Abstract

In this paper, we propose a reconfigurable metasurface based on liquid metal for flexible beam-steering. The Gallium alloy with low melting temperature (about 30°C) is employed for easy structure reconfiguration. By designing specific dimension of cavity, we make the liquid metal in it easily form into desired sizes, to generate distinct phase responses. Two metasurface elements with four phase responses are designed, simulated and measured. Based on the above elements, various scattering fields can be realized within our design. We present four schemes to achieve single- and dual-beam fields with different beam-deflecting angles. The measured results show great agreement with the simulations, validating our design. In addition, every two columns of the metasurface are grouped into a single composite form, which promises a customizable combination for metasurface pattern. Compared to the previous reconfigurable works for metasurfaces, the method via liquid metal possess lower cost, easier fabrication, and will further enrich the manipulation method for metasurfaces.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Flexible liquid metal-filled metamaterial absorber on polydimethylsiloxane (PDMS)

Kenyu Ling, Kyeoungseob Kim, and Sungjoon Lim
Opt. Express 23(16) 21375-21383 (2015)

Highly efficient beam steering with a transparent metasurface

Zeyong Wei, Yang Cao, Xiaopeng Su, Zhijie Gong, Yang Long, and Hongqiang Li
Opt. Express 21(9) 10739-10745 (2013)

Gate tunable graphene-integrated metasurface modulator for mid-infrared beam steering

C. Shi, I. J. Luxmoore, and G. R. Nash
Opt. Express 27(10) 14577-14584 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
    [Crossref] [PubMed]
  2. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  4. Q. Ma, Z. L. Mei, S. K. Zhu, T. Y. Jin, and T. J. Cui, “Experiments on active cloaking and illusion for Laplace equation,” Phys. Rev. Lett. 111(17), 173901 (2013).
    [Crossref] [PubMed]
  5. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  6. L. Chen, H. L. Ma, and H. Y. Cui, “Wavefront manipulation based on mechanically reconfigurable coding metasurface,” J. Appl. Phys. 124(4), 043101 (2018).
    [Crossref]
  7. Y. Li, X. Li, L. W. Chen, M. B. Pu, J. J. Jin, M. H. Hong, and X. G. Luo, “Orbital angular momentum multiplexing and demultiplexing by a single metasurface,” Adv. Opt. Mater. 5(2), 1600502 (2017).
    [Crossref]
  8. L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
    [Crossref] [PubMed]
  9. Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
    [Crossref]
  10. L. Chen, H. L. Ma, Y. Ruan, and H. Y. Cui, “Dual-manipulation on wave-front based on reconfigurable water-based metasurface integrated with PIN diodes,” J. Appl. Phys. 125(2), 023107 (2019).
    [Crossref]
  11. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
    [Crossref]
  12. M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
    [Crossref]
  13. L. Chen, H. L. Ma, X. J. Song, Y. Ruan, and H. Y. Cui, “Dual-functional tunable coding metasurface based on saline water substrate,” Sci. Rep. 8(1), 2070 (2018).
    [Crossref] [PubMed]
  14. S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
    [Crossref]
  15. S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
    [Crossref]
  16. L. Chen, Q. Ma, H. B. Jing, H. Y. Cui, Y. Liu, and T. J. Cui, “Space-energy digital-coding metasurface based on an active amplifier,” Phys. Rev. Appl. 11(5), 054051 (2019).
    [Crossref]
  17. J. A. Rogers, R. Ghaffari, and D. H. Kim, Stretchable Bioelectronics for Medical Devices and Systems (Springer, 2016).
  18. C. Bonchi, F. Imperi, F. Minandri, P. Visca, and E. Frangipani, “Repurposing of gallium-based drugs for antibacterial therapy,” Biofactors 40(3), 303–312 (2014).
    [Crossref] [PubMed]
  19. J. Wang, S. Liu, Z. V. Vardeny, and A. Nahata, “Liquid metal-based plasmonics,” Opt. Express 20(3), 2346–2353 (2012).
    [Crossref] [PubMed]
  20. J. Wang, S. Liu, and A. Nahata, “Reconfigurable plasmonic devices using liquid metals,” Opt. Express 20(11), 12119–12126 (2012).
    [Crossref] [PubMed]
  21. H. K. Kim, D. Lee, and S. Lim, “Wideband-switchable metamaterial absorber using injected liquid metal,” Sci. Rep. 6(1), 31823 (2016).
    [Crossref] [PubMed]
  22. K. Ling, H. K. Kim, M. Yoo, and S. Lim, “Frequency-switchable metamaterial absorber injecting eutectic gallium-indium (EGaIn) liquid metal alloy,” Sensors (Basel) 15(11), 28154–28165 (2015).
    [Crossref] [PubMed]
  23. K. Ling, K. Kim, and S. Lim, “Flexible liquid metal-filled metamaterial absorber on polydimethylsiloxane (PDMS),” Opt. Express 23(16), 21375–21383 (2015).
    [Crossref] [PubMed]
  24. J. Wang, S. Liu, A. Nahata, S. Guruswamy, and A. Nahata, “Reconfigurable liquid metal based terahertz metamaterials via selective erasure and refilling to the unit cell level,” Appl. Phys. Lett. 103(22), 221116 (2013).
    [Crossref]
  25. T. S. Kasirga, Y. N. Ertas, and M. Bayindir, “Microfluidics for reconfigurable electromagnetic metamaterials,” Appl. Phys. Lett. 95(21), 214102 (2009).
    [Crossref]
  26. P. Liu, S. Yang, J. Aditya, Q. Wang, H. Jiang, J. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
    [Crossref]
  27. S. Yang, P. Liu, M. Yang, Q. Wang, J. Song, and L. Dong, “From flexible and stretchable meta-atom to metamaterial: a wearable microwave meta-skin with tunable frequency selective and cloaking effects,” Sci. Rep. 6(1), 21921 (2016).
    [Crossref] [PubMed]
  28. D. Kim, R. G. Pierce, R. Henderson, S. J. Doo, K. Yoo, and J. B. Lee, “Liquid metal actuation-based reversible frequency tunable monopole antenna,” Appl. Phys. Lett. 105(23), 234104 (2014).
    [Crossref]
  29. S. Eom, M. U. Memon, and S. Lim, “Frequency-switchable microfluidic CSRR-Loaded QMSIW band-pass filter using a liquid metal alloy,” Sensors (Basel) 17(4), 699 (2017).
    [Crossref] [PubMed]
  30. M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, “Eutectic Gallium‐Indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature,” Adv. Funct. Mater. 18(7), 1097–1104 (2008).
    [Crossref]
  31. X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
    [Crossref]

2019 (2)

L. Chen, H. L. Ma, Y. Ruan, and H. Y. Cui, “Dual-manipulation on wave-front based on reconfigurable water-based metasurface integrated with PIN diodes,” J. Appl. Phys. 125(2), 023107 (2019).
[Crossref]

L. Chen, Q. Ma, H. B. Jing, H. Y. Cui, Y. Liu, and T. J. Cui, “Space-energy digital-coding metasurface based on an active amplifier,” Phys. Rev. Appl. 11(5), 054051 (2019).
[Crossref]

2018 (2)

L. Chen, H. L. Ma, X. J. Song, Y. Ruan, and H. Y. Cui, “Dual-functional tunable coding metasurface based on saline water substrate,” Sci. Rep. 8(1), 2070 (2018).
[Crossref] [PubMed]

L. Chen, H. L. Ma, and H. Y. Cui, “Wavefront manipulation based on mechanically reconfigurable coding metasurface,” J. Appl. Phys. 124(4), 043101 (2018).
[Crossref]

2017 (4)

Y. Li, X. Li, L. W. Chen, M. B. Pu, J. J. Jin, M. H. Hong, and X. G. Luo, “Orbital angular momentum multiplexing and demultiplexing by a single metasurface,” Adv. Opt. Mater. 5(2), 1600502 (2017).
[Crossref]

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

S. Eom, M. U. Memon, and S. Lim, “Frequency-switchable microfluidic CSRR-Loaded QMSIW band-pass filter using a liquid metal alloy,” Sensors (Basel) 17(4), 699 (2017).
[Crossref] [PubMed]

2016 (4)

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]

S. Yang, P. Liu, M. Yang, Q. Wang, J. Song, and L. Dong, “From flexible and stretchable meta-atom to metamaterial: a wearable microwave meta-skin with tunable frequency selective and cloaking effects,” Sci. Rep. 6(1), 21921 (2016).
[Crossref] [PubMed]

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

H. K. Kim, D. Lee, and S. Lim, “Wideband-switchable metamaterial absorber using injected liquid metal,” Sci. Rep. 6(1), 31823 (2016).
[Crossref] [PubMed]

2015 (4)

K. Ling, H. K. Kim, M. Yoo, and S. Lim, “Frequency-switchable metamaterial absorber injecting eutectic gallium-indium (EGaIn) liquid metal alloy,” Sensors (Basel) 15(11), 28154–28165 (2015).
[Crossref] [PubMed]

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

P. Liu, S. Yang, J. Aditya, Q. Wang, H. Jiang, J. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

K. Ling, K. Kim, and S. Lim, “Flexible liquid metal-filled metamaterial absorber on polydimethylsiloxane (PDMS),” Opt. Express 23(16), 21375–21383 (2015).
[Crossref] [PubMed]

2014 (4)

D. Kim, R. G. Pierce, R. Henderson, S. J. Doo, K. Yoo, and J. B. Lee, “Liquid metal actuation-based reversible frequency tunable monopole antenna,” Appl. Phys. Lett. 105(23), 234104 (2014).
[Crossref]

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

C. Bonchi, F. Imperi, F. Minandri, P. Visca, and E. Frangipani, “Repurposing of gallium-based drugs for antibacterial therapy,” Biofactors 40(3), 303–312 (2014).
[Crossref] [PubMed]

2013 (2)

J. Wang, S. Liu, A. Nahata, S. Guruswamy, and A. Nahata, “Reconfigurable liquid metal based terahertz metamaterials via selective erasure and refilling to the unit cell level,” Appl. Phys. Lett. 103(22), 221116 (2013).
[Crossref]

Q. Ma, Z. L. Mei, S. K. Zhu, T. Y. Jin, and T. J. Cui, “Experiments on active cloaking and illusion for Laplace equation,” Phys. Rev. Lett. 111(17), 173901 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2009 (1)

T. S. Kasirga, Y. N. Ertas, and M. Bayindir, “Microfluidics for reconfigurable electromagnetic metamaterials,” Appl. Phys. Lett. 95(21), 214102 (2009).
[Crossref]

2008 (1)

M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, “Eutectic Gallium‐Indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature,” Adv. Funct. Mater. 18(7), 1097–1104 (2008).
[Crossref]

2005 (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Aditya, J.

P. Liu, S. Yang, J. Aditya, Q. Wang, H. Jiang, J. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Andryieuski, A.

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]

Bai, G. D.

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

Bayindir, M.

T. S. Kasirga, Y. N. Ertas, and M. Bayindir, “Microfluidics for reconfigurable electromagnetic metamaterials,” Appl. Phys. Lett. 95(21), 214102 (2009).
[Crossref]

Belov, P.

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]

Bhaskaran, M.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Bo Li, Y.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Bonchi, C.

C. Bonchi, F. Imperi, F. Minandri, P. Visca, and E. Frangipani, “Repurposing of gallium-based drugs for antibacterial therapy,” Biofactors 40(3), 303–312 (2014).
[Crossref] [PubMed]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Chen, L.

L. Chen, H. L. Ma, Y. Ruan, and H. Y. Cui, “Dual-manipulation on wave-front based on reconfigurable water-based metasurface integrated with PIN diodes,” J. Appl. Phys. 125(2), 023107 (2019).
[Crossref]

L. Chen, Q. Ma, H. B. Jing, H. Y. Cui, Y. Liu, and T. J. Cui, “Space-energy digital-coding metasurface based on an active amplifier,” Phys. Rev. Appl. 11(5), 054051 (2019).
[Crossref]

L. Chen, H. L. Ma, X. J. Song, Y. Ruan, and H. Y. Cui, “Dual-functional tunable coding metasurface based on saline water substrate,” Sci. Rep. 8(1), 2070 (2018).
[Crossref] [PubMed]

L. Chen, H. L. Ma, and H. Y. Cui, “Wavefront manipulation based on mechanically reconfigurable coding metasurface,” J. Appl. Phys. 124(4), 043101 (2018).
[Crossref]

Chen, L. W.

Y. Li, X. Li, L. W. Chen, M. B. Pu, J. J. Jin, M. H. Hong, and X. G. Luo, “Orbital angular momentum multiplexing and demultiplexing by a single metasurface,” Adv. Opt. Mater. 5(2), 1600502 (2017).
[Crossref]

Chen, Q.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Chen, T. Y.

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

Cheng, Q.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Chiechi, R. C.

M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, “Eutectic Gallium‐Indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature,” Adv. Funct. Mater. 18(7), 1097–1104 (2008).
[Crossref]

Chowdhury, D. R.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Cui, H. Y.

L. Chen, Q. Ma, H. B. Jing, H. Y. Cui, Y. Liu, and T. J. Cui, “Space-energy digital-coding metasurface based on an active amplifier,” Phys. Rev. Appl. 11(5), 054051 (2019).
[Crossref]

L. Chen, H. L. Ma, Y. Ruan, and H. Y. Cui, “Dual-manipulation on wave-front based on reconfigurable water-based metasurface integrated with PIN diodes,” J. Appl. Phys. 125(2), 023107 (2019).
[Crossref]

L. Chen, H. L. Ma, X. J. Song, Y. Ruan, and H. Y. Cui, “Dual-functional tunable coding metasurface based on saline water substrate,” Sci. Rep. 8(1), 2070 (2018).
[Crossref] [PubMed]

L. Chen, H. L. Ma, and H. Y. Cui, “Wavefront manipulation based on mechanically reconfigurable coding metasurface,” J. Appl. Phys. 124(4), 043101 (2018).
[Crossref]

Cui, T. J.

L. Chen, Q. Ma, H. B. Jing, H. Y. Cui, Y. Liu, and T. J. Cui, “Space-energy digital-coding metasurface based on an active amplifier,” Phys. Rev. Appl. 11(5), 054051 (2019).
[Crossref]

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Q. Ma, Z. L. Mei, S. K. Zhu, T. Y. Jin, and T. J. Cui, “Experiments on active cloaking and illusion for Laplace equation,” Phys. Rev. Lett. 111(17), 173901 (2013).
[Crossref] [PubMed]

Cumming, D. R. S.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Dickey, M. D.

M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, “Eutectic Gallium‐Indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature,” Adv. Funct. Mater. 18(7), 1097–1104 (2008).
[Crossref]

Ding, J.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Dong, L.

S. Yang, P. Liu, M. Yang, Q. Wang, J. Song, and L. Dong, “From flexible and stretchable meta-atom to metamaterial: a wearable microwave meta-skin with tunable frequency selective and cloaking effects,” Sci. Rep. 6(1), 21921 (2016).
[Crossref] [PubMed]

P. Liu, S. Yang, J. Aditya, Q. Wang, H. Jiang, J. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Doo, S. J.

D. Kim, R. G. Pierce, R. Henderson, S. J. Doo, K. Yoo, and J. B. Lee, “Liquid metal actuation-based reversible frequency tunable monopole antenna,” Appl. Phys. Lett. 105(23), 234104 (2014).
[Crossref]

Eom, S.

S. Eom, M. U. Memon, and S. Lim, “Frequency-switchable microfluidic CSRR-Loaded QMSIW band-pass filter using a liquid metal alloy,” Sensors (Basel) 17(4), 699 (2017).
[Crossref] [PubMed]

Ertas, Y. N.

T. S. Kasirga, Y. N. Ertas, and M. Bayindir, “Microfluidics for reconfigurable electromagnetic metamaterials,” Appl. Phys. Lett. 95(21), 214102 (2009).
[Crossref]

Frangipani, E.

C. Bonchi, F. Imperi, F. Minandri, P. Visca, and E. Frangipani, “Repurposing of gallium-based drugs for antibacterial therapy,” Biofactors 40(3), 303–312 (2014).
[Crossref] [PubMed]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Guruswamy, S.

J. Wang, S. Liu, A. Nahata, S. Guruswamy, and A. Nahata, “Reconfigurable liquid metal based terahertz metamaterials via selective erasure and refilling to the unit cell level,” Appl. Phys. Lett. 103(22), 221116 (2013).
[Crossref]

Gutruf, P.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Henderson, R.

D. Kim, R. G. Pierce, R. Henderson, S. J. Doo, K. Yoo, and J. B. Lee, “Liquid metal actuation-based reversible frequency tunable monopole antenna,” Appl. Phys. Lett. 105(23), 234104 (2014).
[Crossref]

Hong, M. H.

Y. Li, X. Li, L. W. Chen, M. B. Pu, J. J. Jin, M. H. Hong, and X. G. Luo, “Orbital angular momentum multiplexing and demultiplexing by a single metasurface,” Adv. Opt. Mater. 5(2), 1600502 (2017).
[Crossref]

Hu, X.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Imperi, F.

C. Bonchi, F. Imperi, F. Minandri, P. Visca, and E. Frangipani, “Repurposing of gallium-based drugs for antibacterial therapy,” Biofactors 40(3), 303–312 (2014).
[Crossref] [PubMed]

Ji, W.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Jiang, H.

P. Liu, S. Yang, J. Aditya, Q. Wang, H. Jiang, J. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Jiang, M.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Jin, J. J.

Y. Li, X. Li, L. W. Chen, M. B. Pu, J. J. Jin, M. H. Hong, and X. G. Luo, “Orbital angular momentum multiplexing and demultiplexing by a single metasurface,” Adv. Opt. Mater. 5(2), 1600502 (2017).
[Crossref]

Jin, T. Y.

Q. Ma, Z. L. Mei, S. K. Zhu, T. Y. Jin, and T. J. Cui, “Experiments on active cloaking and illusion for Laplace equation,” Phys. Rev. Lett. 111(17), 173901 (2013).
[Crossref] [PubMed]

Jing, H. B.

L. Chen, Q. Ma, H. B. Jing, H. Y. Cui, Y. Liu, and T. J. Cui, “Space-energy digital-coding metasurface based on an active amplifier,” Phys. Rev. Appl. 11(5), 054051 (2019).
[Crossref]

Jun Cui, T.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Kapitanova, P.

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]

Kasirga, T. S.

T. S. Kasirga, Y. N. Ertas, and M. Bayindir, “Microfluidics for reconfigurable electromagnetic metamaterials,” Appl. Phys. Lett. 95(21), 214102 (2009).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kim, D.

D. Kim, R. G. Pierce, R. Henderson, S. J. Doo, K. Yoo, and J. B. Lee, “Liquid metal actuation-based reversible frequency tunable monopole antenna,” Appl. Phys. Lett. 105(23), 234104 (2014).
[Crossref]

Kim, H. K.

H. K. Kim, D. Lee, and S. Lim, “Wideband-switchable metamaterial absorber using injected liquid metal,” Sci. Rep. 6(1), 31823 (2016).
[Crossref] [PubMed]

K. Ling, H. K. Kim, M. Yoo, and S. Lim, “Frequency-switchable metamaterial absorber injecting eutectic gallium-indium (EGaIn) liquid metal alloy,” Sensors (Basel) 15(11), 28154–28165 (2015).
[Crossref] [PubMed]

Kim, K.

Koschny, T.

P. Liu, S. Yang, J. Aditya, Q. Wang, H. Jiang, J. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Larsen, R. J.

M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, “Eutectic Gallium‐Indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature,” Adv. Funct. Mater. 18(7), 1097–1104 (2008).
[Crossref]

Lavrinenko, A. V.

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]

Lee, D.

H. K. Kim, D. Lee, and S. Lim, “Wideband-switchable metamaterial absorber using injected liquid metal,” Sci. Rep. 6(1), 31823 (2016).
[Crossref] [PubMed]

Lee, J. B.

D. Kim, R. G. Pierce, R. Henderson, S. J. Doo, K. Yoo, and J. B. Lee, “Liquid metal actuation-based reversible frequency tunable monopole antenna,” Appl. Phys. Lett. 105(23), 234104 (2014).
[Crossref]

Li, L.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Li, X.

Y. Li, X. Li, L. W. Chen, M. B. Pu, J. J. Jin, M. H. Hong, and X. G. Luo, “Orbital angular momentum multiplexing and demultiplexing by a single metasurface,” Adv. Opt. Mater. 5(2), 1600502 (2017).
[Crossref]

Li, Y.

Y. Li, X. Li, L. W. Chen, M. B. Pu, J. J. Jin, M. H. Hong, and X. G. Luo, “Orbital angular momentum multiplexing and demultiplexing by a single metasurface,” Adv. Opt. Mater. 5(2), 1600502 (2017).
[Crossref]

Lim, S.

S. Eom, M. U. Memon, and S. Lim, “Frequency-switchable microfluidic CSRR-Loaded QMSIW band-pass filter using a liquid metal alloy,” Sensors (Basel) 17(4), 699 (2017).
[Crossref] [PubMed]

H. K. Kim, D. Lee, and S. Lim, “Wideband-switchable metamaterial absorber using injected liquid metal,” Sci. Rep. 6(1), 31823 (2016).
[Crossref] [PubMed]

K. Ling, K. Kim, and S. Lim, “Flexible liquid metal-filled metamaterial absorber on polydimethylsiloxane (PDMS),” Opt. Express 23(16), 21375–21383 (2015).
[Crossref] [PubMed]

K. Ling, H. K. Kim, M. Yoo, and S. Lim, “Frequency-switchable metamaterial absorber injecting eutectic gallium-indium (EGaIn) liquid metal alloy,” Sensors (Basel) 15(11), 28154–28165 (2015).
[Crossref] [PubMed]

Ling, K.

K. Ling, K. Kim, and S. Lim, “Flexible liquid metal-filled metamaterial absorber on polydimethylsiloxane (PDMS),” Opt. Express 23(16), 21375–21383 (2015).
[Crossref] [PubMed]

K. Ling, H. K. Kim, M. Yoo, and S. Lim, “Frequency-switchable metamaterial absorber injecting eutectic gallium-indium (EGaIn) liquid metal alloy,” Sensors (Basel) 15(11), 28154–28165 (2015).
[Crossref] [PubMed]

Liu, P.

S. Yang, P. Liu, M. Yang, Q. Wang, J. Song, and L. Dong, “From flexible and stretchable meta-atom to metamaterial: a wearable microwave meta-skin with tunable frequency selective and cloaking effects,” Sci. Rep. 6(1), 21921 (2016).
[Crossref] [PubMed]

P. Liu, S. Yang, J. Aditya, Q. Wang, H. Jiang, J. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Liu, S.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

J. Wang, S. Liu, A. Nahata, S. Guruswamy, and A. Nahata, “Reconfigurable liquid metal based terahertz metamaterials via selective erasure and refilling to the unit cell level,” Appl. Phys. Lett. 103(22), 221116 (2013).
[Crossref]

J. Wang, S. Liu, Z. V. Vardeny, and A. Nahata, “Liquid metal-based plasmonics,” Opt. Express 20(3), 2346–2353 (2012).
[Crossref] [PubMed]

J. Wang, S. Liu, and A. Nahata, “Reconfigurable plasmonic devices using liquid metals,” Opt. Express 20(11), 12119–12126 (2012).
[Crossref] [PubMed]

Liu, Y.

L. Chen, Q. Ma, H. B. Jing, H. Y. Cui, Y. Liu, and T. J. Cui, “Space-energy digital-coding metasurface based on an active amplifier,” Phys. Rev. Appl. 11(5), 054051 (2019).
[Crossref]

Luo, X. G.

Y. Li, X. Li, L. W. Chen, M. B. Pu, J. J. Jin, M. H. Hong, and X. G. Luo, “Orbital angular momentum multiplexing and demultiplexing by a single metasurface,” Adv. Opt. Mater. 5(2), 1600502 (2017).
[Crossref]

Ma, H. L.

L. Chen, H. L. Ma, Y. Ruan, and H. Y. Cui, “Dual-manipulation on wave-front based on reconfigurable water-based metasurface integrated with PIN diodes,” J. Appl. Phys. 125(2), 023107 (2019).
[Crossref]

L. Chen, H. L. Ma, X. J. Song, Y. Ruan, and H. Y. Cui, “Dual-functional tunable coding metasurface based on saline water substrate,” Sci. Rep. 8(1), 2070 (2018).
[Crossref] [PubMed]

L. Chen, H. L. Ma, and H. Y. Cui, “Wavefront manipulation based on mechanically reconfigurable coding metasurface,” J. Appl. Phys. 124(4), 043101 (2018).
[Crossref]

Ma, Q.

L. Chen, Q. Ma, H. B. Jing, H. Y. Cui, Y. Liu, and T. J. Cui, “Space-energy digital-coding metasurface based on an active amplifier,” Phys. Rev. Appl. 11(5), 054051 (2019).
[Crossref]

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

Q. Ma, Z. L. Mei, S. K. Zhu, T. Y. Jin, and T. J. Cui, “Experiments on active cloaking and illusion for Laplace equation,” Phys. Rev. Lett. 111(17), 173901 (2013).
[Crossref] [PubMed]

Mei, Z. L.

Q. Ma, Z. L. Mei, S. K. Zhu, T. Y. Jin, and T. J. Cui, “Experiments on active cloaking and illusion for Laplace equation,” Phys. Rev. Lett. 111(17), 173901 (2013).
[Crossref] [PubMed]

Memon, M. U.

S. Eom, M. U. Memon, and S. Lim, “Frequency-switchable microfluidic CSRR-Loaded QMSIW band-pass filter using a liquid metal alloy,” Sensors (Basel) 17(4), 699 (2017).
[Crossref] [PubMed]

Minandri, F.

C. Bonchi, F. Imperi, F. Minandri, P. Visca, and E. Frangipani, “Repurposing of gallium-based drugs for antibacterial therapy,” Biofactors 40(3), 303–312 (2014).
[Crossref] [PubMed]

Nahata, A.

J. Wang, S. Liu, A. Nahata, S. Guruswamy, and A. Nahata, “Reconfigurable liquid metal based terahertz metamaterials via selective erasure and refilling to the unit cell level,” Appl. Phys. Lett. 103(22), 221116 (2013).
[Crossref]

J. Wang, S. Liu, A. Nahata, S. Guruswamy, and A. Nahata, “Reconfigurable liquid metal based terahertz metamaterials via selective erasure and refilling to the unit cell level,” Appl. Phys. Lett. 103(22), 221116 (2013).
[Crossref]

J. Wang, S. Liu, and A. Nahata, “Reconfigurable plasmonic devices using liquid metals,” Opt. Express 20(11), 12119–12126 (2012).
[Crossref] [PubMed]

J. Wang, S. Liu, Z. V. Vardeny, and A. Nahata, “Liquid metal-based plasmonics,” Opt. Express 20(3), 2346–2353 (2012).
[Crossref] [PubMed]

Nili, H.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Noor, A.

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

Odit, M.

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]

Padilla, W. J.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Pierce, R. G.

D. Kim, R. G. Pierce, R. Henderson, S. J. Doo, K. Yoo, and J. B. Lee, “Liquid metal actuation-based reversible frequency tunable monopole antenna,” Appl. Phys. Lett. 105(23), 234104 (2014).
[Crossref]

Pu, M. B.

Y. Li, X. Li, L. W. Chen, M. B. Pu, J. J. Jin, M. H. Hong, and X. G. Luo, “Orbital angular momentum multiplexing and demultiplexing by a single metasurface,” Adv. Opt. Mater. 5(2), 1600502 (2017).
[Crossref]

Qi, M. Q.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Qiu, C. W.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Ruan, Y.

L. Chen, H. L. Ma, Y. Ruan, and H. Y. Cui, “Dual-manipulation on wave-front based on reconfigurable water-based metasurface integrated with PIN diodes,” J. Appl. Phys. 125(2), 023107 (2019).
[Crossref]

L. Chen, H. L. Ma, X. J. Song, Y. Ruan, and H. Y. Cui, “Dual-functional tunable coding metasurface based on saline water substrate,” Sci. Rep. 8(1), 2070 (2018).
[Crossref] [PubMed]

Savo, S.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Shah, C. M.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Shi, C. B.

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

Shrekenhamer, D.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Smith, D. R.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Song, J.

S. Yang, P. Liu, M. Yang, Q. Wang, J. Song, and L. Dong, “From flexible and stretchable meta-atom to metamaterial: a wearable microwave meta-skin with tunable frequency selective and cloaking effects,” Sci. Rep. 6(1), 21921 (2016).
[Crossref] [PubMed]

P. Liu, S. Yang, J. Aditya, Q. Wang, H. Jiang, J. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Song, X. J.

L. Chen, H. L. Ma, X. J. Song, Y. Ruan, and H. Y. Cui, “Dual-functional tunable coding metasurface based on saline water substrate,” Sci. Rep. 8(1), 2070 (2018).
[Crossref] [PubMed]

Soukoulis, C. M.

P. Liu, S. Yang, J. Aditya, Q. Wang, H. Jiang, J. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Sriram, S.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Vardeny, Z. V.

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Visca, P.

C. Bonchi, F. Imperi, F. Minandri, P. Visca, and E. Frangipani, “Repurposing of gallium-based drugs for antibacterial therapy,” Biofactors 40(3), 303–312 (2014).
[Crossref] [PubMed]

Walia, S.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Wan, X.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Wang, H.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Wang, J.

J. Wang, S. Liu, A. Nahata, S. Guruswamy, and A. Nahata, “Reconfigurable liquid metal based terahertz metamaterials via selective erasure and refilling to the unit cell level,” Appl. Phys. Lett. 103(22), 221116 (2013).
[Crossref]

J. Wang, S. Liu, Z. V. Vardeny, and A. Nahata, “Liquid metal-based plasmonics,” Opt. Express 20(3), 2346–2353 (2012).
[Crossref] [PubMed]

J. Wang, S. Liu, and A. Nahata, “Reconfigurable plasmonic devices using liquid metals,” Opt. Express 20(11), 12119–12126 (2012).
[Crossref] [PubMed]

Wang, Q.

S. Yang, P. Liu, M. Yang, Q. Wang, J. Song, and L. Dong, “From flexible and stretchable meta-atom to metamaterial: a wearable microwave meta-skin with tunable frequency selective and cloaking effects,” Sci. Rep. 6(1), 21921 (2016).
[Crossref] [PubMed]

P. Liu, S. Yang, J. Aditya, Q. Wang, H. Jiang, J. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Weiss, E. A.

M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, “Eutectic Gallium‐Indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature,” Adv. Funct. Mater. 18(7), 1097–1104 (2008).
[Crossref]

Weitz, D. A.

M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, “Eutectic Gallium‐Indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature,” Adv. Funct. Mater. 18(7), 1097–1104 (2008).
[Crossref]

Wen, L.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Whitesides, G. M.

M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, “Eutectic Gallium‐Indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature,” Adv. Funct. Mater. 18(7), 1097–1104 (2008).
[Crossref]

Wiltshire, M. C.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Withayachumnankul, W.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Xu, G.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Yang, M.

S. Yang, P. Liu, M. Yang, Q. Wang, J. Song, and L. Dong, “From flexible and stretchable meta-atom to metamaterial: a wearable microwave meta-skin with tunable frequency selective and cloaking effects,” Sci. Rep. 6(1), 21921 (2016).
[Crossref] [PubMed]

Yang, S.

S. Yang, P. Liu, M. Yang, Q. Wang, J. Song, and L. Dong, “From flexible and stretchable meta-atom to metamaterial: a wearable microwave meta-skin with tunable frequency selective and cloaking effects,” Sci. Rep. 6(1), 21921 (2016).
[Crossref] [PubMed]

P. Liu, S. Yang, J. Aditya, Q. Wang, H. Jiang, J. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Yoo, K.

D. Kim, R. G. Pierce, R. Henderson, S. J. Doo, K. Yoo, and J. B. Lee, “Liquid metal actuation-based reversible frequency tunable monopole antenna,” Appl. Phys. Lett. 105(23), 234104 (2014).
[Crossref]

Yoo, M.

K. Ling, H. K. Kim, M. Yoo, and S. Lim, “Frequency-switchable metamaterial absorber injecting eutectic gallium-indium (EGaIn) liquid metal alloy,” Sensors (Basel) 15(11), 28154–28165 (2015).
[Crossref] [PubMed]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Zhang, S.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Zhang, Y.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Zhao, J.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Zhao, Y.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Zhu, S. K.

Q. Ma, Z. L. Mei, S. K. Zhu, T. Y. Jin, and T. J. Cui, “Experiments on active cloaking and illusion for Laplace equation,” Phys. Rev. Lett. 111(17), 173901 (2013).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, “Eutectic Gallium‐Indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature,” Adv. Funct. Mater. 18(7), 1097–1104 (2008).
[Crossref]

Adv. Opt. Mater. (3)

Y. Li, X. Li, L. W. Chen, M. B. Pu, J. J. Jin, M. H. Hong, and X. G. Luo, “Orbital angular momentum multiplexing and demultiplexing by a single metasurface,” Adv. Opt. Mater. 5(2), 1600502 (2017).
[Crossref]

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5(23), 1700548 (2017).
[Crossref]

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Appl. Phys. Lett. (4)

D. Kim, R. G. Pierce, R. Henderson, S. J. Doo, K. Yoo, and J. B. Lee, “Liquid metal actuation-based reversible frequency tunable monopole antenna,” Appl. Phys. Lett. 105(23), 234104 (2014).
[Crossref]

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]

J. Wang, S. Liu, A. Nahata, S. Guruswamy, and A. Nahata, “Reconfigurable liquid metal based terahertz metamaterials via selective erasure and refilling to the unit cell level,” Appl. Phys. Lett. 103(22), 221116 (2013).
[Crossref]

T. S. Kasirga, Y. N. Ertas, and M. Bayindir, “Microfluidics for reconfigurable electromagnetic metamaterials,” Appl. Phys. Lett. 95(21), 214102 (2009).
[Crossref]

Appl. Phys. Rev. (1)

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Biofactors (1)

C. Bonchi, F. Imperi, F. Minandri, P. Visca, and E. Frangipani, “Repurposing of gallium-based drugs for antibacterial therapy,” Biofactors 40(3), 303–312 (2014).
[Crossref] [PubMed]

J. Appl. Phys. (3)

L. Chen, H. L. Ma, Y. Ruan, and H. Y. Cui, “Dual-manipulation on wave-front based on reconfigurable water-based metasurface integrated with PIN diodes,” J. Appl. Phys. 125(2), 023107 (2019).
[Crossref]

P. Liu, S. Yang, J. Aditya, Q. Wang, H. Jiang, J. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

L. Chen, H. L. Ma, and H. Y. Cui, “Wavefront manipulation based on mechanically reconfigurable coding metasurface,” J. Appl. Phys. 124(4), 043101 (2018).
[Crossref]

Laser Photonics Rev. (1)

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Light Sci. Appl. (1)

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Nat. Commun. (1)

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. Appl. (1)

L. Chen, Q. Ma, H. B. Jing, H. Y. Cui, Y. Liu, and T. J. Cui, “Space-energy digital-coding metasurface based on an active amplifier,” Phys. Rev. Appl. 11(5), 054051 (2019).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Q. Ma, Z. L. Mei, S. K. Zhu, T. Y. Jin, and T. J. Cui, “Experiments on active cloaking and illusion for Laplace equation,” Phys. Rev. Lett. 111(17), 173901 (2013).
[Crossref] [PubMed]

Sci. Rep. (3)

H. K. Kim, D. Lee, and S. Lim, “Wideband-switchable metamaterial absorber using injected liquid metal,” Sci. Rep. 6(1), 31823 (2016).
[Crossref] [PubMed]

L. Chen, H. L. Ma, X. J. Song, Y. Ruan, and H. Y. Cui, “Dual-functional tunable coding metasurface based on saline water substrate,” Sci. Rep. 8(1), 2070 (2018).
[Crossref] [PubMed]

S. Yang, P. Liu, M. Yang, Q. Wang, J. Song, and L. Dong, “From flexible and stretchable meta-atom to metamaterial: a wearable microwave meta-skin with tunable frequency selective and cloaking effects,” Sci. Rep. 6(1), 21921 (2016).
[Crossref] [PubMed]

Science (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Sensors (Basel) (2)

K. Ling, H. K. Kim, M. Yoo, and S. Lim, “Frequency-switchable metamaterial absorber injecting eutectic gallium-indium (EGaIn) liquid metal alloy,” Sensors (Basel) 15(11), 28154–28165 (2015).
[Crossref] [PubMed]

S. Eom, M. U. Memon, and S. Lim, “Frequency-switchable microfluidic CSRR-Loaded QMSIW band-pass filter using a liquid metal alloy,” Sensors (Basel) 17(4), 699 (2017).
[Crossref] [PubMed]

Other (1)

J. A. Rogers, R. Ghaffari, and D. H. Kim, Stretchable Bioelectronics for Medical Devices and Systems (Springer, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The schematic of the liquid metal metasurface for flexible beam-steering. The liquid metal in specific structures generates distinct phase responses. With appropriate heat stimulus, the structure of liquid metal metasurface can be easily changed, to realize various beam-steering.
Fig. 2
Fig. 2 The structure illustration for the designed element, and its EM responses. (a) and (b) The structures of the cell A and cell B. (c) and (d) The top- and side-view of the cell A and cell B. (e) and (f) The reflected phase and amplitude responses of the proposed elements, with four different states.
Fig. 3
Fig. 3 The coding patterns of the designed four schemes. (a) and (b) The schemes A and B to realize single-beam fields, with distinct beam deflection angles. (c) and (d) The schemes C and D to realize dual-beam fields, with distinct beam deflection angles.
Fig. 4
Fig. 4 The three-dimensional far-field results in simulations. (a) and (b) The simulated results for single-beam steering (scheme A and B). (c) and (d) The simulated results for dual-beam steering (scheme C and D).
Fig. 5
Fig. 5 The two-dimensional far-field results in simulations. (a) The simulated results for single-beam steering (schemes A and B), as well as a PEC with the same dimension for comparison. (b) The simulated results for dual-beam steering (schemes C and D).
Fig. 6
Fig. 6 The fabrication illustration and the photograph of the fabricated metasurface sample. (a) The fabrication structure of the liquid metal metasurface. (b) The reconfigurable process for liquid metal. (c) The composite form for final fabrication sample. (d) The photograph of the fabricated metasurface. (e) The schematic illustration of the far-field measurememnt.
Fig. 7
Fig. 7 The two-dimensional far-field results in measurements. (a) The measured results (in solid line) for single-beam steering (schemes A and B), as well as the simulated results for comparison (in dotted line). (b) The measured results (in solid line) for dual-beam steering (schemes C and D), as well as the simulated results for comparison (in dotted line).

Tables (1)

Tables Icon

Table 1 The phase responses of four states for cell A and B

Metrics