G. Gautam and A. Pandey, “Pulsed Nd:YAG laser beam drilling: A review,” Opt. Laser Technol. 100, 183–215 (2018).
[Crossref]
L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Hard Met. 72, 211–222 (2018).
[Crossref]
L. Jiang, A. Wang, B. Li, T. Cui, and Y. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light: Sci. Appl. 7(2), 17134 (2018).
[Crossref]
J. Yuan, L. Liang, L. Jiang, and X. Liu, “Influence of the shielding effect on the formation of a micro-texture on the cermet with nanosecond pulsed laser ablation,” Opt. Lett. 43(7), 1451–1455 (2018).
[Crossref]
K. Pangovski, O. Otanocha, S. Zhong, M. Sparkes, Z. Liu, W. O’Neilland, and L. Li, “Investigation of plume dynamics during picosecond laser ablation of h13 steel using high-speed digital holography,” Appl. Phys. A 123(2), 114–120 (2017).
[Crossref]
M. Jafarabadi and M. Mahdieh, “Single and double long pulse laser ablation of aluminum induced in air and water ambient,” Appl. Surf. Sci. 396, 732–739 (2017).
[Crossref]
G. Cadot, D. Axinte, and J. Billingham, “Continuous trench, pulsed laser ablation for micro-machining applications,” Int. J. Mach. Tool Manuf. 107, 8–20 (2016).
[Crossref]
M. Jafarabadi and M. Mahdieh, “Investigation of phase explosion in aluminum induced by nanosecond double pulse technique,” Appl. Surf. Sci. 346, 263–269 (2015).
[Crossref]
K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–711 (2015).
[Crossref]
S. Demos, R. Negres, R. Raman, M. Fert, K. Manes, and A. Rubenchik, “Relaxation dynamics of nanosecond laser superheated material in dielectrics,” Optica 2(8), 765–772 (2015).
[Crossref]
J. Finger and M. Reininghaus, “Effect of pulse to pulse interactions on ultra-short pulse laser drilling of steel with repetition rates up to 10 MHz,” Opt. Express 22(15), 18790–18799 (2014).
[Crossref]
K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]
C. Mcdaniel, A. Flanagan, O. Connor, and M. Gerard, “Evidence for increased incubation parameter in multi-pulse ablation of a Pt:SS alloy using a femtosecond laser at high repetition rates,” Appl. Surf. Sci. 295, 1–7 (2014).
[Crossref]
D. Marla, U. V. Bhandarkar, and S. S. Joshi, “A model of laser ablation with temperature-dependent material properties, vaporization, phase explosion and plasma shielding,” Appl. Phys. A 116(1), 273–285 (2014).
[Crossref]
S. Demos, R. Negres, R. Raman, A. Rubenchik, and M. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
[Crossref]
U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
[Crossref]
Y. Li, Y. Gu, Z. Zhu, X. Li, H. Ban, Q. Kong, and S. Kawata, “Direct laser acceleration of electron by an ultra-intense and short-pulsed laser in under-dense plasma,” Phys. Plasmas 18(5), 053104 (2011).
[Crossref]
A. Link, R. Freeman, D. Schumacher, and L. Woerkom, “Effects of target charging and ion emission on the energy spectrum of emitted electrons,” Phys. Plasmas 18(5), 053107 (2011).
[Crossref]
A. Samant and N. Dahotre, “Laser machining of structural ceramics—A review,” J. Eur. Ceram. Soc. 29(6), 969–993 (2009).
[Crossref]
R. Rozman, I. Grabec, and E. Govekar, “Influence of absorption mechanisms on laser-induced plasma plume,” Appl. Surf. Sci. 254(11), 3295–3305 (2008).
[Crossref]
N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys. A 79(4-6), 1323–1326 (2004).
[Crossref]
A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[Crossref]
K. Nahen and A. Vogel, “Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation,” J. Biomed. Opt. 7(2), 165–178 (2002).
[Crossref]
R. Kelly and A. Miotello, “Does normal boiling exist due to laser-pulse or ion bombardment?” J. Appl. Phys. 87(6), 3177–3179 (2000).
[Crossref]
S. Amoruso, “Modeling of UV pulsed-laser ablation of metallic targets,” Appl. Phys. A 69(3), 323–332 (1999).
[Crossref]
K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]
A. Bulgakov and N. Bulgakova, “Gas-dynamic effects of the interaction between a pulsed laser-ablation plume and the ambient gas: analogy with an underexpanded jet,” J. Phys. D: Appl. Phys. 31(6), 693–703 (1998).
[Crossref]
R. Wood, K. Chen, J. Leboeuf, A. Puretzky, and D. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79(8), 1571–1574 (1997).
[Crossref]
B. N. Chichkov, C. Momma, and S. Nolte, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]
J. N. Leboeuf, K. R. Chen, J. M. Donato, D. B. Geohegan, C. L. Liu, A. A. Puretzky, and R. F. Wood, “Modeling of dynamical processes in laser ablation,” Appl. Surf. Sci. 96-98, 14–23 (1996).
[Crossref]
A. Miotello and R. Kelly, “Critical assessment of thermal models for laser sputtering at high fluences,” Appl. Phys. Lett. 67(24), 3535–3537 (1995).
[Crossref]
B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]
A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E 50(6), 4716–4727 (1994).
[Crossref]
M. Aden, E. Beyer, G. Herziger, and H. Kunze, “Laser induced vaporization of a metal surface,” J. Phys. D: Appl. Phys. 25(1), 57–65 (1992).
[Crossref]
L. Balazs, R. Gijbels, and A. Vertes, “Expansion of laser-generated plumes near the plasma ignition threshold,” Anal. Chem. 63(4), 314–320 (1991).
[Crossref]
M. Wautelet, “Laser-assisted reaction of metals with oxygen,” Appl. Phys. A 50(2), 131–139 (1990).
[Crossref]
M. M. Martynyuk, “Vaporization and boiling of liquid metal in an exploding wire,” Soviet. Phys. Tech. Phys. 19(6), 793–797 (1974).
M. Aden, E. Beyer, G. Herziger, and H. Kunze, “Laser induced vaporization of a metal surface,” J. Phys. D: Appl. Phys. 25(1), 57–65 (1992).
[Crossref]
U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
[Crossref]
S. Amoruso, “Modeling of UV pulsed-laser ablation of metallic targets,” Appl. Phys. A 69(3), 323–332 (1999).
[Crossref]
K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]
G. Cadot, D. Axinte, and J. Billingham, “Continuous trench, pulsed laser ablation for micro-machining applications,” Int. J. Mach. Tool Manuf. 107, 8–20 (2016).
[Crossref]
N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys. A 79(4-6), 1323–1326 (2004).
[Crossref]
L. Balazs, R. Gijbels, and A. Vertes, “Expansion of laser-generated plumes near the plasma ignition threshold,” Anal. Chem. 63(4), 314–320 (1991).
[Crossref]
Y. Li, Y. Gu, Z. Zhu, X. Li, H. Ban, Q. Kong, and S. Kawata, “Direct laser acceleration of electron by an ultra-intense and short-pulsed laser in under-dense plasma,” Phys. Plasmas 18(5), 053104 (2011).
[Crossref]
M. Aden, E. Beyer, G. Herziger, and H. Kunze, “Laser induced vaporization of a metal surface,” J. Phys. D: Appl. Phys. 25(1), 57–65 (1992).
[Crossref]
D. Marla, U. V. Bhandarkar, and S. S. Joshi, “A model of laser ablation with temperature-dependent material properties, vaporization, phase explosion and plasma shielding,” Appl. Phys. A 116(1), 273–285 (2014).
[Crossref]
K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]
G. Cadot, D. Axinte, and J. Billingham, “Continuous trench, pulsed laser ablation for micro-machining applications,” Int. J. Mach. Tool Manuf. 107, 8–20 (2016).
[Crossref]
A. Bulgakov and N. Bulgakova, “Gas-dynamic effects of the interaction between a pulsed laser-ablation plume and the ambient gas: analogy with an underexpanded jet,” J. Phys. D: Appl. Phys. 31(6), 693–703 (1998).
[Crossref]
N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys. A 79(4-6), 1323–1326 (2004).
[Crossref]
A. Bulgakov and N. Bulgakova, “Gas-dynamic effects of the interaction between a pulsed laser-ablation plume and the ambient gas: analogy with an underexpanded jet,” J. Phys. D: Appl. Phys. 31(6), 693–703 (1998).
[Crossref]
N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys. A 79(4-6), 1323–1326 (2004).
[Crossref]
G. Cadot, D. Axinte, and J. Billingham, “Continuous trench, pulsed laser ablation for micro-machining applications,” Int. J. Mach. Tool Manuf. 107, 8–20 (2016).
[Crossref]
K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]
R. Wood, K. Chen, J. Leboeuf, A. Puretzky, and D. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79(8), 1571–1574 (1997).
[Crossref]
J. N. Leboeuf, K. R. Chen, J. M. Donato, D. B. Geohegan, C. L. Liu, A. A. Puretzky, and R. F. Wood, “Modeling of dynamical processes in laser ablation,” Appl. Surf. Sci. 96-98, 14–23 (1996).
[Crossref]
K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]
B. N. Chichkov, C. Momma, and S. Nolte, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]
C. Mcdaniel, A. Flanagan, O. Connor, and M. Gerard, “Evidence for increased incubation parameter in multi-pulse ablation of a Pt:SS alloy using a femtosecond laser at high repetition rates,” Appl. Surf. Sci. 295, 1–7 (2014).
[Crossref]
L. Jiang, A. Wang, B. Li, T. Cui, and Y. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light: Sci. Appl. 7(2), 17134 (2018).
[Crossref]
A. Samant and N. Dahotre, “Laser machining of structural ceramics—A review,” J. Eur. Ceram. Soc. 29(6), 969–993 (2009).
[Crossref]
U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
[Crossref]
S. Demos, R. Negres, R. Raman, M. Fert, K. Manes, and A. Rubenchik, “Relaxation dynamics of nanosecond laser superheated material in dielectrics,” Optica 2(8), 765–772 (2015).
[Crossref]
S. Demos, R. Negres, R. Raman, A. Rubenchik, and M. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
[Crossref]
J. N. Leboeuf, K. R. Chen, J. M. Donato, D. B. Geohegan, C. L. Liu, A. A. Puretzky, and R. F. Wood, “Modeling of dynamical processes in laser ablation,” Appl. Surf. Sci. 96-98, 14–23 (1996).
[Crossref]
S. Demos, R. Negres, R. Raman, A. Rubenchik, and M. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
[Crossref]
B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]
C. Mcdaniel, A. Flanagan, O. Connor, and M. Gerard, “Evidence for increased incubation parameter in multi-pulse ablation of a Pt:SS alloy using a femtosecond laser at high repetition rates,” Appl. Surf. Sci. 295, 1–7 (2014).
[Crossref]
A. Link, R. Freeman, D. Schumacher, and L. Woerkom, “Effects of target charging and ion emission on the energy spectrum of emitted electrons,” Phys. Plasmas 18(5), 053107 (2011).
[Crossref]
K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–711 (2015).
[Crossref]
G. Gautam and A. Pandey, “Pulsed Nd:YAG laser beam drilling: A review,” Opt. Laser Technol. 100, 183–215 (2018).
[Crossref]
A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[Crossref]
R. Wood, K. Chen, J. Leboeuf, A. Puretzky, and D. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79(8), 1571–1574 (1997).
[Crossref]
J. N. Leboeuf, K. R. Chen, J. M. Donato, D. B. Geohegan, C. L. Liu, A. A. Puretzky, and R. F. Wood, “Modeling of dynamical processes in laser ablation,” Appl. Surf. Sci. 96-98, 14–23 (1996).
[Crossref]
C. Mcdaniel, A. Flanagan, O. Connor, and M. Gerard, “Evidence for increased incubation parameter in multi-pulse ablation of a Pt:SS alloy using a femtosecond laser at high repetition rates,” Appl. Surf. Sci. 295, 1–7 (2014).
[Crossref]
L. Balazs, R. Gijbels, and A. Vertes, “Expansion of laser-generated plumes near the plasma ignition threshold,” Anal. Chem. 63(4), 314–320 (1991).
[Crossref]
R. Rozman, I. Grabec, and E. Govekar, “Influence of absorption mechanisms on laser-induced plasma plume,” Appl. Surf. Sci. 254(11), 3295–3305 (2008).
[Crossref]
R. Rozman, I. Grabec, and E. Govekar, “Influence of absorption mechanisms on laser-induced plasma plume,” Appl. Surf. Sci. 254(11), 3295–3305 (2008).
[Crossref]
V. M. Sglavo and D. J. Green, “Fatigue limit in fused silica,” J. Eur. Ceram. Soc. 21(5), 561–567 (2001).
[Crossref]
Y. Li, Y. Gu, Z. Zhu, X. Li, H. Ban, Q. Kong, and S. Kawata, “Direct laser acceleration of electron by an ultra-intense and short-pulsed laser in under-dense plasma,” Phys. Plasmas 18(5), 053104 (2011).
[Crossref]
M. Aden, E. Beyer, G. Herziger, and H. Kunze, “Laser induced vaporization of a metal surface,” J. Phys. D: Appl. Phys. 25(1), 57–65 (1992).
[Crossref]
M. Jafarabadi and M. Mahdieh, “Single and double long pulse laser ablation of aluminum induced in air and water ambient,” Appl. Surf. Sci. 396, 732–739 (2017).
[Crossref]
M. Jafarabadi and M. Mahdieh, “Investigation of phase explosion in aluminum induced by nanosecond double pulse technique,” Appl. Surf. Sci. 346, 263–269 (2015).
[Crossref]
A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[Crossref]
L. Jiang, A. Wang, B. Li, T. Cui, and Y. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light: Sci. Appl. 7(2), 17134 (2018).
[Crossref]
L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Hard Met. 72, 211–222 (2018).
[Crossref]
J. Yuan, L. Liang, L. Jiang, and X. Liu, “Influence of the shielding effect on the formation of a micro-texture on the cermet with nanosecond pulsed laser ablation,” Opt. Lett. 43(7), 1451–1455 (2018).
[Crossref]
D. Marla, U. V. Bhandarkar, and S. S. Joshi, “A model of laser ablation with temperature-dependent material properties, vaporization, phase explosion and plasma shielding,” Appl. Phys. A 116(1), 273–285 (2014).
[Crossref]
Y. Li, Y. Gu, Z. Zhu, X. Li, H. Ban, Q. Kong, and S. Kawata, “Direct laser acceleration of electron by an ultra-intense and short-pulsed laser in under-dense plasma,” Phys. Plasmas 18(5), 053104 (2011).
[Crossref]
R. Kelly and A. Miotello, “Does normal boiling exist due to laser-pulse or ion bombardment?” J. Appl. Phys. 87(6), 3177–3179 (2000).
[Crossref]
A. Miotello and R. Kelly, “Critical assessment of thermal models for laser sputtering at high fluences,” Appl. Phys. Lett. 67(24), 3535–3537 (1995).
[Crossref]
A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E 50(6), 4716–4727 (1994).
[Crossref]
Y. Li, Y. Gu, Z. Zhu, X. Li, H. Ban, Q. Kong, and S. Kawata, “Direct laser acceleration of electron by an ultra-intense and short-pulsed laser in under-dense plasma,” Phys. Plasmas 18(5), 053104 (2011).
[Crossref]
M. Aden, E. Beyer, G. Herziger, and H. Kunze, “Laser induced vaporization of a metal surface,” J. Phys. D: Appl. Phys. 25(1), 57–65 (1992).
[Crossref]
R. Wood, K. Chen, J. Leboeuf, A. Puretzky, and D. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79(8), 1571–1574 (1997).
[Crossref]
J. N. Leboeuf, K. R. Chen, J. M. Donato, D. B. Geohegan, C. L. Liu, A. A. Puretzky, and R. F. Wood, “Modeling of dynamical processes in laser ablation,” Appl. Surf. Sci. 96-98, 14–23 (1996).
[Crossref]
U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
[Crossref]
L. Jiang, A. Wang, B. Li, T. Cui, and Y. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light: Sci. Appl. 7(2), 17134 (2018).
[Crossref]
K. Pangovski, O. Otanocha, S. Zhong, M. Sparkes, Z. Liu, W. O’Neilland, and L. Li, “Investigation of plume dynamics during picosecond laser ablation of h13 steel using high-speed digital holography,” Appl. Phys. A 123(2), 114–120 (2017).
[Crossref]
L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Hard Met. 72, 211–222 (2018).
[Crossref]
Y. Li, Y. Gu, Z. Zhu, X. Li, H. Ban, Q. Kong, and S. Kawata, “Direct laser acceleration of electron by an ultra-intense and short-pulsed laser in under-dense plasma,” Phys. Plasmas 18(5), 053104 (2011).
[Crossref]
Y. Li, Y. Gu, Z. Zhu, X. Li, H. Ban, Q. Kong, and S. Kawata, “Direct laser acceleration of electron by an ultra-intense and short-pulsed laser in under-dense plasma,” Phys. Plasmas 18(5), 053104 (2011).
[Crossref]
L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Hard Met. 72, 211–222 (2018).
[Crossref]
J. Yuan, L. Liang, L. Jiang, and X. Liu, “Influence of the shielding effect on the formation of a micro-texture on the cermet with nanosecond pulsed laser ablation,” Opt. Lett. 43(7), 1451–1455 (2018).
[Crossref]
A. Link, R. Freeman, D. Schumacher, and L. Woerkom, “Effects of target charging and ion emission on the energy spectrum of emitted electrons,” Phys. Plasmas 18(5), 053107 (2011).
[Crossref]
J. N. Leboeuf, K. R. Chen, J. M. Donato, D. B. Geohegan, C. L. Liu, A. A. Puretzky, and R. F. Wood, “Modeling of dynamical processes in laser ablation,” Appl. Surf. Sci. 96-98, 14–23 (1996).
[Crossref]
K. Pangovski, O. Otanocha, S. Zhong, M. Sparkes, Z. Liu, W. O’Neilland, and L. Li, “Investigation of plume dynamics during picosecond laser ablation of h13 steel using high-speed digital holography,” Appl. Phys. A 123(2), 114–120 (2017).
[Crossref]
L. Jiang, A. Wang, B. Li, T. Cui, and Y. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light: Sci. Appl. 7(2), 17134 (2018).
[Crossref]
M. Jafarabadi and M. Mahdieh, “Single and double long pulse laser ablation of aluminum induced in air and water ambient,” Appl. Surf. Sci. 396, 732–739 (2017).
[Crossref]
M. Jafarabadi and M. Mahdieh, “Investigation of phase explosion in aluminum induced by nanosecond double pulse technique,” Appl. Surf. Sci. 346, 263–269 (2015).
[Crossref]
M. Mahdieh, M. Nikbakht, Z. Moghadam, and M. Sobhani, “Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd:YAG laser in ambient air and water,” Appl. Surf. Sci. 256(6), 1778–1783 (2010).
[Crossref]
D. Marla, U. V. Bhandarkar, and S. S. Joshi, “A model of laser ablation with temperature-dependent material properties, vaporization, phase explosion and plasma shielding,” Appl. Phys. A 116(1), 273–285 (2014).
[Crossref]
A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[Crossref]
M. M. Martynyuk, “Vaporization and boiling of liquid metal in an exploding wire,” Soviet. Phys. Tech. Phys. 19(6), 793–797 (1974).
K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–711 (2015).
[Crossref]
C. Schaffer, A. Brodeur, J. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
[Crossref]
C. Mcdaniel, A. Flanagan, O. Connor, and M. Gerard, “Evidence for increased incubation parameter in multi-pulse ablation of a Pt:SS alloy using a femtosecond laser at high repetition rates,” Appl. Surf. Sci. 295, 1–7 (2014).
[Crossref]
K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]
R. Kelly and A. Miotello, “Does normal boiling exist due to laser-pulse or ion bombardment?” J. Appl. Phys. 87(6), 3177–3179 (2000).
[Crossref]
A. Miotello and R. Kelly, “Critical assessment of thermal models for laser sputtering at high fluences,” Appl. Phys. Lett. 67(24), 3535–3537 (1995).
[Crossref]
A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E 50(6), 4716–4727 (1994).
[Crossref]
M. Mahdieh, M. Nikbakht, Z. Moghadam, and M. Sobhani, “Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd:YAG laser in ambient air and water,” Appl. Surf. Sci. 256(6), 1778–1783 (2010).
[Crossref]
B. N. Chichkov, C. Momma, and S. Nolte, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]
K. Nahen and A. Vogel, “Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation,” J. Biomed. Opt. 7(2), 165–178 (2002).
[Crossref]
S. Demos, R. Negres, R. Raman, M. Fert, K. Manes, and A. Rubenchik, “Relaxation dynamics of nanosecond laser superheated material in dielectrics,” Optica 2(8), 765–772 (2015).
[Crossref]
S. Demos, R. Negres, R. Raman, A. Rubenchik, and M. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
[Crossref]
M. Mahdieh, M. Nikbakht, Z. Moghadam, and M. Sobhani, “Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd:YAG laser in ambient air and water,” Appl. Surf. Sci. 256(6), 1778–1783 (2010).
[Crossref]
B. N. Chichkov, C. Momma, and S. Nolte, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]
K. Pangovski, O. Otanocha, S. Zhong, M. Sparkes, Z. Liu, W. O’Neilland, and L. Li, “Investigation of plume dynamics during picosecond laser ablation of h13 steel using high-speed digital holography,” Appl. Phys. A 123(2), 114–120 (2017).
[Crossref]
K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]
K. Pangovski, O. Otanocha, S. Zhong, M. Sparkes, Z. Liu, W. O’Neilland, and L. Li, “Investigation of plume dynamics during picosecond laser ablation of h13 steel using high-speed digital holography,” Appl. Phys. A 123(2), 114–120 (2017).
[Crossref]
G. Gautam and A. Pandey, “Pulsed Nd:YAG laser beam drilling: A review,” Opt. Laser Technol. 100, 183–215 (2018).
[Crossref]
A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[Crossref]
K. Pangovski, O. Otanocha, S. Zhong, M. Sparkes, Z. Liu, W. O’Neilland, and L. Li, “Investigation of plume dynamics during picosecond laser ablation of h13 steel using high-speed digital holography,” Appl. Phys. A 123(2), 114–120 (2017).
[Crossref]
B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]
A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E 50(6), 4716–4727 (1994).
[Crossref]
K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–711 (2015).
[Crossref]
R. Wood, K. Chen, J. Leboeuf, A. Puretzky, and D. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79(8), 1571–1574 (1997).
[Crossref]
J. N. Leboeuf, K. R. Chen, J. M. Donato, D. B. Geohegan, C. L. Liu, A. A. Puretzky, and R. F. Wood, “Modeling of dynamical processes in laser ablation,” Appl. Surf. Sci. 96-98, 14–23 (1996).
[Crossref]
U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
[Crossref]
S. Demos, R. Negres, R. Raman, M. Fert, K. Manes, and A. Rubenchik, “Relaxation dynamics of nanosecond laser superheated material in dielectrics,” Optica 2(8), 765–772 (2015).
[Crossref]
S. Demos, R. Negres, R. Raman, A. Rubenchik, and M. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
[Crossref]
R. Rozman, I. Grabec, and E. Govekar, “Influence of absorption mechanisms on laser-induced plasma plume,” Appl. Surf. Sci. 254(11), 3295–3305 (2008).
[Crossref]
S. Demos, R. Negres, R. Raman, M. Fert, K. Manes, and A. Rubenchik, “Relaxation dynamics of nanosecond laser superheated material in dielectrics,” Optica 2(8), 765–772 (2015).
[Crossref]
S. Demos, R. Negres, R. Raman, A. Rubenchik, and M. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
[Crossref]
B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]
A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[Crossref]
A. Samant and N. Dahotre, “Laser machining of structural ceramics—A review,” J. Eur. Ceram. Soc. 29(6), 969–993 (2009).
[Crossref]
A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[Crossref]
U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
[Crossref]
A. Link, R. Freeman, D. Schumacher, and L. Woerkom, “Effects of target charging and ion emission on the energy spectrum of emitted electrons,” Phys. Plasmas 18(5), 053107 (2011).
[Crossref]
V. M. Sglavo and D. J. Green, “Fatigue limit in fused silica,” J. Eur. Ceram. Soc. 21(5), 561–567 (2001).
[Crossref]
B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]
M. Mahdieh, M. Nikbakht, Z. Moghadam, and M. Sobhani, “Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd:YAG laser in ambient air and water,” Appl. Surf. Sci. 256(6), 1778–1783 (2010).
[Crossref]
K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]
K. Pangovski, O. Otanocha, S. Zhong, M. Sparkes, Z. Liu, W. O’Neilland, and L. Li, “Investigation of plume dynamics during picosecond laser ablation of h13 steel using high-speed digital holography,” Appl. Phys. A 123(2), 114–120 (2017).
[Crossref]
B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]
K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]
K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–711 (2015).
[Crossref]
A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[Crossref]
L. Balazs, R. Gijbels, and A. Vertes, “Expansion of laser-generated plumes near the plasma ignition threshold,” Anal. Chem. 63(4), 314–320 (1991).
[Crossref]
K. Nahen and A. Vogel, “Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation,” J. Biomed. Opt. 7(2), 165–178 (2002).
[Crossref]
K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]
L. Jiang, A. Wang, B. Li, T. Cui, and Y. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light: Sci. Appl. 7(2), 17134 (2018).
[Crossref]
M. Wautelet, “Laser-assisted reaction of metals with oxygen,” Appl. Phys. A 50(2), 131–139 (1990).
[Crossref]
A. Link, R. Freeman, D. Schumacher, and L. Woerkom, “Effects of target charging and ion emission on the energy spectrum of emitted electrons,” Phys. Plasmas 18(5), 053107 (2011).
[Crossref]
R. Wood, K. Chen, J. Leboeuf, A. Puretzky, and D. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79(8), 1571–1574 (1997).
[Crossref]
J. N. Leboeuf, K. R. Chen, J. M. Donato, D. B. Geohegan, C. L. Liu, A. A. Puretzky, and R. F. Wood, “Modeling of dynamical processes in laser ablation,” Appl. Surf. Sci. 96-98, 14–23 (1996).
[Crossref]
L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Hard Met. 72, 211–222 (2018).
[Crossref]
J. Yuan, L. Liang, L. Jiang, and X. Liu, “Influence of the shielding effect on the formation of a micro-texture on the cermet with nanosecond pulsed laser ablation,” Opt. Lett. 43(7), 1451–1455 (2018).
[Crossref]
L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Hard Met. 72, 211–222 (2018).
[Crossref]
K. Pangovski, O. Otanocha, S. Zhong, M. Sparkes, Z. Liu, W. O’Neilland, and L. Li, “Investigation of plume dynamics during picosecond laser ablation of h13 steel using high-speed digital holography,” Appl. Phys. A 123(2), 114–120 (2017).
[Crossref]
Y. Li, Y. Gu, Z. Zhu, X. Li, H. Ban, Q. Kong, and S. Kawata, “Direct laser acceleration of electron by an ultra-intense and short-pulsed laser in under-dense plasma,” Phys. Plasmas 18(5), 053104 (2011).
[Crossref]
K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–711 (2015).
[Crossref]
L. Balazs, R. Gijbels, and A. Vertes, “Expansion of laser-generated plumes near the plasma ignition threshold,” Anal. Chem. 63(4), 314–320 (1991).
[Crossref]
S. Amoruso, “Modeling of UV pulsed-laser ablation of metallic targets,” Appl. Phys. A 69(3), 323–332 (1999).
[Crossref]
K. Pangovski, O. Otanocha, S. Zhong, M. Sparkes, Z. Liu, W. O’Neilland, and L. Li, “Investigation of plume dynamics during picosecond laser ablation of h13 steel using high-speed digital holography,” Appl. Phys. A 123(2), 114–120 (2017).
[Crossref]
N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys. A 79(4-6), 1323–1326 (2004).
[Crossref]
B. N. Chichkov, C. Momma, and S. Nolte, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]
D. Marla, U. V. Bhandarkar, and S. S. Joshi, “A model of laser ablation with temperature-dependent material properties, vaporization, phase explosion and plasma shielding,” Appl. Phys. A 116(1), 273–285 (2014).
[Crossref]
M. Wautelet, “Laser-assisted reaction of metals with oxygen,” Appl. Phys. A 50(2), 131–139 (1990).
[Crossref]
A. Miotello and R. Kelly, “Critical assessment of thermal models for laser sputtering at high fluences,” Appl. Phys. Lett. 67(24), 3535–3537 (1995).
[Crossref]
M. Jafarabadi and M. Mahdieh, “Investigation of phase explosion in aluminum induced by nanosecond double pulse technique,” Appl. Surf. Sci. 346, 263–269 (2015).
[Crossref]
M. Jafarabadi and M. Mahdieh, “Single and double long pulse laser ablation of aluminum induced in air and water ambient,” Appl. Surf. Sci. 396, 732–739 (2017).
[Crossref]
C. Mcdaniel, A. Flanagan, O. Connor, and M. Gerard, “Evidence for increased incubation parameter in multi-pulse ablation of a Pt:SS alloy using a femtosecond laser at high repetition rates,” Appl. Surf. Sci. 295, 1–7 (2014).
[Crossref]
M. Mahdieh, M. Nikbakht, Z. Moghadam, and M. Sobhani, “Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd:YAG laser in ambient air and water,” Appl. Surf. Sci. 256(6), 1778–1783 (2010).
[Crossref]
J. N. Leboeuf, K. R. Chen, J. M. Donato, D. B. Geohegan, C. L. Liu, A. A. Puretzky, and R. F. Wood, “Modeling of dynamical processes in laser ablation,” Appl. Surf. Sci. 96-98, 14–23 (1996).
[Crossref]
R. Rozman, I. Grabec, and E. Govekar, “Influence of absorption mechanisms on laser-induced plasma plume,” Appl. Surf. Sci. 254(11), 3295–3305 (2008).
[Crossref]
G. Cadot, D. Axinte, and J. Billingham, “Continuous trench, pulsed laser ablation for micro-machining applications,” Int. J. Mach. Tool Manuf. 107, 8–20 (2016).
[Crossref]
L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Hard Met. 72, 211–222 (2018).
[Crossref]
R. Kelly and A. Miotello, “Does normal boiling exist due to laser-pulse or ion bombardment?” J. Appl. Phys. 87(6), 3177–3179 (2000).
[Crossref]
K. Nahen and A. Vogel, “Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation,” J. Biomed. Opt. 7(2), 165–178 (2002).
[Crossref]
A. Samant and N. Dahotre, “Laser machining of structural ceramics—A review,” J. Eur. Ceram. Soc. 29(6), 969–993 (2009).
[Crossref]
V. M. Sglavo and D. J. Green, “Fatigue limit in fused silica,” J. Eur. Ceram. Soc. 21(5), 561–567 (2001).
[Crossref]
U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
[Crossref]
A. Bulgakov and N. Bulgakova, “Gas-dynamic effects of the interaction between a pulsed laser-ablation plume and the ambient gas: analogy with an underexpanded jet,” J. Phys. D: Appl. Phys. 31(6), 693–703 (1998).
[Crossref]
M. Aden, E. Beyer, G. Herziger, and H. Kunze, “Laser induced vaporization of a metal surface,” J. Phys. D: Appl. Phys. 25(1), 57–65 (1992).
[Crossref]
S. Demos, R. Negres, R. Raman, A. Rubenchik, and M. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
[Crossref]
K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]
L. Jiang, A. Wang, B. Li, T. Cui, and Y. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light: Sci. Appl. 7(2), 17134 (2018).
[Crossref]
A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[Crossref]
J. Finger and M. Reininghaus, “Effect of pulse to pulse interactions on ultra-short pulse laser drilling of steel with repetition rates up to 10 MHz,” Opt. Express 22(15), 18790–18799 (2014).
[Crossref]
S. Hendow and S. Shakir, “Structuring materials with nanosecond laser pulses,” Opt. Express 18(10), 10188–10199 (2010).
[Crossref]
S. Eaton, H. Zhang, P. Herman, F. Yoshino, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[Crossref]
G. Gautam and A. Pandey, “Pulsed Nd:YAG laser beam drilling: A review,” Opt. Laser Technol. 100, 183–215 (2018).
[Crossref]
J. Yuan, L. Liang, L. Jiang, and X. Liu, “Influence of the shielding effect on the formation of a micro-texture on the cermet with nanosecond pulsed laser ablation,” Opt. Lett. 43(7), 1451–1455 (2018).
[Crossref]
C. Schaffer, A. Brodeur, J. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
[Crossref]
Y. Li, Y. Gu, Z. Zhu, X. Li, H. Ban, Q. Kong, and S. Kawata, “Direct laser acceleration of electron by an ultra-intense and short-pulsed laser in under-dense plasma,” Phys. Plasmas 18(5), 053104 (2011).
[Crossref]
A. Link, R. Freeman, D. Schumacher, and L. Woerkom, “Effects of target charging and ion emission on the energy spectrum of emitted electrons,” Phys. Plasmas 18(5), 053107 (2011).
[Crossref]
A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E 50(6), 4716–4727 (1994).
[Crossref]
K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]
R. Wood, K. Chen, J. Leboeuf, A. Puretzky, and D. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79(8), 1571–1574 (1997).
[Crossref]
B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]
M. M. Martynyuk, “Vaporization and boiling of liquid metal in an exploding wire,” Soviet. Phys. Tech. Phys. 19(6), 793–797 (1974).