Sci. Eng. B 4(1–4), 451–455 (1989).
[Crossref]

Oehrlein, G. S.

I. A. Buyanova, A. Henry, B. Monemar, J. L. Lindstrom, and G. S. Oehrlein, “Photoluminescence of defects induced in silicon by SF6/O2 reactive-ion etching,” J. Appl. Phys. 78(5), 3348–3352 (1995).
[Crossref]

Pajot, B.

A. Belkacem, E. André, J. C. Oberlin, C. Pomot, B. Pajot, and A. Chantre, “Electronic defects induced in silicon by SF 6 plasma etching,” Mater. Sci. Eng. B 4(1–4), 451–455 (1989).
[Crossref]

Parham, T.

Paul, A. K.

A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etch models based on different plasma chemistry for micro-electro-mechanical-systems application,” Vacuum 68(2), 191–196 (2002).
[Crossref]

Peignon-Fernandez, M.-C.

L. Lallement, C. Gosse, C. Cardinaud, M.-C. Peignon-Fernandez, and A. Rhallabi, “Etching studies of silica glasses in SF6/Ar inductively coupled plasmas: Implications for microfluidic devices fabrication,” J. Vac. Sci. Technol. A 28(2), 277–286 (2010).
[Crossref]

Peng, X.

Perrin, J.

P. Chabert, G. Cunge, J.-P. Booth, and J. Perrin, “Reactive ion etching of silicon carbide in SF6 gas: Detection of CF, CF2, and SiF2 etch products,” Appl. Phys. Lett. 79(7), 916–918 (2001).
[Crossref]

Pfiffer, M.

B. Da Costa Fernandes, M. Pfiffer, P. Cormont, M. Dussauze, B. Bousquet, E. Fargin, and J. Neauport, “Understanding the effect of wet etching on damage resistance of surface scratches,” Sci. Rep. 8(1), 1337 (2018).
[Crossref] [PubMed]

M. Pfiffer, P. Cormont, E. Fargin, B. Bousquet, M. Dussauze, S. Lambert, and J. Néauport, “Effects of deep wet etching in HF/HNO3 and KOH solutions on the laser damage resistance and surface quality of fused silica optics at 351 nm,” Opt. Express 25(5), 4607–4620 (2017).
[Crossref] [PubMed]

Pomot, C.

A. Belkacem, E. André, J. C. Oberlin, C. Pomot, B. Pajot, and A. Chantre, “Electronic defects induced in silicon by SF 6 plasma etching,” Mater. Sci. Eng. B 4(1–4), 451–455 (1989).
[Crossref]

Qiao, L.

X. Ye, J. Huang, H. Liu, F. Geng, L. Sun, X. Jiang, W. Wu, L. Qiao, X. Zu, and W. Zheng, “Advanced mitigation process (AMP) for improving laser damage threshold of fused silica optics,” Sci. Rep. 6(1), 31111 (2016).
[Crossref] [PubMed]

Raman, R.

Rao, M.

D. Bose, M. Rao, T. Govindan, and M. Meyyappan, “Uncertainty and sensitivity analysis of gas-phase chemistry in a CHF3 plasma,” Plasma Sources Sci. Technol. 12(2), 225–234 (2003).
[Crossref]

Ravizza, F.

Rhallabi, A.

L. Lallement, C. Gosse, C. Cardinaud, M.-C. Peignon-Fernandez, and A. Rhallabi, “Etching studies of silica glasses in SF6/Ar inductively coupled plasmas: Implications for microfluidic devices fabrication,” J. Vac. Sci. Technol. A 28(2), 277–286 (2010).
[Crossref]

Rondeau, O.

Shao, T.

Shen, N.

S. Baxamusa, P. E. Miller, L. Wong, R. Steele, N. Shen, and J. Bude, “Mitigation of organic laser damage precursors from chemical processing of fused silica,” Opt. Express 22(24), 29568–29577 (2014).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Shi, F.

Sommer, S.

Steele, R.

S. Baxamusa, P. E. Miller, L. Wong, R. Steele, N. Shen, and J. Bude, “Mitigation of organic laser damage precursors from chemical processing of fused silica,” Opt. Express 22(24), 29568–29577 (2014).
[Crossref] [PubMed]

L. Wong, T. Suratwala, M. Feit, P. Miller, and R. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
[Crossref]

Steele, W. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Sui, R.

W. Wang, P. Lu, L. Han, C. Zhang, C. Yang, R. Sui, and J. Chen, “Diffusion behavior of ammonium group and its interaction mechanisms with intrinsic defects in fused silica,” Appl. Phys., A Mater. Sci. Process. 122(10), 929 (2016).
[Crossref]

Sui, T.

Sun, L.

Suratwala, T.

Suratwala, T. I.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Tian, Y.

VanBlarcom, D.

Vivini, P.

J. L. Miquel, C. Lion, and P. Vivini, “The Laser Mega-Joule: LMJ & PETAL status and program overview,” J. Phys. Conf. Ser. 688, 012067 (2016).
[Crossref]

Wang, W.

W. Wang, P. Lu, L. Han, C. Zhang, C. Yang, R. Sui, and J. Chen, “Diffusion behavior of ammonium group and its interaction mechanisms with intrinsic defects in fused silica,” Appl. Phys., A Mater. Sci. Process. 122(10), 929 (2016).
[Crossref]

Welday, B.

Whitman, P.

Wong, L.

S. Baxamusa, P. E. Miller, L. Wong, R. Steele, N. Shen, and J. Bude, “Mitigation of organic laser damage precursors from chemical processing of fused silica,” Opt. Express 22(24), 29568–29577 (2014).
[Crossref] [PubMed]

L. Wong, T. Suratwala, M. Feit, P. Miller, and R. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
[Crossref]

Wong, L. L.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Wu, J.

Wu, W.

Xia, H.

Xu, M.

Yang, C.

W. Wang, P. Lu, L. Han, C. Zhang, C. Yang, R. Sui, and J. Chen, “Diffusion behavior of ammonium group and its interaction mechanisms with intrinsic defects in fused silica,” Appl. Phys., A Mater. Sci. Process. 122(10), 929 (2016).
[Crossref]

Yang, L.

Ye, X.

Zhang, C.

W. Wang, P. Lu, L. Han, C. Zhang, C. Yang, R. Sui, and J. Chen, “Diffusion behavior of ammonium group and its interaction mechanisms with intrinsic defects in fused silica,” Appl. Phys., A Mater. Sci. Process. 122(10), 929 (2016).
[Crossref]

Zheng, W.

Zhong, Y.

Zu, X.

X. Ye, J. Huang, H. Liu, F. Geng, L. Sun, X. Jiang, W. Wu, L. Qiao, X. Zu, and W. Zheng, “Advanced mitigation process (AMP) for improving laser damage threshold of fused silica optics,” Sci. Rep. 6(1), 31111 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Chabert, G. Cunge, J.-P. Booth, and J. Perrin, “Reactive ion etching of silicon carbide in SF6 gas: Detection of CF, CF2, and SiF2 etch products,” Appl. Phys. Lett. 79(7), 916–918 (2001).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

W. Wang, P. Lu, L. Han, C. Zhang, C. Yang, R. Sui, and J. Chen, “Diffusion behavior of ammonium group and its interaction mechanisms with intrinsic defects in fused silica,” Appl. Phys., A Mater. Sci. Process. 122(10), 929 (2016).
[Crossref]

J. Am. Ceram. Soc. (1)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

J. Appl. Phys. (1)

I. A. Buyanova, A. Henry, B. Monemar, J. L. Lindstrom, and G. S. Oehrlein, “Photoluminescence of defects induced in silicon by SF6/O2 reactive-ion etching,” J. Appl. Phys. 78(5), 3348–3352 (1995).
[Crossref]

J. Electrochem. Soc. (1)

S. J. Fonash, “An Overview of Dry Etching Damage and Contamination Effects,” J. Electrochem. Soc. 137(12), 3885–3892 (1990).
[Crossref]

J. Non-Cryst. Solids (1)

L. Wong, T. Suratwala, M. Feit, P. Miller, and R. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
[Crossref]

J. Phys. Conf. Ser. (1)

J. L. Miquel, C. Lion, and P. Vivini, “The Laser Mega-Joule: LMJ & PETAL status and program overview,” J. Phys. Conf. Ser. 688, 012067 (2016).
[Crossref]

J. Vac. Sci. Technol. A (1)

L. Lallement, C. Gosse, C. Cardinaud, M.-C. Peignon-Fernandez, and A. Rhallabi, “Etching studies of silica glasses in SF6/Ar inductively coupled plasmas: Implications for microfluidic devices fabrication,” J. Vac. Sci. Technol. A 28(2), 277–286 (2010).
[Crossref]

Mater. Sci. Eng. B (1)

A. Belkacem, E. André, J. C. Oberlin, C. Pomot, B. Pajot, and A. Chantre, “Electronic defects induced in silicon by SF 6 plasma etching,” Mater. Sci. Eng. B 4(1–4), 451–455 (1989).
[Crossref]

Nucl. Fusion (1)

E. I. Moses, “Ignition on the National Ignition Facility: a path towards inertial fusion energy,” Nucl. Fusion 49(10), 104022 (2009).
[Crossref]

Opt. Express (7)

S. Baxamusa, P. E. Miller, L. Wong, R. Steele, N. Shen, and J. Bude, “Mitigation of organic laser damage precursors from chemical processing of fused silica,” Opt. Express 22(24), 29568–29577 (2014).
[Crossref] [PubMed]

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

F. Shi, Y. Zhong, Y. Dai, X. Peng, M. Xu, and T. Sui, “Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica,” Opt. Express 24(18), 20842–20854 (2016).
[Crossref] [PubMed]

J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
[Crossref] [PubMed]

M. Pfiffer, P. Cormont, E. Fargin, B. Bousquet, M. Dussauze, S. Lambert, and J. Néauport, “Effects of deep wet etching in HF/HNO3 and KOH solutions on the laser damage resistance and surface quality of fused silica optics at 351 nm,” Opt. Express 25(5), 4607–4620 (2017).
[Crossref] [PubMed]

J. Bude, C. W. Carr, P. E. Miller, T. Parham, P. Whitman, M. Monticelli, R. Raman, D. Cross, B. Welday, F. Ravizza, T. Suratwala, J. Davis, M. Fischer, R. Hawley, H. Lee, M. Matthews, M. Norton, M. Nostrand, D. VanBlarcom, and S. Sommer, “Particle damage sources for fused silica optics and their mitigation on high energy laser systems,” Opt. Express 25(10), 11414–11435 (2017).
[Crossref] [PubMed]

L. Sun, J. Huang, T. Shao, X. Ye, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Effects of combined process of reactive ion etching and dynamic chemical etching on UV laser damage resistance and surface quality of fused silica optics,” Opt. Express 26(14), 18006–18018 (2018).
[Crossref] [PubMed]

Opt. Lett. (1)

Plasma Sources Sci. Technol. (1)

D. Bose, M. Rao, T. Govindan, and M. Meyyappan, “Uncertainty and sensitivity analysis of gas-phase chemistry in a CHF3 plasma,” Plasma Sources Sci. Technol. 12(2), 225–234 (2003).
[Crossref]

Sci. Rep. (2)

X. Ye, J. Huang, H. Liu, F. Geng, L. Sun, X. Jiang, W. Wu, L. Qiao, X. Zu, and W. Zheng, “Advanced mitigation process (AMP) for improving laser damage threshold of fused silica optics,” Sci. Rep. 6(1), 31111 (2016).
[Crossref] [PubMed]

B. Da Costa Fernandes, M. Pfiffer, P. Cormont, M. Dussauze, B. Bousquet, E. Fargin, and J. Neauport, “Understanding the effect of wet etching on damage resistance of surface scratches,” Sci. Rep. 8(1), 1337 (2018).
[Crossref] [PubMed]

Vacuum (1)

A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etch models based on different plasma chemistry for micro-electro-mechanical-systems application,” Vacuum 68(2), 191–196 (2002).
[Crossref]

Other (2)

J. Neauport, C. Ambard, H. Bercegol, O. Cahuc, J. Champreux, J. Charles, P. Cormont, N. Darbois, P. Darnis, and J. Destribats, “Optimizing fused silica polishing processes for 351nm high-power laser application,” in Boulder Damage Symposium XL Annual Symposium on Optical Materials for High Power Lasers (International Society for Optics and Photonics, 2008), pp. 71321I.
[Crossref]

R. Salh, “Defect related luminescence in silicon dioxide network: a review” in Crystalline Silicon – Properties and uses, (INTECH Open Access Publisher, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic of the experimental setup of RIE; (b) RIE rates for different protocols.
Fig. 2
Fig. 2 Preparation flow diagram of the fused silica samples.
Fig. 3
Fig. 3 FL images for the unetched and etched samples (1 μm removal) treated with different gas flow rates. (a) Unetched sample, (b) Etched sample with a mixed gas flow of Q (Ar):Q (CHF3):Q (SF6) = 1:14:2, (c) Etched sample with a mixed gas flow of Q (Ar):Q (CHF3) = 1:14, (d) Etched sample with a mixed gas flow of Q (Ar):Q (CHF3) = 10:5. Each image is a 9 mm × 9 mm square stitched by 255 sub-images (15 × 15) with the side length of 0.6 mm.
Fig. 4
Fig. 4 SC images for the unetched and etched samples (1 μm removal) treated with different gas flow rates. (a) Unetched sample, (b) Etched sample with a mixed gas flow of Q (Ar):Q (CHF3):Q (SF6) = 1:14:2, (c) Etched sample with a mixed gas flow of Q (Ar):Q (CHF3) = 1:14, (d) Etched sample with a mixed gas flow of Q (Ar):Q (CHF3) = 10:5. The measured areas are the same to those shown in Fig. 3.
Fig. 5
Fig. 5 (a) Comparison of the FL spectra under 230 nm (5.4 eV) excitation for the unetched and etched samples. The dot line presents the three Gaussian components of the spectrum deconvolution for the unetched sample; (b)-(d) Spectrum deconvolution for the etched samples.
Fig. 6
Fig. 6 Damage initiation probability versus laser fluence at 355 nm, 7 ns for the samples treated with different combined-etching processes. The quality factor (the peak energy/ the average energy) of the laser beam spot was around 2.6 and the beam diameter was about 1.2 mm in the test.
Fig. 7
Fig. 7 Surface morphologies of the samples treated with different combined-etching processes. (a) Damage region of the unetched sample, (b) Damage region of the etched sample with 1-μm RIE (Protocol B) pretreatment followed by 3-μm DCE retreatment, (c) Edge region of the etched sample with 1-μm RIE (Protocol C) pretreatment followed by 3-μm DCE retreatment, (d) Edge region of the etched sample with 1-μm RIE (Protocol D) pretreatment followed by 3-μm DCE retreatment.
Fig. 8
Fig. 8 Surface morphologies of the samples treated with different combined-etching processes via white-light interferometer. (a) Unetched sample, (b) Etched sample with 1-μm RIE (Protocol B) pretreatment followed by 3-μm DCE retreatment, (c) Etched sample with 1-μm RIE (Protocol C) pretreatment followed by 3-μm DCE retreatment, (d) Etched sample with 1-μm RIE (Protocol D) pretreatment followed by 3-μm DCE retreatment. The surface roughness (RMS) is also given in the figures.
Fig. 9
Fig. 9 Surface errors of the unetched samples and combined etched (1-μm RIE + 3-μm DCE) samples with different RIE protocols.
Fig. 10
Fig. 10 Comparison of the FL spectra under 5.4 eV excitation for the unetched and combined-etched samples. All the parameters used for the spectra detecting here were completely the same as those in Fig. 5.

Tables (1)

Tables Icon

Table 1 Gaussian band parameters of FL spectra for the unetched sample A: peak position, energy, FWHM, and intensity at each position.

Metrics