Abstract

Nanosecond pulsed lasers have been widely applied to interact with and characterize many different materials. For the purpose of a broader application, the current challenge is to achieve a speedup of ablation process, which is commonly thought to be possible by raising the on-target laser intensity. But the use of high intensity lasers results in severe laser-matter-plume interaction, leading to unwanted effects (e.g. saturation, shielding and thermal damage), which further affect the ablation process and ablation quality. However, laser-matter-plume interaction and its effects on ablation characteristics during laser scanning ablation processes are not well understood. In this paper, shadowgraph images and optical images during a laser ablation process were taken with a pump-probe shadowgraph imaging setup and an ultrahigh-speed camera. The results demonstrate that, under a high incoming laser density, laser-matter-plume interaction presents a periodical process, and thus cause a major impact on ablation regimes and microstructure formations. Moreover, the characteristics of micromorphologies and ejected particles suggest that the laser-matter-plume interaction has a significant influence on the ablation process, which, in turn, provides a more comprehensive understanding of the influence of laser-matter-plume interaction on the scanning ablation process. Consequently, laser-matter-plume interaction and its influence on the ablation process were summarized and clarified.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental study of the morphological evolution of the millisecond–nanosecond combined-pulse laser ablation of aluminum alloy

Bo-Shi Yuan, Di Wang, Yuan Dong, Wei Zhang, and Guang-Yong Jin
Appl. Opt. 57(20) 5743-5748 (2018)

Theoretical and numerical study of the interaction of a nanosecond laser pulse with a copper target for laser-induced breakdown spectroscopy applications

Amina Kahina Aitoumeziane, Abdelhamid Sari, Bachir Liani, and Jean-Denis Parisse
J. Opt. Soc. Am. B 31(1) 53-61 (2014)

Effect of pulse to pulse interactions on ultra-short pulse laser drilling of steel with repetition rates up to 10 MHz

Johannes Finger and Martin Reininghaus
Opt. Express 22(15) 18790-18799 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Samant and N. Dahotre, “Laser machining of structural ceramics—A review,” J. Eur. Ceram. Soc. 29(6), 969–993 (2009).
    [Crossref]
  2. M. Mahdieh, M. Nikbakht, Z. Moghadam, and M. Sobhani, “Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd:YAG laser in ambient air and water,” Appl. Surf. Sci. 256(6), 1778–1783 (2010).
    [Crossref]
  3. K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
    [Crossref]
  4. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
    [Crossref]
  5. B. N. Chichkov, C. Momma, and S. Nolte, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
    [Crossref]
  6. K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–711 (2015).
    [Crossref]
  7. R. Wood, K. Chen, J. Leboeuf, A. Puretzky, and D. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79(8), 1571–1574 (1997).
    [Crossref]
  8. A. Link, R. Freeman, D. Schumacher, and L. Woerkom, “Effects of target charging and ion emission on the energy spectrum of emitted electrons,” Phys. Plasmas 18(5), 053107 (2011).
    [Crossref]
  9. S. Hendow and S. Shakir, “Structuring materials with nanosecond laser pulses,” Opt. Express 18(10), 10188–10199 (2010).
    [Crossref]
  10. G. Gautam and A. Pandey, “Pulsed Nd:YAG laser beam drilling: A review,” Opt. Laser Technol. 100, 183–215 (2018).
    [Crossref]
  11. A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
    [Crossref]
  12. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
    [Crossref]
  13. D. Marla, U. V. Bhandarkar, and S. S. Joshi, “A model of laser ablation with temperature-dependent material properties, vaporization, phase explosion and plasma shielding,” Appl. Phys. A 116(1), 273–285 (2014).
    [Crossref]
  14. A. Miotello and R. Kelly, “Critical assessment of thermal models for laser sputtering at high fluences,” Appl. Phys. Lett. 67(24), 3535–3537 (1995).
    [Crossref]
  15. M. Jafarabadi and M. Mahdieh, “Investigation of phase explosion in aluminum induced by nanosecond double pulse technique,” Appl. Surf. Sci. 346, 263–269 (2015).
    [Crossref]
  16. M. Jafarabadi and M. Mahdieh, “Single and double long pulse laser ablation of aluminum induced in air and water ambient,” Appl. Surf. Sci. 396, 732–739 (2017).
    [Crossref]
  17. M. Wautelet, “Laser-assisted reaction of metals with oxygen,” Appl. Phys. A 50(2), 131–139 (1990).
    [Crossref]
  18. C. Mcdaniel, A. Flanagan, O. Connor, and M. Gerard, “Evidence for increased incubation parameter in multi-pulse ablation of a Pt:SS alloy using a femtosecond laser at high repetition rates,” Appl. Surf. Sci. 295, 1–7 (2014).
    [Crossref]
  19. R. Kelly and A. Miotello, “Does normal boiling exist due to laser-pulse or ion bombardment?” J. Appl. Phys. 87(6), 3177–3179 (2000).
    [Crossref]
  20. M. M. Martynyuk, “Vaporization and boiling of liquid metal in an exploding wire,” Soviet. Phys. Tech. Phys. 19(6), 793–797 (1974).
  21. M. Aden, E. Beyer, G. Herziger, and H. Kunze, “Laser induced vaporization of a metal surface,” J. Phys. D: Appl. Phys. 25(1), 57–65 (1992).
    [Crossref]
  22. J. N. Leboeuf, K. R. Chen, J. M. Donato, D. B. Geohegan, C. L. Liu, A. A. Puretzky, and R. F. Wood, “Modeling of dynamical processes in laser ablation,” Appl. Surf. Sci. 96-98, 14–23 (1996).
    [Crossref]
  23. A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E 50(6), 4716–4727 (1994).
    [Crossref]
  24. N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys. A 79(4-6), 1323–1326 (2004).
    [Crossref]
  25. G. Cadot, D. Axinte, and J. Billingham, “Continuous trench, pulsed laser ablation for micro-machining applications,” Int. J. Mach. Tool Manuf. 107, 8–20 (2016).
    [Crossref]
  26. R. Rozman, I. Grabec, and E. Govekar, “Influence of absorption mechanisms on laser-induced plasma plume,” Appl. Surf. Sci. 254(11), 3295–3305 (2008).
    [Crossref]
  27. K. Nahen and A. Vogel, “Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation,” J. Biomed. Opt. 7(2), 165–178 (2002).
    [Crossref]
  28. A. Bulgakov and N. Bulgakova, “Gas-dynamic effects of the interaction between a pulsed laser-ablation plume and the ambient gas: analogy with an underexpanded jet,” J. Phys. D: Appl. Phys. 31(6), 693–703 (1998).
    [Crossref]
  29. S. Demos, R. Negres, R. Raman, A. Rubenchik, and M. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
    [Crossref]
  30. J. Yuan, L. Liang, L. Jiang, and X. Liu, “Influence of the shielding effect on the formation of a micro-texture on the cermet with nanosecond pulsed laser ablation,” Opt. Lett. 43(7), 1451–1455 (2018).
    [Crossref]
  31. L. Balazs, R. Gijbels, and A. Vertes, “Expansion of laser-generated plumes near the plasma ignition threshold,” Anal. Chem. 63(4), 314–320 (1991).
    [Crossref]
  32. S. Amoruso, “Modeling of UV pulsed-laser ablation of metallic targets,” Appl. Phys. A 69(3), 323–332 (1999).
    [Crossref]
  33. K. Pangovski, O. Otanocha, S. Zhong, M. Sparkes, Z. Liu, W. O’Neilland, and L. Li, “Investigation of plume dynamics during picosecond laser ablation of h13 steel using high-speed digital holography,” Appl. Phys. A 123(2), 114–120 (2017).
    [Crossref]
  34. L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Hard Met. 72, 211–222 (2018).
    [Crossref]
  35. U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
    [Crossref]
  36. J. Finger and M. Reininghaus, “Effect of pulse to pulse interactions on ultra-short pulse laser drilling of steel with repetition rates up to 10 MHz,” Opt. Express 22(15), 18790–18799 (2014).
    [Crossref]
  37. Y. Li, Y. Gu, Z. Zhu, X. Li, H. Ban, Q. Kong, and S. Kawata, “Direct laser acceleration of electron by an ultra-intense and short-pulsed laser in under-dense plasma,” Phys. Plasmas 18(5), 053104 (2011).
    [Crossref]
  38. L. Jiang, A. Wang, B. Li, T. Cui, and Y. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light: Sci. Appl. 7(2), 17134 (2018).
    [Crossref]
  39. C. Schaffer, A. Brodeur, J. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
    [Crossref]
  40. S. Eaton, H. Zhang, P. Herman, F. Yoshino, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [Crossref]
  41. S. Demos, R. Negres, R. Raman, M. Fert, K. Manes, and A. Rubenchik, “Relaxation dynamics of nanosecond laser superheated material in dielectrics,” Optica 2(8), 765–772 (2015).
    [Crossref]
  42. V. M. Sglavo and D. J. Green, “Fatigue limit in fused silica,” J. Eur. Ceram. Soc. 21(5), 561–567 (2001).
    [Crossref]

2018 (4)

G. Gautam and A. Pandey, “Pulsed Nd:YAG laser beam drilling: A review,” Opt. Laser Technol. 100, 183–215 (2018).
[Crossref]

L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Hard Met. 72, 211–222 (2018).
[Crossref]

L. Jiang, A. Wang, B. Li, T. Cui, and Y. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light: Sci. Appl. 7(2), 17134 (2018).
[Crossref]

J. Yuan, L. Liang, L. Jiang, and X. Liu, “Influence of the shielding effect on the formation of a micro-texture on the cermet with nanosecond pulsed laser ablation,” Opt. Lett. 43(7), 1451–1455 (2018).
[Crossref]

2017 (2)

K. Pangovski, O. Otanocha, S. Zhong, M. Sparkes, Z. Liu, W. O’Neilland, and L. Li, “Investigation of plume dynamics during picosecond laser ablation of h13 steel using high-speed digital holography,” Appl. Phys. A 123(2), 114–120 (2017).
[Crossref]

M. Jafarabadi and M. Mahdieh, “Single and double long pulse laser ablation of aluminum induced in air and water ambient,” Appl. Surf. Sci. 396, 732–739 (2017).
[Crossref]

2016 (1)

G. Cadot, D. Axinte, and J. Billingham, “Continuous trench, pulsed laser ablation for micro-machining applications,” Int. J. Mach. Tool Manuf. 107, 8–20 (2016).
[Crossref]

2015 (3)

M. Jafarabadi and M. Mahdieh, “Investigation of phase explosion in aluminum induced by nanosecond double pulse technique,” Appl. Surf. Sci. 346, 263–269 (2015).
[Crossref]

K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–711 (2015).
[Crossref]

S. Demos, R. Negres, R. Raman, M. Fert, K. Manes, and A. Rubenchik, “Relaxation dynamics of nanosecond laser superheated material in dielectrics,” Optica 2(8), 765–772 (2015).
[Crossref]

2014 (4)

J. Finger and M. Reininghaus, “Effect of pulse to pulse interactions on ultra-short pulse laser drilling of steel with repetition rates up to 10 MHz,” Opt. Express 22(15), 18790–18799 (2014).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

C. Mcdaniel, A. Flanagan, O. Connor, and M. Gerard, “Evidence for increased incubation parameter in multi-pulse ablation of a Pt:SS alloy using a femtosecond laser at high repetition rates,” Appl. Surf. Sci. 295, 1–7 (2014).
[Crossref]

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “A model of laser ablation with temperature-dependent material properties, vaporization, phase explosion and plasma shielding,” Appl. Phys. A 116(1), 273–285 (2014).
[Crossref]

2013 (1)

S. Demos, R. Negres, R. Raman, A. Rubenchik, and M. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
[Crossref]

2012 (1)

U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
[Crossref]

2011 (2)

Y. Li, Y. Gu, Z. Zhu, X. Li, H. Ban, Q. Kong, and S. Kawata, “Direct laser acceleration of electron by an ultra-intense and short-pulsed laser in under-dense plasma,” Phys. Plasmas 18(5), 053104 (2011).
[Crossref]

A. Link, R. Freeman, D. Schumacher, and L. Woerkom, “Effects of target charging and ion emission on the energy spectrum of emitted electrons,” Phys. Plasmas 18(5), 053107 (2011).
[Crossref]

2010 (2)

M. Mahdieh, M. Nikbakht, Z. Moghadam, and M. Sobhani, “Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd:YAG laser in ambient air and water,” Appl. Surf. Sci. 256(6), 1778–1783 (2010).
[Crossref]

S. Hendow and S. Shakir, “Structuring materials with nanosecond laser pulses,” Opt. Express 18(10), 10188–10199 (2010).
[Crossref]

2009 (1)

A. Samant and N. Dahotre, “Laser machining of structural ceramics—A review,” J. Eur. Ceram. Soc. 29(6), 969–993 (2009).
[Crossref]

2008 (1)

R. Rozman, I. Grabec, and E. Govekar, “Influence of absorption mechanisms on laser-induced plasma plume,” Appl. Surf. Sci. 254(11), 3295–3305 (2008).
[Crossref]

2005 (1)

2004 (1)

N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys. A 79(4-6), 1323–1326 (2004).
[Crossref]

2003 (1)

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[Crossref]

2002 (1)

K. Nahen and A. Vogel, “Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation,” J. Biomed. Opt. 7(2), 165–178 (2002).
[Crossref]

2001 (2)

2000 (1)

R. Kelly and A. Miotello, “Does normal boiling exist due to laser-pulse or ion bombardment?” J. Appl. Phys. 87(6), 3177–3179 (2000).
[Crossref]

1999 (1)

S. Amoruso, “Modeling of UV pulsed-laser ablation of metallic targets,” Appl. Phys. A 69(3), 323–332 (1999).
[Crossref]

1998 (2)

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

A. Bulgakov and N. Bulgakova, “Gas-dynamic effects of the interaction between a pulsed laser-ablation plume and the ambient gas: analogy with an underexpanded jet,” J. Phys. D: Appl. Phys. 31(6), 693–703 (1998).
[Crossref]

1997 (1)

R. Wood, K. Chen, J. Leboeuf, A. Puretzky, and D. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79(8), 1571–1574 (1997).
[Crossref]

1996 (2)

B. N. Chichkov, C. Momma, and S. Nolte, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

J. N. Leboeuf, K. R. Chen, J. M. Donato, D. B. Geohegan, C. L. Liu, A. A. Puretzky, and R. F. Wood, “Modeling of dynamical processes in laser ablation,” Appl. Surf. Sci. 96-98, 14–23 (1996).
[Crossref]

1995 (2)

A. Miotello and R. Kelly, “Critical assessment of thermal models for laser sputtering at high fluences,” Appl. Phys. Lett. 67(24), 3535–3537 (1995).
[Crossref]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]

1994 (1)

A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E 50(6), 4716–4727 (1994).
[Crossref]

1992 (1)

M. Aden, E. Beyer, G. Herziger, and H. Kunze, “Laser induced vaporization of a metal surface,” J. Phys. D: Appl. Phys. 25(1), 57–65 (1992).
[Crossref]

1991 (1)

L. Balazs, R. Gijbels, and A. Vertes, “Expansion of laser-generated plumes near the plasma ignition threshold,” Anal. Chem. 63(4), 314–320 (1991).
[Crossref]

1990 (1)

M. Wautelet, “Laser-assisted reaction of metals with oxygen,” Appl. Phys. A 50(2), 131–139 (1990).
[Crossref]

1974 (1)

M. M. Martynyuk, “Vaporization and boiling of liquid metal in an exploding wire,” Soviet. Phys. Tech. Phys. 19(6), 793–797 (1974).

Aden, M.

M. Aden, E. Beyer, G. Herziger, and H. Kunze, “Laser induced vaporization of a metal surface,” J. Phys. D: Appl. Phys. 25(1), 57–65 (1992).
[Crossref]

Alexeev, I.

U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
[Crossref]

Amoruso, S.

S. Amoruso, “Modeling of UV pulsed-laser ablation of metallic targets,” Appl. Phys. A 69(3), 323–332 (1999).
[Crossref]

Anisimov, S. I.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Arai, A.

Axinte, D.

G. Cadot, D. Axinte, and J. Billingham, “Continuous trench, pulsed laser ablation for micro-machining applications,” Int. J. Mach. Tool Manuf. 107, 8–20 (2016).
[Crossref]

Babich, L. P.

N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys. A 79(4-6), 1323–1326 (2004).
[Crossref]

Balazs, L.

L. Balazs, R. Gijbels, and A. Vertes, “Expansion of laser-generated plumes near the plasma ignition threshold,” Anal. Chem. 63(4), 314–320 (1991).
[Crossref]

Ban, H.

Y. Li, Y. Gu, Z. Zhu, X. Li, H. Ban, Q. Kong, and S. Kawata, “Direct laser acceleration of electron by an ultra-intense and short-pulsed laser in under-dense plasma,” Phys. Plasmas 18(5), 053104 (2011).
[Crossref]

Beyer, E.

M. Aden, E. Beyer, G. Herziger, and H. Kunze, “Laser induced vaporization of a metal surface,” J. Phys. D: Appl. Phys. 25(1), 57–65 (1992).
[Crossref]

Bhandarkar, U. V.

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “A model of laser ablation with temperature-dependent material properties, vaporization, phase explosion and plasma shielding,” Appl. Phys. A 116(1), 273–285 (2014).
[Crossref]

Bialkowski, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Billingham, J.

G. Cadot, D. Axinte, and J. Billingham, “Continuous trench, pulsed laser ablation for micro-machining applications,” Int. J. Mach. Tool Manuf. 107, 8–20 (2016).
[Crossref]

Brodeur, A.

Bulgakov, A.

A. Bulgakov and N. Bulgakova, “Gas-dynamic effects of the interaction between a pulsed laser-ablation plume and the ambient gas: analogy with an underexpanded jet,” J. Phys. D: Appl. Phys. 31(6), 693–703 (1998).
[Crossref]

Bulgakov, A. V.

N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys. A 79(4-6), 1323–1326 (2004).
[Crossref]

Bulgakova, N.

A. Bulgakov and N. Bulgakova, “Gas-dynamic effects of the interaction between a pulsed laser-ablation plume and the ambient gas: analogy with an underexpanded jet,” J. Phys. D: Appl. Phys. 31(6), 693–703 (1998).
[Crossref]

Bulgakova, N. M.

N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys. A 79(4-6), 1323–1326 (2004).
[Crossref]

Cadot, G.

G. Cadot, D. Axinte, and J. Billingham, “Continuous trench, pulsed laser ablation for micro-machining applications,” Int. J. Mach. Tool Manuf. 107, 8–20 (2016).
[Crossref]

Cavalleri, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Chen, K.

R. Wood, K. Chen, J. Leboeuf, A. Puretzky, and D. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79(8), 1571–1574 (1997).
[Crossref]

Chen, K. R.

J. N. Leboeuf, K. R. Chen, J. M. Donato, D. B. Geohegan, C. L. Liu, A. A. Puretzky, and R. F. Wood, “Modeling of dynamical processes in laser ablation,” Appl. Surf. Sci. 96-98, 14–23 (1996).
[Crossref]

Cheng, Y.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

Chichkov, B. N.

B. N. Chichkov, C. Momma, and S. Nolte, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Connor, O.

C. Mcdaniel, A. Flanagan, O. Connor, and M. Gerard, “Evidence for increased incubation parameter in multi-pulse ablation of a Pt:SS alloy using a femtosecond laser at high repetition rates,” Appl. Surf. Sci. 295, 1–7 (2014).
[Crossref]

Cui, T.

L. Jiang, A. Wang, B. Li, T. Cui, and Y. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light: Sci. Appl. 7(2), 17134 (2018).
[Crossref]

Dahotre, N.

A. Samant and N. Dahotre, “Laser machining of structural ceramics—A review,” J. Eur. Ceram. Soc. 29(6), 969–993 (2009).
[Crossref]

Deichmann, L.

U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
[Crossref]

Demos, S.

S. Demos, R. Negres, R. Raman, M. Fert, K. Manes, and A. Rubenchik, “Relaxation dynamics of nanosecond laser superheated material in dielectrics,” Optica 2(8), 765–772 (2015).
[Crossref]

S. Demos, R. Negres, R. Raman, A. Rubenchik, and M. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
[Crossref]

Donato, J. M.

J. N. Leboeuf, K. R. Chen, J. M. Donato, D. B. Geohegan, C. L. Liu, A. A. Puretzky, and R. F. Wood, “Modeling of dynamical processes in laser ablation,” Appl. Surf. Sci. 96-98, 14–23 (1996).
[Crossref]

Eaton, S.

Feit, M.

S. Demos, R. Negres, R. Raman, A. Rubenchik, and M. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
[Crossref]

Feit, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]

Fert, M.

Finger, J.

Flanagan, A.

C. Mcdaniel, A. Flanagan, O. Connor, and M. Gerard, “Evidence for increased incubation parameter in multi-pulse ablation of a Pt:SS alloy using a femtosecond laser at high repetition rates,” Appl. Surf. Sci. 295, 1–7 (2014).
[Crossref]

Freeman, R.

A. Link, R. Freeman, D. Schumacher, and L. Woerkom, “Effects of target charging and ion emission on the energy spectrum of emitted electrons,” Phys. Plasmas 18(5), 053107 (2011).
[Crossref]

Gandhi, H.

K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–711 (2015).
[Crossref]

Garcia, J.

Gautam, G.

G. Gautam and A. Pandey, “Pulsed Nd:YAG laser beam drilling: A review,” Opt. Laser Technol. 100, 183–215 (2018).
[Crossref]

Genin, F. Y.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[Crossref]

Geohegan, D.

R. Wood, K. Chen, J. Leboeuf, A. Puretzky, and D. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79(8), 1571–1574 (1997).
[Crossref]

Geohegan, D. B.

J. N. Leboeuf, K. R. Chen, J. M. Donato, D. B. Geohegan, C. L. Liu, A. A. Puretzky, and R. F. Wood, “Modeling of dynamical processes in laser ablation,” Appl. Surf. Sci. 96-98, 14–23 (1996).
[Crossref]

Gerard, M.

C. Mcdaniel, A. Flanagan, O. Connor, and M. Gerard, “Evidence for increased incubation parameter in multi-pulse ablation of a Pt:SS alloy using a femtosecond laser at high repetition rates,” Appl. Surf. Sci. 295, 1–7 (2014).
[Crossref]

Gijbels, R.

L. Balazs, R. Gijbels, and A. Vertes, “Expansion of laser-generated plumes near the plasma ignition threshold,” Anal. Chem. 63(4), 314–320 (1991).
[Crossref]

Govekar, E.

R. Rozman, I. Grabec, and E. Govekar, “Influence of absorption mechanisms on laser-induced plasma plume,” Appl. Surf. Sci. 254(11), 3295–3305 (2008).
[Crossref]

Grabec, I.

R. Rozman, I. Grabec, and E. Govekar, “Influence of absorption mechanisms on laser-induced plasma plume,” Appl. Surf. Sci. 254(11), 3295–3305 (2008).
[Crossref]

Green, D. J.

V. M. Sglavo and D. J. Green, “Fatigue limit in fused silica,” J. Eur. Ceram. Soc. 21(5), 561–567 (2001).
[Crossref]

Gu, Y.

Y. Li, Y. Gu, Z. Zhu, X. Li, H. Ban, Q. Kong, and S. Kawata, “Direct laser acceleration of electron by an ultra-intense and short-pulsed laser in under-dense plasma,” Phys. Plasmas 18(5), 053104 (2011).
[Crossref]

Hendow, S.

Herman, P.

Herziger, G.

M. Aden, E. Beyer, G. Herziger, and H. Kunze, “Laser induced vaporization of a metal surface,” J. Phys. D: Appl. Phys. 25(1), 57–65 (1992).
[Crossref]

Jafarabadi, M.

M. Jafarabadi and M. Mahdieh, “Single and double long pulse laser ablation of aluminum induced in air and water ambient,” Appl. Surf. Sci. 396, 732–739 (2017).
[Crossref]

M. Jafarabadi and M. Mahdieh, “Investigation of phase explosion in aluminum induced by nanosecond double pulse technique,” Appl. Surf. Sci. 346, 263–269 (2015).
[Crossref]

Jeanloz, R.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[Crossref]

Jiang, L.

L. Jiang, A. Wang, B. Li, T. Cui, and Y. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light: Sci. Appl. 7(2), 17134 (2018).
[Crossref]

L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Hard Met. 72, 211–222 (2018).
[Crossref]

J. Yuan, L. Liang, L. Jiang, and X. Liu, “Influence of the shielding effect on the formation of a micro-texture on the cermet with nanosecond pulsed laser ablation,” Opt. Lett. 43(7), 1451–1455 (2018).
[Crossref]

Joshi, S. S.

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “A model of laser ablation with temperature-dependent material properties, vaporization, phase explosion and plasma shielding,” Appl. Phys. A 116(1), 273–285 (2014).
[Crossref]

Kawata, S.

Y. Li, Y. Gu, Z. Zhu, X. Li, H. Ban, Q. Kong, and S. Kawata, “Direct laser acceleration of electron by an ultra-intense and short-pulsed laser in under-dense plasma,” Phys. Plasmas 18(5), 053104 (2011).
[Crossref]

Kelly, R.

R. Kelly and A. Miotello, “Does normal boiling exist due to laser-pulse or ion bombardment?” J. Appl. Phys. 87(6), 3177–3179 (2000).
[Crossref]

A. Miotello and R. Kelly, “Critical assessment of thermal models for laser sputtering at high fluences,” Appl. Phys. Lett. 67(24), 3535–3537 (1995).
[Crossref]

A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E 50(6), 4716–4727 (1994).
[Crossref]

Kong, Q.

Y. Li, Y. Gu, Z. Zhu, X. Li, H. Ban, Q. Kong, and S. Kawata, “Direct laser acceleration of electron by an ultra-intense and short-pulsed laser in under-dense plasma,” Phys. Plasmas 18(5), 053104 (2011).
[Crossref]

Kunze, H.

M. Aden, E. Beyer, G. Herziger, and H. Kunze, “Laser induced vaporization of a metal surface,” J. Phys. D: Appl. Phys. 25(1), 57–65 (1992).
[Crossref]

Leboeuf, J.

R. Wood, K. Chen, J. Leboeuf, A. Puretzky, and D. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79(8), 1571–1574 (1997).
[Crossref]

Leboeuf, J. N.

J. N. Leboeuf, K. R. Chen, J. M. Donato, D. B. Geohegan, C. L. Liu, A. A. Puretzky, and R. F. Wood, “Modeling of dynamical processes in laser ablation,” Appl. Surf. Sci. 96-98, 14–23 (1996).
[Crossref]

Leitz, K.

U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
[Crossref]

Li, B.

L. Jiang, A. Wang, B. Li, T. Cui, and Y. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light: Sci. Appl. 7(2), 17134 (2018).
[Crossref]

Li, L.

K. Pangovski, O. Otanocha, S. Zhong, M. Sparkes, Z. Liu, W. O’Neilland, and L. Li, “Investigation of plume dynamics during picosecond laser ablation of h13 steel using high-speed digital holography,” Appl. Phys. A 123(2), 114–120 (2017).
[Crossref]

Li, X.

L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Hard Met. 72, 211–222 (2018).
[Crossref]

Y. Li, Y. Gu, Z. Zhu, X. Li, H. Ban, Q. Kong, and S. Kawata, “Direct laser acceleration of electron by an ultra-intense and short-pulsed laser in under-dense plasma,” Phys. Plasmas 18(5), 053104 (2011).
[Crossref]

Li, Y.

Y. Li, Y. Gu, Z. Zhu, X. Li, H. Ban, Q. Kong, and S. Kawata, “Direct laser acceleration of electron by an ultra-intense and short-pulsed laser in under-dense plasma,” Phys. Plasmas 18(5), 053104 (2011).
[Crossref]

Liang, L.

L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Hard Met. 72, 211–222 (2018).
[Crossref]

J. Yuan, L. Liang, L. Jiang, and X. Liu, “Influence of the shielding effect on the formation of a micro-texture on the cermet with nanosecond pulsed laser ablation,” Opt. Lett. 43(7), 1451–1455 (2018).
[Crossref]

Link, A.

A. Link, R. Freeman, D. Schumacher, and L. Woerkom, “Effects of target charging and ion emission on the energy spectrum of emitted electrons,” Phys. Plasmas 18(5), 053107 (2011).
[Crossref]

Liu, C. L.

J. N. Leboeuf, K. R. Chen, J. M. Donato, D. B. Geohegan, C. L. Liu, A. A. Puretzky, and R. F. Wood, “Modeling of dynamical processes in laser ablation,” Appl. Surf. Sci. 96-98, 14–23 (1996).
[Crossref]

Liu, X.

Liu, Z.

K. Pangovski, O. Otanocha, S. Zhong, M. Sparkes, Z. Liu, W. O’Neilland, and L. Li, “Investigation of plume dynamics during picosecond laser ablation of h13 steel using high-speed digital holography,” Appl. Phys. A 123(2), 114–120 (2017).
[Crossref]

Lu, Y.

L. Jiang, A. Wang, B. Li, T. Cui, and Y. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light: Sci. Appl. 7(2), 17134 (2018).
[Crossref]

Mahdieh, M.

M. Jafarabadi and M. Mahdieh, “Single and double long pulse laser ablation of aluminum induced in air and water ambient,” Appl. Surf. Sci. 396, 732–739 (2017).
[Crossref]

M. Jafarabadi and M. Mahdieh, “Investigation of phase explosion in aluminum induced by nanosecond double pulse technique,” Appl. Surf. Sci. 346, 263–269 (2015).
[Crossref]

M. Mahdieh, M. Nikbakht, Z. Moghadam, and M. Sobhani, “Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd:YAG laser in ambient air and water,” Appl. Surf. Sci. 256(6), 1778–1783 (2010).
[Crossref]

Manes, K.

Marla, D.

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “A model of laser ablation with temperature-dependent material properties, vaporization, phase explosion and plasma shielding,” Appl. Phys. A 116(1), 273–285 (2014).
[Crossref]

Martin, M. C.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[Crossref]

Martynyuk, M. M.

M. M. Martynyuk, “Vaporization and boiling of liquid metal in an exploding wire,” Soviet. Phys. Tech. Phys. 19(6), 793–797 (1974).

Mazur, E.

K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–711 (2015).
[Crossref]

C. Schaffer, A. Brodeur, J. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
[Crossref]

Mcdaniel, C.

C. Mcdaniel, A. Flanagan, O. Connor, and M. Gerard, “Evidence for increased incubation parameter in multi-pulse ablation of a Pt:SS alloy using a femtosecond laser at high repetition rates,” Appl. Surf. Sci. 295, 1–7 (2014).
[Crossref]

Meyer-ter-Vehn, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Miotello, A.

R. Kelly and A. Miotello, “Does normal boiling exist due to laser-pulse or ion bombardment?” J. Appl. Phys. 87(6), 3177–3179 (2000).
[Crossref]

A. Miotello and R. Kelly, “Critical assessment of thermal models for laser sputtering at high fluences,” Appl. Phys. Lett. 67(24), 3535–3537 (1995).
[Crossref]

A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E 50(6), 4716–4727 (1994).
[Crossref]

Moghadam, Z.

M. Mahdieh, M. Nikbakht, Z. Moghadam, and M. Sobhani, “Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd:YAG laser in ambient air and water,” Appl. Surf. Sci. 256(6), 1778–1783 (2010).
[Crossref]

Momma, C.

B. N. Chichkov, C. Momma, and S. Nolte, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Nahen, K.

K. Nahen and A. Vogel, “Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation,” J. Biomed. Opt. 7(2), 165–178 (2002).
[Crossref]

Negres, R.

S. Demos, R. Negres, R. Raman, M. Fert, K. Manes, and A. Rubenchik, “Relaxation dynamics of nanosecond laser superheated material in dielectrics,” Optica 2(8), 765–772 (2015).
[Crossref]

S. Demos, R. Negres, R. Raman, A. Rubenchik, and M. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
[Crossref]

Nikbakht, M.

M. Mahdieh, M. Nikbakht, Z. Moghadam, and M. Sobhani, “Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd:YAG laser in ambient air and water,” Appl. Surf. Sci. 256(6), 1778–1783 (2010).
[Crossref]

Nolte, S.

B. N. Chichkov, C. Momma, and S. Nolte, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

O’Neilland, W.

K. Pangovski, O. Otanocha, S. Zhong, M. Sparkes, Z. Liu, W. O’Neilland, and L. Li, “Investigation of plume dynamics during picosecond laser ablation of h13 steel using high-speed digital holography,” Appl. Phys. A 123(2), 114–120 (2017).
[Crossref]

Oparin, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Otanocha, O.

K. Pangovski, O. Otanocha, S. Zhong, M. Sparkes, Z. Liu, W. O’Neilland, and L. Li, “Investigation of plume dynamics during picosecond laser ablation of h13 steel using high-speed digital holography,” Appl. Phys. A 123(2), 114–120 (2017).
[Crossref]

Pandey, A.

G. Gautam and A. Pandey, “Pulsed Nd:YAG laser beam drilling: A review,” Opt. Laser Technol. 100, 183–215 (2018).
[Crossref]

Panero, W. R.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[Crossref]

Pangovski, K.

K. Pangovski, O. Otanocha, S. Zhong, M. Sparkes, Z. Liu, W. O’Neilland, and L. Li, “Investigation of plume dynamics during picosecond laser ablation of h13 steel using high-speed digital holography,” Appl. Phys. A 123(2), 114–120 (2017).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]

Peterlongo, A.

A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E 50(6), 4716–4727 (1994).
[Crossref]

Phillips, K.

K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–711 (2015).
[Crossref]

Puretzky, A.

R. Wood, K. Chen, J. Leboeuf, A. Puretzky, and D. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79(8), 1571–1574 (1997).
[Crossref]

Puretzky, A. A.

J. N. Leboeuf, K. R. Chen, J. M. Donato, D. B. Geohegan, C. L. Liu, A. A. Puretzky, and R. F. Wood, “Modeling of dynamical processes in laser ablation,” Appl. Surf. Sci. 96-98, 14–23 (1996).
[Crossref]

Quentin, U.

U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
[Crossref]

Raman, R.

S. Demos, R. Negres, R. Raman, M. Fert, K. Manes, and A. Rubenchik, “Relaxation dynamics of nanosecond laser superheated material in dielectrics,” Optica 2(8), 765–772 (2015).
[Crossref]

S. Demos, R. Negres, R. Raman, A. Rubenchik, and M. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
[Crossref]

Reininghaus, M.

Rozman, R.

R. Rozman, I. Grabec, and E. Govekar, “Influence of absorption mechanisms on laser-induced plasma plume,” Appl. Surf. Sci. 254(11), 3295–3305 (2008).
[Crossref]

Rubenchik, A.

S. Demos, R. Negres, R. Raman, M. Fert, K. Manes, and A. Rubenchik, “Relaxation dynamics of nanosecond laser superheated material in dielectrics,” Optica 2(8), 765–772 (2015).
[Crossref]

S. Demos, R. Negres, R. Raman, A. Rubenchik, and M. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
[Crossref]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]

Salleo, A.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[Crossref]

Samant, A.

A. Samant and N. Dahotre, “Laser machining of structural ceramics—A review,” J. Eur. Ceram. Soc. 29(6), 969–993 (2009).
[Crossref]

Sands, T.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[Crossref]

Schaffer, C.

Schmidt, M.

U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
[Crossref]

Schumacher, D.

A. Link, R. Freeman, D. Schumacher, and L. Woerkom, “Effects of target charging and ion emission on the energy spectrum of emitted electrons,” Phys. Plasmas 18(5), 053107 (2011).
[Crossref]

Sglavo, V. M.

V. M. Sglavo and D. J. Green, “Fatigue limit in fused silica,” J. Eur. Ceram. Soc. 21(5), 561–567 (2001).
[Crossref]

Shakir, S.

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]

Sobhani, M.

M. Mahdieh, M. Nikbakht, Z. Moghadam, and M. Sobhani, “Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd:YAG laser in ambient air and water,” Appl. Surf. Sci. 256(6), 1778–1783 (2010).
[Crossref]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Sparkes, M.

K. Pangovski, O. Otanocha, S. Zhong, M. Sparkes, Z. Liu, W. O’Neilland, and L. Li, “Investigation of plume dynamics during picosecond laser ablation of h13 steel using high-speed digital holography,” Appl. Phys. A 123(2), 114–120 (2017).
[Crossref]

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

Sundaram, S.

K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–711 (2015).
[Crossref]

Taylor, S. T.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[Crossref]

Vertes, A.

L. Balazs, R. Gijbels, and A. Vertes, “Expansion of laser-generated plumes near the plasma ignition threshold,” Anal. Chem. 63(4), 314–320 (1991).
[Crossref]

Vogel, A.

K. Nahen and A. Vogel, “Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation,” J. Biomed. Opt. 7(2), 165–178 (2002).
[Crossref]

Von Der Linde, D.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Wang, A.

L. Jiang, A. Wang, B. Li, T. Cui, and Y. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light: Sci. Appl. 7(2), 17134 (2018).
[Crossref]

Wautelet, M.

M. Wautelet, “Laser-assisted reaction of metals with oxygen,” Appl. Phys. A 50(2), 131–139 (1990).
[Crossref]

Woerkom, L.

A. Link, R. Freeman, D. Schumacher, and L. Woerkom, “Effects of target charging and ion emission on the energy spectrum of emitted electrons,” Phys. Plasmas 18(5), 053107 (2011).
[Crossref]

Wood, R.

R. Wood, K. Chen, J. Leboeuf, A. Puretzky, and D. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79(8), 1571–1574 (1997).
[Crossref]

Wood, R. F.

J. N. Leboeuf, K. R. Chen, J. M. Donato, D. B. Geohegan, C. L. Liu, A. A. Puretzky, and R. F. Wood, “Modeling of dynamical processes in laser ablation,” Appl. Surf. Sci. 96-98, 14–23 (1996).
[Crossref]

Yang, F.

L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Hard Met. 72, 211–222 (2018).
[Crossref]

Yoshino, F.

Yuan, J.

J. Yuan, L. Liang, L. Jiang, and X. Liu, “Influence of the shielding effect on the formation of a micro-texture on the cermet with nanosecond pulsed laser ablation,” Opt. Lett. 43(7), 1451–1455 (2018).
[Crossref]

L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Hard Met. 72, 211–222 (2018).
[Crossref]

Zhang, H.

Zhong, S.

K. Pangovski, O. Otanocha, S. Zhong, M. Sparkes, Z. Liu, W. O’Neilland, and L. Li, “Investigation of plume dynamics during picosecond laser ablation of h13 steel using high-speed digital holography,” Appl. Phys. A 123(2), 114–120 (2017).
[Crossref]

Zhu, Z.

Y. Li, Y. Gu, Z. Zhu, X. Li, H. Ban, Q. Kong, and S. Kawata, “Direct laser acceleration of electron by an ultra-intense and short-pulsed laser in under-dense plasma,” Phys. Plasmas 18(5), 053104 (2011).
[Crossref]

Adv. Opt. Photonics (1)

K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–711 (2015).
[Crossref]

Anal. Chem. (1)

L. Balazs, R. Gijbels, and A. Vertes, “Expansion of laser-generated plumes near the plasma ignition threshold,” Anal. Chem. 63(4), 314–320 (1991).
[Crossref]

Appl. Phys. A (6)

S. Amoruso, “Modeling of UV pulsed-laser ablation of metallic targets,” Appl. Phys. A 69(3), 323–332 (1999).
[Crossref]

K. Pangovski, O. Otanocha, S. Zhong, M. Sparkes, Z. Liu, W. O’Neilland, and L. Li, “Investigation of plume dynamics during picosecond laser ablation of h13 steel using high-speed digital holography,” Appl. Phys. A 123(2), 114–120 (2017).
[Crossref]

N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys. A 79(4-6), 1323–1326 (2004).
[Crossref]

B. N. Chichkov, C. Momma, and S. Nolte, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “A model of laser ablation with temperature-dependent material properties, vaporization, phase explosion and plasma shielding,” Appl. Phys. A 116(1), 273–285 (2014).
[Crossref]

M. Wautelet, “Laser-assisted reaction of metals with oxygen,” Appl. Phys. A 50(2), 131–139 (1990).
[Crossref]

Appl. Phys. Lett. (1)

A. Miotello and R. Kelly, “Critical assessment of thermal models for laser sputtering at high fluences,” Appl. Phys. Lett. 67(24), 3535–3537 (1995).
[Crossref]

Appl. Surf. Sci. (6)

M. Jafarabadi and M. Mahdieh, “Investigation of phase explosion in aluminum induced by nanosecond double pulse technique,” Appl. Surf. Sci. 346, 263–269 (2015).
[Crossref]

M. Jafarabadi and M. Mahdieh, “Single and double long pulse laser ablation of aluminum induced in air and water ambient,” Appl. Surf. Sci. 396, 732–739 (2017).
[Crossref]

C. Mcdaniel, A. Flanagan, O. Connor, and M. Gerard, “Evidence for increased incubation parameter in multi-pulse ablation of a Pt:SS alloy using a femtosecond laser at high repetition rates,” Appl. Surf. Sci. 295, 1–7 (2014).
[Crossref]

M. Mahdieh, M. Nikbakht, Z. Moghadam, and M. Sobhani, “Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd:YAG laser in ambient air and water,” Appl. Surf. Sci. 256(6), 1778–1783 (2010).
[Crossref]

J. N. Leboeuf, K. R. Chen, J. M. Donato, D. B. Geohegan, C. L. Liu, A. A. Puretzky, and R. F. Wood, “Modeling of dynamical processes in laser ablation,” Appl. Surf. Sci. 96-98, 14–23 (1996).
[Crossref]

R. Rozman, I. Grabec, and E. Govekar, “Influence of absorption mechanisms on laser-induced plasma plume,” Appl. Surf. Sci. 254(11), 3295–3305 (2008).
[Crossref]

Int. J. Mach. Tool Manuf. (1)

G. Cadot, D. Axinte, and J. Billingham, “Continuous trench, pulsed laser ablation for micro-machining applications,” Int. J. Mach. Tool Manuf. 107, 8–20 (2016).
[Crossref]

Int. J. Refract. Hard Met. (1)

L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Hard Met. 72, 211–222 (2018).
[Crossref]

J. Appl. Phys. (1)

R. Kelly and A. Miotello, “Does normal boiling exist due to laser-pulse or ion bombardment?” J. Appl. Phys. 87(6), 3177–3179 (2000).
[Crossref]

J. Biomed. Opt. (1)

K. Nahen and A. Vogel, “Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation,” J. Biomed. Opt. 7(2), 165–178 (2002).
[Crossref]

J. Eur. Ceram. Soc. (2)

A. Samant and N. Dahotre, “Laser machining of structural ceramics—A review,” J. Eur. Ceram. Soc. 29(6), 969–993 (2009).
[Crossref]

V. M. Sglavo and D. J. Green, “Fatigue limit in fused silica,” J. Eur. Ceram. Soc. 21(5), 561–567 (2001).
[Crossref]

J. Laser Appl. (1)

U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
[Crossref]

J. Phys. D: Appl. Phys. (2)

A. Bulgakov and N. Bulgakova, “Gas-dynamic effects of the interaction between a pulsed laser-ablation plume and the ambient gas: analogy with an underexpanded jet,” J. Phys. D: Appl. Phys. 31(6), 693–703 (1998).
[Crossref]

M. Aden, E. Beyer, G. Herziger, and H. Kunze, “Laser induced vaporization of a metal surface,” J. Phys. D: Appl. Phys. 25(1), 57–65 (1992).
[Crossref]

Laser Photonics Rev. (1)

S. Demos, R. Negres, R. Raman, A. Rubenchik, and M. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photonics Rev. 7(3), 444–452 (2013).
[Crossref]

Light: Sci. Appl. (2)

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

L. Jiang, A. Wang, B. Li, T. Cui, and Y. Lu, “Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application,” Light: Sci. Appl. 7(2), 17134 (2018).
[Crossref]

Nat. Mater. (1)

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

G. Gautam and A. Pandey, “Pulsed Nd:YAG laser beam drilling: A review,” Opt. Laser Technol. 100, 183–215 (2018).
[Crossref]

Opt. Lett. (2)

Optica (1)

Phys. Plasmas (2)

Y. Li, Y. Gu, Z. Zhu, X. Li, H. Ban, Q. Kong, and S. Kawata, “Direct laser acceleration of electron by an ultra-intense and short-pulsed laser in under-dense plasma,” Phys. Plasmas 18(5), 053104 (2011).
[Crossref]

A. Link, R. Freeman, D. Schumacher, and L. Woerkom, “Effects of target charging and ion emission on the energy spectrum of emitted electrons,” Phys. Plasmas 18(5), 053107 (2011).
[Crossref]

Phys. Rev. E (1)

A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E 50(6), 4716–4727 (1994).
[Crossref]

Phys. Rev. Lett. (3)

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

R. Wood, K. Chen, J. Leboeuf, A. Puretzky, and D. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79(8), 1571–1574 (1997).
[Crossref]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]

Soviet. Phys. Tech. Phys. (1)

M. M. Martynyuk, “Vaporization and boiling of liquid metal in an exploding wire,” Soviet. Phys. Tech. Phys. 19(6), 793–797 (1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic diagram of the test setup.
Fig. 2.
Fig. 2. Time-resolved optical photography during the process with different laser mono-pulse energies and scanning speeds. (Pulse repetition rate f = 100 kHz).
Fig. 3.
Fig. 3. Representative images at a 5 µs delay after being irradiated by (a) the 20th pulse with vs=100 mm/s, (b) the 60th pulse with vs=100 mm/s, (c) the 20th pulse with vs=1000 mm/s, and (d) the 60th pulse with vs=1000 mm/s. (Mono-pulse energy E0=0.2 mJ, pulse repetition rate f = 100 kHz and laser intensity 2.4 $\times$ 1010 W/cm2).
Fig. 4.
Fig. 4. Plume and shockwave evolutions after being irradiated by different pulses during the laser scanning process with (a) vs=100 mm/s and (b) vs=1000 mm/s. (Mono-pulse energy E0=0.2 mJ, pulse repetition rate f = 100 kHz and laser intensity 2.4 $\times$ 1010 W/cm2).
Fig. 5.
Fig. 5. Ablation morphology of microgrooves at different laser mono-pulse energies and scanning speeds. (Pulse repetition rate f = 100 kHz).
Fig. 6.
Fig. 6. Magnified SEM micrographs with corresponding stereoscopic profiles of the ablation traces (a) [Fig. 5(c)], (b) [Fig. 5(g)], and (c) [Fig. 5(s)]. (The recast layer in Fig. 6(a) was removed for a clearer observation of the vicinity of the ablation traces).
Fig. 7.
Fig. 7. Critical scanning speed vc as a function of laser mono-pulse energy under different repetition rates.
Fig. 8.
Fig. 8. Mechanical damage and cracks of ablation traces with E0=0.75 mJ and vs=100 mm/s after removal of the recast layer in the postprocessing on (a) the middle and (b) the end. (Pulse repetition rate f = 100 kHz and laser intensity 9.1 $\times$ 1010 W/cm2).
Fig. 9.
Fig. 9. SEM images of different types of ejected particles. (Scanning speed vs=100 mm/s and pulse repetition rate f = 100 kHz).
Fig. 10.
Fig. 10. Number of different types of particle ejections per unit length under different laser intensities. (Scanning speed vs=100 mm/s and pulse repetition rate f = 100 kHz).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E = E 0 f / v s
l 0 = v s Δ t 1 = v s f

Metrics