Abstract

A high pulse repetition frequency (PRF) single-frequency Er:YAG ceramic ring laser is demonstrated. A double-ceramics ring cavity both end-pumped by a 1532-nm fiber laser is also used to increase the pulse energy. The maximum single-frequency output energies are 21.0 mJ, 18.3 mJ, and 14.4 mJ at the PRF of 500 Hz, 750 Hz, and 1 kHz, respectively. Correspondingly, the pulse widths are 93.2 ns, 106.8 ns, and 130 ns. To the best of our knowledge, this is the highest energy at high PRFs obtained from a single-frequency injection-seeded Er:YAG ceramic laser.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-energy, single-frequency, Q-switched Er:YAG laser with a double-crystals-end-pumping architecture

Yang Shi, Chunqing Gao, Shuo Wang, Shanghua Li, Rui Song, Meng Zhang, Mingwei Gao, and Qing Wang
Opt. Express 27(3) 2671-2680 (2019)

Stable high-power Er:YAG ceramic single-frequency laser at 1645 nm

Lei Wang, Qing Ye, Mingwei Gao, Chunqing Gao, and Sijia Wang
Opt. Express 24(13) 14966-14973 (2016)

High-repetition-rate single-frequency Ho:YAG MOPA system

Yixuan Zhang, Chunqing Gao, Qing Wang, QuanXin Na, Mingwei Gao, Meng Zhang, and Shuai Huang
Appl. Opt. 57(15) 4222-4227 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. J. Koch, J. P. Deyst, and M. E. Storm, “Single-frequency lasing of monolithic Ho,Tm:YLF,” Opt. Lett. 18(15), 1235–1237 (1993).
    [Crossref] [PubMed]
  2. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 microm using Tm,Ho:YAG lasers,” Opt. Lett. 16(10), 773–775 (1991).
    [Crossref] [PubMed]
  3. S. S. Chen, J. R. Yu, M. Petros, Y. X. Bai, U. N. Singh, and M. J. Kavaya, “Joule-level double-pulsed Ho:Tm:LuLF Master-Oscillator-Power-Amplifier (MOPA) for potential spaceborne lidar applications,” Proc. SPIE 5653, 175 (2005).
    [Crossref]
  4. R. C. Stoneman, R. Hartman, E. A. Schneider, A. I. R. Malm, S. R. Vetorino, C. G. Garvin, J. V. Pelk, S. M. Hannon, and S. W. Henderson, “Eyesafe 1.6-μm Er: YAG transmitters for coherent laser radar,” Proc. CLRC, 14 (2007).
  5. N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18(13), 13673–13678 (2010).
    [Crossref] [PubMed]
  6. Y. Deng, X. Yu, B. Q. Yao, T. Y. Dai, X. M. Duan, and Y. L. Ju, “Single-frequency, Q-switched Er: YAG at room temperature injection-seeded by an Er:YAG nonplanar ring oscillator,” Laser Phys. 24(4), 045809 (2014).
    [Crossref]
  7. Y. X. Zhang, C. Q. Gao, Q. Wang, Q.X. Na, M. Zhang, M. W. Gao, and S. Huang, “1 kHz single-frequency injection-seeded Er:YAG laser with an optical feedback,” Chin. Opt. Lett 17(3), 03 (2019).
  8. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31(6), 754–756 (2006).
    [Crossref] [PubMed]
  9. M. Wang, J. Meng, X. Hou, and W. Chen, “In-band pumped polarized, narrow-linewidth Er:YAG laser at 1645 nm,” Appl. Opt. 53(30), 7153–7156 (2014).
    [Crossref] [PubMed]
  10. Z. Z. Yu, M. J. Wang, X. Hou, and W. B. Chen, “High-energy resonantly diode-pumped Q-switched Er:YAG laser at 1617 nm,” Appl. Phys. B 122(4), 84 (2016).
    [Crossref]
  11. Y. Shi, C. Gao, S. Wang, S. Li, R. Song, M. Zhang, M. Gao, and Q. Wang, “High-energy, single-frequency, Q-switched Er:YAG laser with a double-crystals-end-pumping architecture,” Opt. Express 27(3), 2671–2680 (2019).
    [Crossref] [PubMed]
  12. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
    [Crossref]
  13. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshita, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
    [Crossref]
  14. A. Pirri, D. Alderighi, G. Toci, and M. Vannini, “High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser,” Opt. Express 17(25), 23344–23349 (2009).
    [Crossref] [PubMed]
  15. N. Ter-Gabrielyan, L. D. Merkle, E. R. Kupp, G. L. Messing, and M. Dubinskii, “Efficient resonantly pumped tape cast composite ceramic Er:YAG laser at 1645 nm,” Opt. Lett. 35(7), 922–924 (2010).
    [Crossref] [PubMed]
  16. Y. Wang, T. Zhao, D. Shen, H. Zhu, J. Zhang, and D. Tang, “Resonantly pumped Q-switched Er:YAG ceramic laser at 1645 nm,” Opt. Express 22(20), 24004–24009 (2014).
    [Crossref] [PubMed]
  17. Q. Ye, C. Q. Gao, S. Wang, Q. X. Na, Y. Shi, Q. Wang, M. W. Gao, and J. Zhang, “Single-frequency, injection-seeded Q-switched operation of resonantly pumped Er:YAG ceramic laser at 1645 nm,” Appl. Phys. B 122(7), 198 (2016).
    [Crossref]
  18. L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth Determination from Self-Heterodyne Measurement with Subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
    [Crossref]
  19. M. G. Jani, F. L. Naranjo, N. P. Barnes, K. E. Murray, and G. E. Lockard, “Diode-pumped long-pulse-length Ho:Tm:YLiF(4) laser at 10 Hz,” Opt. Lett. 20(8), 872–874 (1995).
    [Crossref] [PubMed]
  20. P. Kucirek, A. Meissner, P. Eiselt, M. Höfer, and D. Hoffmann, “A single-frequency double-pulse Ho:YLF laser for CO2-lidar,” Proc. SPIE 9726, 97260K (2016).
    [Crossref]
  21. S. W. Henderson, C. P. Hale, and J. R. Magee, “Injection-Seeded Operation of a Q-switched Cr, Tm, Ho:YAG laser,” Adv. Solid-State Lasers ML1, 127–133 (1990).

2019 (2)

Y. X. Zhang, C. Q. Gao, Q. Wang, Q.X. Na, M. Zhang, M. W. Gao, and S. Huang, “1 kHz single-frequency injection-seeded Er:YAG laser with an optical feedback,” Chin. Opt. Lett 17(3), 03 (2019).

Y. Shi, C. Gao, S. Wang, S. Li, R. Song, M. Zhang, M. Gao, and Q. Wang, “High-energy, single-frequency, Q-switched Er:YAG laser with a double-crystals-end-pumping architecture,” Opt. Express 27(3), 2671–2680 (2019).
[Crossref] [PubMed]

2016 (3)

Z. Z. Yu, M. J. Wang, X. Hou, and W. B. Chen, “High-energy resonantly diode-pumped Q-switched Er:YAG laser at 1617 nm,” Appl. Phys. B 122(4), 84 (2016).
[Crossref]

Q. Ye, C. Q. Gao, S. Wang, Q. X. Na, Y. Shi, Q. Wang, M. W. Gao, and J. Zhang, “Single-frequency, injection-seeded Q-switched operation of resonantly pumped Er:YAG ceramic laser at 1645 nm,” Appl. Phys. B 122(7), 198 (2016).
[Crossref]

P. Kucirek, A. Meissner, P. Eiselt, M. Höfer, and D. Hoffmann, “A single-frequency double-pulse Ho:YLF laser for CO2-lidar,” Proc. SPIE 9726, 97260K (2016).
[Crossref]

2014 (3)

2010 (2)

2009 (1)

2008 (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

2006 (1)

2005 (1)

S. S. Chen, J. R. Yu, M. Petros, Y. X. Bai, U. N. Singh, and M. J. Kavaya, “Joule-level double-pulsed Ho:Tm:LuLF Master-Oscillator-Power-Amplifier (MOPA) for potential spaceborne lidar applications,” Proc. SPIE 5653, 175 (2005).
[Crossref]

1995 (2)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshita, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

M. G. Jani, F. L. Naranjo, N. P. Barnes, K. E. Murray, and G. E. Lockard, “Diode-pumped long-pulse-length Ho:Tm:YLiF(4) laser at 10 Hz,” Opt. Lett. 20(8), 872–874 (1995).
[Crossref] [PubMed]

1993 (1)

1991 (1)

1990 (1)

S. W. Henderson, C. P. Hale, and J. R. Magee, “Injection-Seeded Operation of a Q-switched Cr, Tm, Ho:YAG laser,” Adv. Solid-State Lasers ML1, 127–133 (1990).

1986 (1)

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth Determination from Self-Heterodyne Measurement with Subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Alderighi, D.

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Bai, Y. X.

S. S. Chen, J. R. Yu, M. Petros, Y. X. Bai, U. N. Singh, and M. J. Kavaya, “Joule-level double-pulsed Ho:Tm:LuLF Master-Oscillator-Power-Amplifier (MOPA) for potential spaceborne lidar applications,” Proc. SPIE 5653, 175 (2005).
[Crossref]

Barnes, N. P.

Chang, N. W. H.

Chen, S. S.

S. S. Chen, J. R. Yu, M. Petros, Y. X. Bai, U. N. Singh, and M. J. Kavaya, “Joule-level double-pulsed Ho:Tm:LuLF Master-Oscillator-Power-Amplifier (MOPA) for potential spaceborne lidar applications,” Proc. SPIE 5653, 175 (2005).
[Crossref]

Chen, W.

Chen, W. B.

Z. Z. Yu, M. J. Wang, X. Hou, and W. B. Chen, “High-energy resonantly diode-pumped Q-switched Er:YAG laser at 1617 nm,” Appl. Phys. B 122(4), 84 (2016).
[Crossref]

Clarkson, W. A.

Dai, T. Y.

Y. Deng, X. Yu, B. Q. Yao, T. Y. Dai, X. M. Duan, and Y. L. Ju, “Single-frequency, Q-switched Er: YAG at room temperature injection-seeded by an Er:YAG nonplanar ring oscillator,” Laser Phys. 24(4), 045809 (2014).
[Crossref]

Deng, Y.

Y. Deng, X. Yu, B. Q. Yao, T. Y. Dai, X. M. Duan, and Y. L. Ju, “Single-frequency, Q-switched Er: YAG at room temperature injection-seeded by an Er:YAG nonplanar ring oscillator,” Laser Phys. 24(4), 045809 (2014).
[Crossref]

Deyst, J. P.

Duan, X. M.

Y. Deng, X. Yu, B. Q. Yao, T. Y. Dai, X. M. Duan, and Y. L. Ju, “Single-frequency, Q-switched Er: YAG at room temperature injection-seeded by an Er:YAG nonplanar ring oscillator,” Laser Phys. 24(4), 045809 (2014).
[Crossref]

Dubinskii, M.

Eiselt, P.

P. Kucirek, A. Meissner, P. Eiselt, M. Höfer, and D. Hoffmann, “A single-frequency double-pulse Ho:YLF laser for CO2-lidar,” Proc. SPIE 9726, 97260K (2016).
[Crossref]

Gao, C.

Gao, C. Q.

Y. X. Zhang, C. Q. Gao, Q. Wang, Q.X. Na, M. Zhang, M. W. Gao, and S. Huang, “1 kHz single-frequency injection-seeded Er:YAG laser with an optical feedback,” Chin. Opt. Lett 17(3), 03 (2019).

Q. Ye, C. Q. Gao, S. Wang, Q. X. Na, Y. Shi, Q. Wang, M. W. Gao, and J. Zhang, “Single-frequency, injection-seeded Q-switched operation of resonantly pumped Er:YAG ceramic laser at 1645 nm,” Appl. Phys. B 122(7), 198 (2016).
[Crossref]

Gao, M.

Gao, M. W.

Y. X. Zhang, C. Q. Gao, Q. Wang, Q.X. Na, M. Zhang, M. W. Gao, and S. Huang, “1 kHz single-frequency injection-seeded Er:YAG laser with an optical feedback,” Chin. Opt. Lett 17(3), 03 (2019).

Q. Ye, C. Q. Gao, S. Wang, Q. X. Na, Y. Shi, Q. Wang, M. W. Gao, and J. Zhang, “Single-frequency, injection-seeded Q-switched operation of resonantly pumped Er:YAG ceramic laser at 1645 nm,” Appl. Phys. B 122(7), 198 (2016).
[Crossref]

Garvin, C. G.

R. C. Stoneman, R. Hartman, E. A. Schneider, A. I. R. Malm, S. R. Vetorino, C. G. Garvin, J. V. Pelk, S. M. Hannon, and S. W. Henderson, “Eyesafe 1.6-μm Er: YAG transmitters for coherent laser radar,” Proc. CLRC, 14 (2007).

Hale, C. P.

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 microm using Tm,Ho:YAG lasers,” Opt. Lett. 16(10), 773–775 (1991).
[Crossref] [PubMed]

S. W. Henderson, C. P. Hale, and J. R. Magee, “Injection-Seeded Operation of a Q-switched Cr, Tm, Ho:YAG laser,” Adv. Solid-State Lasers ML1, 127–133 (1990).

Hannon, S. M.

R. C. Stoneman, R. Hartman, E. A. Schneider, A. I. R. Malm, S. R. Vetorino, C. G. Garvin, J. V. Pelk, S. M. Hannon, and S. W. Henderson, “Eyesafe 1.6-μm Er: YAG transmitters for coherent laser radar,” Proc. CLRC, 14 (2007).

Hartman, R.

R. C. Stoneman, R. Hartman, E. A. Schneider, A. I. R. Malm, S. R. Vetorino, C. G. Garvin, J. V. Pelk, S. M. Hannon, and S. W. Henderson, “Eyesafe 1.6-μm Er: YAG transmitters for coherent laser radar,” Proc. CLRC, 14 (2007).

Henderson, S. W.

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 microm using Tm,Ho:YAG lasers,” Opt. Lett. 16(10), 773–775 (1991).
[Crossref] [PubMed]

S. W. Henderson, C. P. Hale, and J. R. Magee, “Injection-Seeded Operation of a Q-switched Cr, Tm, Ho:YAG laser,” Adv. Solid-State Lasers ML1, 127–133 (1990).

R. C. Stoneman, R. Hartman, E. A. Schneider, A. I. R. Malm, S. R. Vetorino, C. G. Garvin, J. V. Pelk, S. M. Hannon, and S. W. Henderson, “Eyesafe 1.6-μm Er: YAG transmitters for coherent laser radar,” Proc. CLRC, 14 (2007).

Höfer, M.

P. Kucirek, A. Meissner, P. Eiselt, M. Höfer, and D. Hoffmann, “A single-frequency double-pulse Ho:YLF laser for CO2-lidar,” Proc. SPIE 9726, 97260K (2016).
[Crossref]

Hoffmann, D.

P. Kucirek, A. Meissner, P. Eiselt, M. Höfer, and D. Hoffmann, “A single-frequency double-pulse Ho:YLF laser for CO2-lidar,” Proc. SPIE 9726, 97260K (2016).
[Crossref]

Hosken, D. J.

Hou, X.

Z. Z. Yu, M. J. Wang, X. Hou, and W. B. Chen, “High-energy resonantly diode-pumped Q-switched Er:YAG laser at 1617 nm,” Appl. Phys. B 122(4), 84 (2016).
[Crossref]

M. Wang, J. Meng, X. Hou, and W. Chen, “In-band pumped polarized, narrow-linewidth Er:YAG laser at 1645 nm,” Appl. Opt. 53(30), 7153–7156 (2014).
[Crossref] [PubMed]

Huang, S.

Y. X. Zhang, C. Q. Gao, Q. Wang, Q.X. Na, M. Zhang, M. W. Gao, and S. Huang, “1 kHz single-frequency injection-seeded Er:YAG laser with an optical feedback,” Chin. Opt. Lett 17(3), 03 (2019).

Huffaker, A. V.

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshita, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Jani, M. G.

Ju, Y. L.

Y. Deng, X. Yu, B. Q. Yao, T. Y. Dai, X. M. Duan, and Y. L. Ju, “Single-frequency, Q-switched Er: YAG at room temperature injection-seeded by an Er:YAG nonplanar ring oscillator,” Laser Phys. 24(4), 045809 (2014).
[Crossref]

Kamata, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshita, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Kavaya, M. J.

S. S. Chen, J. R. Yu, M. Petros, Y. X. Bai, U. N. Singh, and M. J. Kavaya, “Joule-level double-pulsed Ho:Tm:LuLF Master-Oscillator-Power-Amplifier (MOPA) for potential spaceborne lidar applications,” Proc. SPIE 5653, 175 (2005).
[Crossref]

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 microm using Tm,Ho:YAG lasers,” Opt. Lett. 16(10), 773–775 (1991).
[Crossref] [PubMed]

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshita, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Koch, G. J.

Kruger, M. S.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth Determination from Self-Heterodyne Measurement with Subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Kucirek, P.

P. Kucirek, A. Meissner, P. Eiselt, M. Höfer, and D. Hoffmann, “A single-frequency double-pulse Ho:YLF laser for CO2-lidar,” Proc. SPIE 9726, 97260K (2016).
[Crossref]

Kupp, E. R.

Li, S.

Lockard, G. E.

Magee, J. R.

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 microm using Tm,Ho:YAG lasers,” Opt. Lett. 16(10), 773–775 (1991).
[Crossref] [PubMed]

S. W. Henderson, C. P. Hale, and J. R. Magee, “Injection-Seeded Operation of a Q-switched Cr, Tm, Ho:YAG laser,” Adv. Solid-State Lasers ML1, 127–133 (1990).

Malm, A. I. R.

R. C. Stoneman, R. Hartman, E. A. Schneider, A. I. R. Malm, S. R. Vetorino, C. G. Garvin, J. V. Pelk, S. M. Hannon, and S. W. Henderson, “Eyesafe 1.6-μm Er: YAG transmitters for coherent laser radar,” Proc. CLRC, 14 (2007).

Mandelberg, H. I.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth Determination from Self-Heterodyne Measurement with Subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

McGrath, P. A.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth Determination from Self-Heterodyne Measurement with Subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Meissner, A.

P. Kucirek, A. Meissner, P. Eiselt, M. Höfer, and D. Hoffmann, “A single-frequency double-pulse Ho:YLF laser for CO2-lidar,” Proc. SPIE 9726, 97260K (2016).
[Crossref]

Meng, J.

Merkle, L. D.

Messing, G. L.

Munch, J.

Murray, K. E.

Na, Q. X.

Q. Ye, C. Q. Gao, S. Wang, Q. X. Na, Y. Shi, Q. Wang, M. W. Gao, and J. Zhang, “Single-frequency, injection-seeded Q-switched operation of resonantly pumped Er:YAG ceramic laser at 1645 nm,” Appl. Phys. B 122(7), 198 (2016).
[Crossref]

Na, Q.X.

Y. X. Zhang, C. Q. Gao, Q. Wang, Q.X. Na, M. Zhang, M. W. Gao, and S. Huang, “1 kHz single-frequency injection-seeded Er:YAG laser with an optical feedback,” Chin. Opt. Lett 17(3), 03 (2019).

Naranjo, F. L.

Ottaway, D. J.

Pelk, J. V.

R. C. Stoneman, R. Hartman, E. A. Schneider, A. I. R. Malm, S. R. Vetorino, C. G. Garvin, J. V. Pelk, S. M. Hannon, and S. W. Henderson, “Eyesafe 1.6-μm Er: YAG transmitters for coherent laser radar,” Proc. CLRC, 14 (2007).

Petros, M.

S. S. Chen, J. R. Yu, M. Petros, Y. X. Bai, U. N. Singh, and M. J. Kavaya, “Joule-level double-pulsed Ho:Tm:LuLF Master-Oscillator-Power-Amplifier (MOPA) for potential spaceborne lidar applications,” Proc. SPIE 5653, 175 (2005).
[Crossref]

Pirri, A.

Richter, L. E.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth Determination from Self-Heterodyne Measurement with Subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Sahu, J. K.

Schneider, E. A.

R. C. Stoneman, R. Hartman, E. A. Schneider, A. I. R. Malm, S. R. Vetorino, C. G. Garvin, J. V. Pelk, S. M. Hannon, and S. W. Henderson, “Eyesafe 1.6-μm Er: YAG transmitters for coherent laser radar,” Proc. CLRC, 14 (2007).

Shen, D.

Shen, D. Y.

Shi, Y.

Y. Shi, C. Gao, S. Wang, S. Li, R. Song, M. Zhang, M. Gao, and Q. Wang, “High-energy, single-frequency, Q-switched Er:YAG laser with a double-crystals-end-pumping architecture,” Opt. Express 27(3), 2671–2680 (2019).
[Crossref] [PubMed]

Q. Ye, C. Q. Gao, S. Wang, Q. X. Na, Y. Shi, Q. Wang, M. W. Gao, and J. Zhang, “Single-frequency, injection-seeded Q-switched operation of resonantly pumped Er:YAG ceramic laser at 1645 nm,” Appl. Phys. B 122(7), 198 (2016).
[Crossref]

Simakov, N.

Singh, U. N.

S. S. Chen, J. R. Yu, M. Petros, Y. X. Bai, U. N. Singh, and M. J. Kavaya, “Joule-level double-pulsed Ho:Tm:LuLF Master-Oscillator-Power-Amplifier (MOPA) for potential spaceborne lidar applications,” Proc. SPIE 5653, 175 (2005).
[Crossref]

Song, R.

Stoneman, R. C.

R. C. Stoneman, R. Hartman, E. A. Schneider, A. I. R. Malm, S. R. Vetorino, C. G. Garvin, J. V. Pelk, S. M. Hannon, and S. W. Henderson, “Eyesafe 1.6-μm Er: YAG transmitters for coherent laser radar,” Proc. CLRC, 14 (2007).

Storm, M. E.

Tang, D.

Ter-Gabrielyan, N.

Toci, G.

Vannini, M.

Veitch, P. J.

Vetorino, S. R.

R. C. Stoneman, R. Hartman, E. A. Schneider, A. I. R. Malm, S. R. Vetorino, C. G. Garvin, J. V. Pelk, S. M. Hannon, and S. W. Henderson, “Eyesafe 1.6-μm Er: YAG transmitters for coherent laser radar,” Proc. CLRC, 14 (2007).

Wang, M.

Wang, M. J.

Z. Z. Yu, M. J. Wang, X. Hou, and W. B. Chen, “High-energy resonantly diode-pumped Q-switched Er:YAG laser at 1617 nm,” Appl. Phys. B 122(4), 84 (2016).
[Crossref]

Wang, Q.

Y. X. Zhang, C. Q. Gao, Q. Wang, Q.X. Na, M. Zhang, M. W. Gao, and S. Huang, “1 kHz single-frequency injection-seeded Er:YAG laser with an optical feedback,” Chin. Opt. Lett 17(3), 03 (2019).

Y. Shi, C. Gao, S. Wang, S. Li, R. Song, M. Zhang, M. Gao, and Q. Wang, “High-energy, single-frequency, Q-switched Er:YAG laser with a double-crystals-end-pumping architecture,” Opt. Express 27(3), 2671–2680 (2019).
[Crossref] [PubMed]

Q. Ye, C. Q. Gao, S. Wang, Q. X. Na, Y. Shi, Q. Wang, M. W. Gao, and J. Zhang, “Single-frequency, injection-seeded Q-switched operation of resonantly pumped Er:YAG ceramic laser at 1645 nm,” Appl. Phys. B 122(7), 198 (2016).
[Crossref]

Wang, S.

Y. Shi, C. Gao, S. Wang, S. Li, R. Song, M. Zhang, M. Gao, and Q. Wang, “High-energy, single-frequency, Q-switched Er:YAG laser with a double-crystals-end-pumping architecture,” Opt. Express 27(3), 2671–2680 (2019).
[Crossref] [PubMed]

Q. Ye, C. Q. Gao, S. Wang, Q. X. Na, Y. Shi, Q. Wang, M. W. Gao, and J. Zhang, “Single-frequency, injection-seeded Q-switched operation of resonantly pumped Er:YAG ceramic laser at 1645 nm,” Appl. Phys. B 122(7), 198 (2016).
[Crossref]

Wang, Y.

Yao, B. Q.

Y. Deng, X. Yu, B. Q. Yao, T. Y. Dai, X. M. Duan, and Y. L. Ju, “Single-frequency, Q-switched Er: YAG at room temperature injection-seeded by an Er:YAG nonplanar ring oscillator,” Laser Phys. 24(4), 045809 (2014).
[Crossref]

Ye, Q.

Q. Ye, C. Q. Gao, S. Wang, Q. X. Na, Y. Shi, Q. Wang, M. W. Gao, and J. Zhang, “Single-frequency, injection-seeded Q-switched operation of resonantly pumped Er:YAG ceramic laser at 1645 nm,” Appl. Phys. B 122(7), 198 (2016).
[Crossref]

Yoshita, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshita, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Yu, J. R.

S. S. Chen, J. R. Yu, M. Petros, Y. X. Bai, U. N. Singh, and M. J. Kavaya, “Joule-level double-pulsed Ho:Tm:LuLF Master-Oscillator-Power-Amplifier (MOPA) for potential spaceborne lidar applications,” Proc. SPIE 5653, 175 (2005).
[Crossref]

Yu, X.

Y. Deng, X. Yu, B. Q. Yao, T. Y. Dai, X. M. Duan, and Y. L. Ju, “Single-frequency, Q-switched Er: YAG at room temperature injection-seeded by an Er:YAG nonplanar ring oscillator,” Laser Phys. 24(4), 045809 (2014).
[Crossref]

Yu, Z. Z.

Z. Z. Yu, M. J. Wang, X. Hou, and W. B. Chen, “High-energy resonantly diode-pumped Q-switched Er:YAG laser at 1617 nm,” Appl. Phys. B 122(4), 84 (2016).
[Crossref]

Zhang, J.

Q. Ye, C. Q. Gao, S. Wang, Q. X. Na, Y. Shi, Q. Wang, M. W. Gao, and J. Zhang, “Single-frequency, injection-seeded Q-switched operation of resonantly pumped Er:YAG ceramic laser at 1645 nm,” Appl. Phys. B 122(7), 198 (2016).
[Crossref]

Y. Wang, T. Zhao, D. Shen, H. Zhu, J. Zhang, and D. Tang, “Resonantly pumped Q-switched Er:YAG ceramic laser at 1645 nm,” Opt. Express 22(20), 24004–24009 (2014).
[Crossref] [PubMed]

Zhang, M.

Y. Shi, C. Gao, S. Wang, S. Li, R. Song, M. Zhang, M. Gao, and Q. Wang, “High-energy, single-frequency, Q-switched Er:YAG laser with a double-crystals-end-pumping architecture,” Opt. Express 27(3), 2671–2680 (2019).
[Crossref] [PubMed]

Y. X. Zhang, C. Q. Gao, Q. Wang, Q.X. Na, M. Zhang, M. W. Gao, and S. Huang, “1 kHz single-frequency injection-seeded Er:YAG laser with an optical feedback,” Chin. Opt. Lett 17(3), 03 (2019).

Zhang, Y. X.

Y. X. Zhang, C. Q. Gao, Q. Wang, Q.X. Na, M. Zhang, M. W. Gao, and S. Huang, “1 kHz single-frequency injection-seeded Er:YAG laser with an optical feedback,” Chin. Opt. Lett 17(3), 03 (2019).

Zhao, T.

Zhu, H.

Adv. Solid-State Lasers (1)

S. W. Henderson, C. P. Hale, and J. R. Magee, “Injection-Seeded Operation of a Q-switched Cr, Tm, Ho:YAG laser,” Adv. Solid-State Lasers ML1, 127–133 (1990).

Appl. Opt. (1)

Appl. Phys. B (2)

Z. Z. Yu, M. J. Wang, X. Hou, and W. B. Chen, “High-energy resonantly diode-pumped Q-switched Er:YAG laser at 1617 nm,” Appl. Phys. B 122(4), 84 (2016).
[Crossref]

Q. Ye, C. Q. Gao, S. Wang, Q. X. Na, Y. Shi, Q. Wang, M. W. Gao, and J. Zhang, “Single-frequency, injection-seeded Q-switched operation of resonantly pumped Er:YAG ceramic laser at 1645 nm,” Appl. Phys. B 122(7), 198 (2016).
[Crossref]

Chin. Opt. Lett (1)

Y. X. Zhang, C. Q. Gao, Q. Wang, Q.X. Na, M. Zhang, M. W. Gao, and S. Huang, “1 kHz single-frequency injection-seeded Er:YAG laser with an optical feedback,” Chin. Opt. Lett 17(3), 03 (2019).

IEEE J. Quantum Electron. (1)

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth Determination from Self-Heterodyne Measurement with Subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

J. Am. Ceram. Soc. (1)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshita, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Laser Phys. (1)

Y. Deng, X. Yu, B. Q. Yao, T. Y. Dai, X. M. Duan, and Y. L. Ju, “Single-frequency, Q-switched Er: YAG at room temperature injection-seeded by an Er:YAG nonplanar ring oscillator,” Laser Phys. 24(4), 045809 (2014).
[Crossref]

Nat. Photonics (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Proc. SPIE (2)

S. S. Chen, J. R. Yu, M. Petros, Y. X. Bai, U. N. Singh, and M. J. Kavaya, “Joule-level double-pulsed Ho:Tm:LuLF Master-Oscillator-Power-Amplifier (MOPA) for potential spaceborne lidar applications,” Proc. SPIE 5653, 175 (2005).
[Crossref]

P. Kucirek, A. Meissner, P. Eiselt, M. Höfer, and D. Hoffmann, “A single-frequency double-pulse Ho:YLF laser for CO2-lidar,” Proc. SPIE 9726, 97260K (2016).
[Crossref]

Other (1)

R. C. Stoneman, R. Hartman, E. A. Schneider, A. I. R. Malm, S. R. Vetorino, C. G. Garvin, J. V. Pelk, S. M. Hannon, and S. W. Henderson, “Eyesafe 1.6-μm Er: YAG transmitters for coherent laser radar,” Proc. CLRC, 14 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the injection-seeded Er:YAG ceramic ring laser. 1470LD: 1470-nm laser diode (LD), 1532fiber1, 1532fiber2: 1532-nm fiber laser, AOM: acousto-optic modulator, PD1, PD2: photodiodes, Iso: isolator, HWP: half-wave plate, PBS: polarized beam splitter. Lenses: f1 = 400 mm, f2 = 125 mm, f3 = 400 mm, and f4 = 500 mm. M1, M3, and M5 are coated to exhibit high reflectivities at 1645 nm and high transmissions at 1532 nm. M2 is coated to exhibit a high reflectivity at 1645 nm and high transmission at 1532 nm and has a radius of curvature of 750 mm. M4 is coated to exhibit a transmission of 20% at 1645 nm and has a radius of 750 mm. M6 is coated to exhibit a high reflectivity at 1532 nm. M7, M8, and M9 are coated to exhibit high reflectivities at 1645 nm and high transmissions at 1470 nm. M10 is an uncoated fused silica.
Fig. 2
Fig. 2 (a) Pulse energies at different PRFs in the Q-switching operation. (b) Pulse widths at different PRFs in the Q-switching operation.
Fig. 3
Fig. 3 Pulse temporal profiles of the Er:YAG ceramic laser with injection-seeded at the PRF of 1 kHz.
Fig. 4
Fig. 4 (a) Single-frequency pulse energies at different PRFs. (b) Single-frequency pulse widths at different PRFs.
Fig. 5
Fig. 5 (a) Line-width and heterodyne beating signal at the PRF of 1 kHz. (b) Frequency fluctuation of the Er:YAG ceramic laser at the PRF of 1 kHz.
Fig. 6
Fig. 6 (a) Built-up time of the single-frequency Er:YAG ceramic laser at the PRF of 1 kHz. (b) Energy fluctuation of the single-frequency Er:YAG ceramic laser at the PRF of 1 kHz.
Fig. 7
Fig. 7 Measured beam quality of the Er:YAG ceramic laser at the maximum output energy.

Tables (1)

Tables Icon

Table 1 Single-frequency output characters under different PRFs

Metrics