Abstract

The room-temperature strong coupling between plasmonic magnetic resonances (MRs) of metal gratings and excitons in monolayer WS2 is intensively investigated. Both numerical simulations and theoretical calculations indicate that the strong coupling between MRs and excitons enables the remarkable spectral splitting. The typical anticrossing behavior with the Rabi splitting up to 86.5 meV is realized on the color-coded absorption spectra by changing the nanogroove depth, width, and the refractive index of the dielectric filled into nanogrooves, respectively. Interestingly, such strong coupling can also be achieved by using WS2 ribbons instead of the monolayer and simultaneously is dynamically controlled by varying the interaction area. More importantly, the observed MR-exciton coupling is angle-independent. Our findings thus suggest a possible way toward enhancing light-matter interactions in monolayer transition-metal dichalcogenides and play significant roles in quantum and nonlinear nanophotonic devices at ambient conditions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Direct observation of strong light-exciton coupling in thin WS2 flakes

Qi Wang, Liaoxin Sun, Bo Zhang, Changqing Chen, Xuechu Shen, and Wei Lu
Opt. Express 24(7) 7151-7157 (2016)

Tunable strong exciton–plasmon–exciton coupling in WS2–J-aggregates–plasmonic nanocavity

Ping Jiang, Gang Song, Yilin Wang, Chao Li, Lulu Wang, and Li Yu
Opt. Express 27(12) 16613-16623 (2019)

Nanophotonics with 2D transition metal dichalcogenides [Invited]

Alex Krasnok, Sergey Lepeshov, and Andrea Alú
Opt. Express 26(12) 15972-15994 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. M. Qing, H. F. Ma, and T. J. Cui, “Tailoring anisotropic perfect absorption in monolayer black phosphorus by critical coupling at terahertz frequencies,” Opt. Express 26(25), 32442–32450 (2018).
    [Crossref]
  2. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
    [Crossref]
  3. Y. M. Qing, H. F. Ma, and T. J. Cui, “Investigation of strong multimode interaction in a graphene-based hybrid coupled plasmonic system,” Carbon 145, 596–602 (2019).
    [Crossref]
  4. L. Shi, T. K. Hakala, H. T. Rekola, J. P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
    [Crossref]
  5. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
    [Crossref]
  6. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
    [Crossref]
  7. H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
    [Crossref]
  8. S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4(6), 371–375 (2010).
    [Crossref]
  9. J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samori, and T. W. Ebbesen, “Tuning the Work-Function Via Strong Coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
    [Crossref]
  10. F. Barachati, J. Simon, Y. A. Getmanenko, S. Barlow, S. R. Marder, and S. Kéna-Cohen, “Tunable third-harmonic generation from polaritons in the ultrastrong coupling regime,” ACS Photonics 5(1), 119–125 (2018).
    [Crossref]
  11. G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114(15), 157401 (2015).
    [Crossref]
  12. S. Balci, “Ultrastrong plasmon–exciton coupling in metal nanoprisms with J-aggregates,” Opt. Lett. 38(21), 4498–4501 (2013).
    [Crossref]
  13. R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
    [Crossref]
  14. Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Angle-insensitive dual-functional resonators combining cavity mode resonance and magnetic resonance,” Opt. Lett. 44(12), 3118–3121 (2019).
    [Crossref]
  15. K. Zhang, W. B. Shi, D. Wang, Y. Xu, R. W. Peng, R. H. Fan, Q. J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
    [Crossref]
  16. H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37(18), 3780–3782 (2012).
    [Crossref]
  17. H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
    [Crossref]
  18. K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
    [Crossref]
  19. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
    [Crossref]
  20. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
    [Crossref]
  21. Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Ultra-narrowband absorption enhancement in monolayer transition-metal dichalcogenides with simple guided-mode resonance filters,” J. Appl. Phys. 125(21), 213108 (2019).
    [Crossref]
  22. J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime,” ACS Nano 12(10), 10393–10402 (2018).
    [Crossref]
  23. J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
    [Crossref]
  24. M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono-and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
    [Crossref]
  25. W. Liu, B. Lee, C. H. Naylor, H. S. Ee, J. Park, A. C. Johnson, and R. Agarwal, “Strong exciton-plasmon coupling in MoS2 coupled with plasmonic lattice,” Nano Lett. 16(2), 1262–1269 (2016).
    [Crossref]
  26. J. Cuadra, D. G. Baranov, M. Wersäll, R. Verre, T. J. Antosiewicz, and T. Shegai, “Observation of tunable charged exciton polaritons in hybrid monolayer WS2-plasmonic nanoantenna system,” Nano Lett. 18(3), 1777–1785 (2018).
    [Crossref]
  27. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008).
    [Crossref]
  28. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
    [Crossref]
  29. T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009).
    [Crossref]
  30. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008).
    [Crossref]
  31. L. F. Mattheiss, “Band structures of transition-metal-dichalcogenide layer compounds,” Phys. Rev. B: Condens. Matter Mater. Phys. 8(8), 3719–3740 (1973).
    [Crossref]
  32. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(20), 205422 (2014).
    [Crossref]
  33. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [Crossref]
  34. X. Liu, T. Galfsky, Z. Sun, F. Xia, E.-C. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light-matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
    [Crossref]

2019 (3)

Y. M. Qing, H. F. Ma, and T. J. Cui, “Investigation of strong multimode interaction in a graphene-based hybrid coupled plasmonic system,” Carbon 145, 596–602 (2019).
[Crossref]

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Ultra-narrowband absorption enhancement in monolayer transition-metal dichalcogenides with simple guided-mode resonance filters,” J. Appl. Phys. 125(21), 213108 (2019).
[Crossref]

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Angle-insensitive dual-functional resonators combining cavity mode resonance and magnetic resonance,” Opt. Lett. 44(12), 3118–3121 (2019).
[Crossref]

2018 (5)

Y. M. Qing, H. F. Ma, and T. J. Cui, “Tailoring anisotropic perfect absorption in monolayer black phosphorus by critical coupling at terahertz frequencies,” Opt. Express 26(25), 32442–32450 (2018).
[Crossref]

M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono-and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
[Crossref]

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime,” ACS Nano 12(10), 10393–10402 (2018).
[Crossref]

J. Cuadra, D. G. Baranov, M. Wersäll, R. Verre, T. J. Antosiewicz, and T. Shegai, “Observation of tunable charged exciton polaritons in hybrid monolayer WS2-plasmonic nanoantenna system,” Nano Lett. 18(3), 1777–1785 (2018).
[Crossref]

F. Barachati, J. Simon, Y. A. Getmanenko, S. Barlow, S. R. Marder, and S. Kéna-Cohen, “Tunable third-harmonic generation from polaritons in the ultrastrong coupling regime,” ACS Photonics 5(1), 119–125 (2018).
[Crossref]

2017 (2)

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref]

H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
[Crossref]

2016 (4)

W. Liu, B. Lee, C. H. Naylor, H. S. Ee, J. Park, A. C. Johnson, and R. Agarwal, “Strong exciton-plasmon coupling in MoS2 coupled with plasmonic lattice,” Nano Lett. 16(2), 1262–1269 (2016).
[Crossref]

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
[Crossref]

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

K. Zhang, W. B. Shi, D. Wang, Y. Xu, R. W. Peng, R. H. Fan, Q. J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
[Crossref]

2015 (3)

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114(15), 157401 (2015).
[Crossref]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

X. Liu, T. Galfsky, Z. Sun, F. Xia, E.-C. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light-matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

2014 (2)

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

L. Shi, T. K. Hakala, H. T. Rekola, J. P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref]

2013 (2)

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samori, and T. W. Ebbesen, “Tuning the Work-Function Via Strong Coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref]

S. Balci, “Ultrastrong plasmon–exciton coupling in metal nanoprisms with J-aggregates,” Opt. Lett. 38(21), 4498–4501 (2013).
[Crossref]

2012 (2)

H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37(18), 3780–3782 (2012).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

2010 (2)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref]

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4(6), 371–375 (2010).
[Crossref]

2009 (1)

2008 (2)

2007 (1)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

2006 (1)

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

2005 (2)

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

2002 (1)

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[Crossref]

1973 (1)

L. F. Mattheiss, “Band structures of transition-metal-dichalcogenide layer compounds,” Phys. Rev. B: Condens. Matter Mater. Phys. 8(8), 3719–3740 (1973).
[Crossref]

Agarwal, R.

W. Liu, B. Lee, C. H. Naylor, H. S. Ee, J. Park, A. C. Johnson, and R. Agarwal, “Strong exciton-plasmon coupling in MoS2 coupled with plasmonic lattice,” Nano Lett. 16(2), 1262–1269 (2016).
[Crossref]

Antosiewicz, T. J.

M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono-and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
[Crossref]

J. Cuadra, D. G. Baranov, M. Wersäll, R. Verre, T. J. Antosiewicz, and T. Shegai, “Observation of tunable charged exciton polaritons in hybrid monolayer WS2-plasmonic nanoantenna system,” Nano Lett. 18(3), 1777–1785 (2018).
[Crossref]

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114(15), 157401 (2015).
[Crossref]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

Balci, S.

Barachati, F.

F. Barachati, J. Simon, Y. A. Getmanenko, S. Barlow, S. R. Marder, and S. Kéna-Cohen, “Tunable third-harmonic generation from polaritons in the ultrastrong coupling regime,” ACS Photonics 5(1), 119–125 (2018).
[Crossref]

Baranov, D. G.

J. Cuadra, D. G. Baranov, M. Wersäll, R. Verre, T. J. Antosiewicz, and T. Shegai, “Observation of tunable charged exciton polaritons in hybrid monolayer WS2-plasmonic nanoantenna system,” Nano Lett. 18(3), 1777–1785 (2018).
[Crossref]

M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono-and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
[Crossref]

Barlow, S.

F. Barachati, J. Simon, Y. A. Getmanenko, S. Barlow, S. R. Marder, and S. Kéna-Cohen, “Tunable third-harmonic generation from polaritons in the ultrastrong coupling regime,” ACS Photonics 5(1), 119–125 (2018).
[Crossref]

Barnes, W. L.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Barrow, S. J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Baumberg, J. J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Benz, F.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Bloch, J.

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[Crossref]

Canaguier-Durand, A.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samori, and T. W. Ebbesen, “Tuning the Work-Function Via Strong Coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref]

Chen, H.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref]

Chen, J.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref]

Chernikov, A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Chikkaraddy, R.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Cuadra, J.

M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono-and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
[Crossref]

J. Cuadra, D. G. Baranov, M. Wersäll, R. Verre, T. J. Antosiewicz, and T. Shegai, “Observation of tunable charged exciton polaritons in hybrid monolayer WS2-plasmonic nanoantenna system,” Nano Lett. 18(3), 1777–1785 (2018).
[Crossref]

Cui, T. J.

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Ultra-narrowband absorption enhancement in monolayer transition-metal dichalcogenides with simple guided-mode resonance filters,” J. Appl. Phys. 125(21), 213108 (2019).
[Crossref]

Y. M. Qing, H. F. Ma, and T. J. Cui, “Investigation of strong multimode interaction in a graphene-based hybrid coupled plasmonic system,” Carbon 145, 596–602 (2019).
[Crossref]

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Angle-insensitive dual-functional resonators combining cavity mode resonance and magnetic resonance,” Opt. Lett. 44(12), 3118–3121 (2019).
[Crossref]

Y. M. Qing, H. F. Ma, and T. J. Cui, “Tailoring anisotropic perfect absorption in monolayer black phosphorus by critical coupling at terahertz frequencies,” Opt. Express 26(25), 32442–32450 (2018).
[Crossref]

de Nijs, B.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Demetriadou, A.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Deng, H.

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[Crossref]

Deng, Q.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime,” ACS Nano 12(10), 10393–10402 (2018).
[Crossref]

Deng, S.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref]

Deng, Z.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref]

Ebbesen, T. W.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samori, and T. W. Ebbesen, “Tuning the Work-Function Via Strong Coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref]

Ee, H. S.

W. Liu, B. Lee, C. H. Naylor, H. S. Ee, J. Park, A. C. Johnson, and R. Agarwal, “Strong exciton-plasmon coupling in MoS2 coupled with plasmonic lattice,” Nano Lett. 16(2), 1262–1269 (2016).
[Crossref]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

Fan, R. H.

K. Zhang, W. B. Shi, D. Wang, Y. Xu, R. W. Peng, R. H. Fan, Q. J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
[Crossref]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Forrest, S. R.

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4(6), 371–375 (2010).
[Crossref]

Fox, P.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Galfsky, T.

X. Liu, T. Galfsky, Z. Sun, F. Xia, E.-C. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light-matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Genet, C.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samori, and T. W. Ebbesen, “Tuning the Work-Function Via Strong Coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

Getmanenko, Y. A.

F. Barachati, J. Simon, Y. A. Getmanenko, S. Barlow, S. R. Marder, and S. Kéna-Cohen, “Tunable third-harmonic generation from polaritons in the ultrastrong coupling regime,” ACS Photonics 5(1), 119–125 (2018).
[Crossref]

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

Hakala, T. K.

L. Shi, T. K. Hakala, H. T. Rekola, J. P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref]

Heinz, T. F.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

Hess, O.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Hill, H. M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Hone, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

Hu, H.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime,” ACS Nano 12(10), 10393–10402 (2018).
[Crossref]

Hu, J.

Huang, X. G.

Hutchison, J. A.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samori, and T. W. Ebbesen, “Tuning the Work-Function Via Strong Coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Johnson, A. C.

W. Liu, B. Lee, C. H. Naylor, H. S. Ee, J. Park, A. C. Johnson, and R. Agarwal, “Strong exciton-plasmon coupling in MoS2 coupled with plasmonic lattice,” Nano Lett. 16(2), 1262–1269 (2016).
[Crossref]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Käll, M.

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114(15), 157401 (2015).
[Crossref]

Kéna-Cohen, S.

F. Barachati, J. Simon, Y. A. Getmanenko, S. Barlow, S. R. Marder, and S. Kéna-Cohen, “Tunable third-harmonic generation from polaritons in the ultrastrong coupling regime,” ACS Photonics 5(1), 119–125 (2018).
[Crossref]

X. Liu, T. Galfsky, Z. Sun, F. Xia, E.-C. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light-matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4(6), 371–375 (2010).
[Crossref]

Khitrova, G.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Kim, H.

Kira, M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Koch, S. W.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Lee, B.

W. Liu, B. Lee, C. H. Naylor, H. S. Ee, J. Park, A. C. Johnson, and R. Agarwal, “Strong exciton-plasmon coupling in MoS2 coupled with plasmonic lattice,” Nano Lett. 16(2), 1262–1269 (2016).
[Crossref]

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008).
[Crossref]

Lee, C.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref]

Lee, Y.-H.

X. Liu, T. Galfsky, Z. Sun, F. Xia, E.-C. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light-matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Li, H.

Li, Y.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Lin, E.-C.

X. Liu, T. Galfsky, Z. Sun, F. Xia, E.-C. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light-matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Lin, X. S.

Liscio, A.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samori, and T. W. Ebbesen, “Tuning the Work-Function Via Strong Coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref]

Liu, F.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref]

Liu, W.

W. Liu, B. Lee, C. H. Naylor, H. S. Ee, J. Park, A. C. Johnson, and R. Agarwal, “Strong exciton-plasmon coupling in MoS2 coupled with plasmonic lattice,” Nano Lett. 16(2), 1262–1269 (2016).
[Crossref]

Liu, X.

X. Liu, T. Galfsky, Z. Sun, F. Xia, E.-C. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light-matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37(18), 3780–3782 (2012).
[Crossref]

Lu, H.

Ma, H. F.

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Angle-insensitive dual-functional resonators combining cavity mode resonance and magnetic resonance,” Opt. Lett. 44(12), 3118–3121 (2019).
[Crossref]

Y. M. Qing, H. F. Ma, and T. J. Cui, “Investigation of strong multimode interaction in a graphene-based hybrid coupled plasmonic system,” Carbon 145, 596–602 (2019).
[Crossref]

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Ultra-narrowband absorption enhancement in monolayer transition-metal dichalcogenides with simple guided-mode resonance filters,” J. Appl. Phys. 125(21), 213108 (2019).
[Crossref]

Y. M. Qing, H. F. Ma, and T. J. Cui, “Tailoring anisotropic perfect absorption in monolayer black phosphorus by critical coupling at terahertz frequencies,” Opt. Express 26(25), 32442–32450 (2018).
[Crossref]

Mak, K. F.

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref]

Mao, D.

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Marder, S. R.

F. Barachati, J. Simon, Y. A. Getmanenko, S. Barlow, S. R. Marder, and S. Kéna-Cohen, “Tunable third-harmonic generation from polaritons in the ultrastrong coupling regime,” ACS Photonics 5(1), 119–125 (2018).
[Crossref]

Martikainen, J. P.

L. Shi, T. K. Hakala, H. T. Rekola, J. P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref]

Mattheiss, L. F.

L. F. Mattheiss, “Band structures of transition-metal-dichalcogenide layer compounds,” Phys. Rev. B: Condens. Matter Mater. Phys. 8(8), 3719–3740 (1973).
[Crossref]

Menon, V. M.

X. Liu, T. Galfsky, Z. Sun, F. Xia, E.-C. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light-matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Moerland, R. J.

L. Shi, T. K. Hakala, H. T. Rekola, J. P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref]

Munkhbat, B.

M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono-and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
[Crossref]

Naylor, C. H.

W. Liu, B. Lee, C. H. Naylor, H. S. Ee, J. Park, A. C. Johnson, and R. Agarwal, “Strong exciton-plasmon coupling in MoS2 coupled with plasmonic lattice,” Nano Lett. 16(2), 1262–1269 (2016).
[Crossref]

Nilsson, S.

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114(15), 157401 (2015).
[Crossref]

Olsson, E.

M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono-and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
[Crossref]

Palermo, V.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samori, and T. W. Ebbesen, “Tuning the Work-Function Via Strong Coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref]

Park, J.

W. Liu, B. Lee, C. H. Naylor, H. S. Ee, J. Park, A. C. Johnson, and R. Agarwal, “Strong exciton-plasmon coupling in MoS2 coupled with plasmonic lattice,” Nano Lett. 16(2), 1262–1269 (2016).
[Crossref]

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008).
[Crossref]

Peng, R. W.

K. Zhang, W. B. Shi, D. Wang, Y. Xu, R. W. Peng, R. H. Fan, Q. J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
[Crossref]

Qin, M.

Qing, Y. M.

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Angle-insensitive dual-functional resonators combining cavity mode resonance and magnetic resonance,” Opt. Lett. 44(12), 3118–3121 (2019).
[Crossref]

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Ultra-narrowband absorption enhancement in monolayer transition-metal dichalcogenides with simple guided-mode resonance filters,” J. Appl. Phys. 125(21), 213108 (2019).
[Crossref]

Y. M. Qing, H. F. Ma, and T. J. Cui, “Investigation of strong multimode interaction in a graphene-based hybrid coupled plasmonic system,” Carbon 145, 596–602 (2019).
[Crossref]

Y. M. Qing, H. F. Ma, and T. J. Cui, “Tailoring anisotropic perfect absorption in monolayer black phosphorus by critical coupling at terahertz frequencies,” Opt. Express 26(25), 32442–32450 (2018).
[Crossref]

Rekola, H. T.

L. Shi, T. K. Hakala, H. T. Rekola, J. P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref]

Ren, R.

Rigosi, A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Rosta, E.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Samori, P.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samori, and T. W. Ebbesen, “Tuning the Work-Function Via Strong Coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref]

Santori, C.

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[Crossref]

Scherer, A.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Scherman, O. A.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Schwartz, T.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samori, and T. W. Ebbesen, “Tuning the Work-Function Via Strong Coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref]

Shan, J.

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref]

She, J.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref]

Shegai, T.

M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono-and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
[Crossref]

J. Cuadra, D. G. Baranov, M. Wersäll, R. Verre, T. J. Antosiewicz, and T. Shegai, “Observation of tunable charged exciton polaritons in hybrid monolayer WS2-plasmonic nanoantenna system,” Nano Lett. 18(3), 1777–1785 (2018).
[Crossref]

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114(15), 157401 (2015).
[Crossref]

Shi, L.

L. Shi, T. K. Hakala, H. T. Rekola, J. P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref]

Shi, W. B.

K. Zhang, W. B. Shi, D. Wang, Y. Xu, R. W. Peng, R. H. Fan, Q. J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
[Crossref]

Simon, J.

F. Barachati, J. Simon, Y. A. Getmanenko, S. Barlow, S. R. Marder, and S. Kéna-Cohen, “Tunable third-harmonic generation from polaritons in the ultrastrong coupling regime,” ACS Photonics 5(1), 119–125 (2018).
[Crossref]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Stührenberg, M.

M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono-and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
[Crossref]

Sun, J.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime,” ACS Nano 12(10), 10393–10402 (2018).
[Crossref]

Sun, Z.

X. Liu, T. Galfsky, Z. Sun, F. Xia, E.-C. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light-matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Törmä, P.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

L. Shi, T. K. Hakala, H. T. Rekola, J. P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref]

van der Zande, A. M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Verre, R.

J. Cuadra, D. G. Baranov, M. Wersäll, R. Verre, T. J. Antosiewicz, and T. Shegai, “Observation of tunable charged exciton polaritons in hybrid monolayer WS2-plasmonic nanoantenna system,” Nano Lett. 18(3), 1777–1785 (2018).
[Crossref]

Wang, B.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

Wang, D.

K. Zhang, W. B. Shi, D. Wang, Y. Xu, R. W. Peng, R. H. Fan, Q. J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
[Crossref]

Wang, G.

Wang, G. P.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

Wang, H.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref]

Wang, H. Z.

Wang, L.

Wang, M.

K. Zhang, W. B. Shi, D. Wang, Y. Xu, R. W. Peng, R. H. Fan, Q. J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
[Crossref]

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Wang, Q. J.

K. Zhang, W. B. Shi, D. Wang, Y. Xu, R. W. Peng, R. H. Fan, Q. J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
[Crossref]

Wang, T. B.

Wang, W.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref]

Weihs, G.

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[Crossref]

Wen, J.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref]

Wen, X. W.

Wersäll, M.

J. Cuadra, D. G. Baranov, M. Wersäll, R. Verre, T. J. Antosiewicz, and T. Shegai, “Observation of tunable charged exciton polaritons in hybrid monolayer WS2-plasmonic nanoantenna system,” Nano Lett. 18(3), 1777–1785 (2018).
[Crossref]

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114(15), 157401 (2015).
[Crossref]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

Xia, F.

X. Liu, T. Galfsky, Z. Sun, F. Xia, E.-C. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light-matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Xu, H.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime,” ACS Nano 12(10), 10393–10402 (2018).
[Crossref]

Xu, N.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref]

Xu, Y.

K. Zhang, W. B. Shi, D. Wang, Y. Xu, R. W. Peng, R. H. Fan, Q. J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
[Crossref]

Yamamoto, Y.

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[Crossref]

Yankovich, A. B.

M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono-and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
[Crossref]

Yin, C. P.

Yu, S.

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Angle-insensitive dual-functional resonators combining cavity mode resonance and magnetic resonance,” Opt. Lett. 44(12), 3118–3121 (2019).
[Crossref]

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Ultra-narrowband absorption enhancement in monolayer transition-metal dichalcogenides with simple guided-mode resonance filters,” J. Appl. Phys. 125(21), 213108 (2019).
[Crossref]

Zengin, G.

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114(15), 157401 (2015).
[Crossref]

Zhai, X.

Zhang, D.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime,” ACS Nano 12(10), 10393–10402 (2018).
[Crossref]

Zhang, K.

K. Zhang, W. B. Shi, D. Wang, Y. Xu, R. W. Peng, R. H. Fan, Q. J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
[Crossref]

Zhang, S.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime,” ACS Nano 12(10), 10393–10402 (2018).
[Crossref]

Zhang, X.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Zhang, Y.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref]

Zheng, D.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime,” ACS Nano 12(10), 10393–10402 (2018).
[Crossref]

Zhuang, C.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref]

ACS Nano (1)

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime,” ACS Nano 12(10), 10393–10402 (2018).
[Crossref]

ACS Photonics (1)

F. Barachati, J. Simon, Y. A. Getmanenko, S. Barlow, S. R. Marder, and S. Kéna-Cohen, “Tunable third-harmonic generation from polaritons in the ultrastrong coupling regime,” ACS Photonics 5(1), 119–125 (2018).
[Crossref]

Adv. Mater. (1)

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samori, and T. W. Ebbesen, “Tuning the Work-Function Via Strong Coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref]

Appl. Phys. Lett. (2)

K. Zhang, W. B. Shi, D. Wang, Y. Xu, R. W. Peng, R. H. Fan, Q. J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
[Crossref]

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

Carbon (1)

Y. M. Qing, H. F. Ma, and T. J. Cui, “Investigation of strong multimode interaction in a graphene-based hybrid coupled plasmonic system,” Carbon 145, 596–602 (2019).
[Crossref]

J. Appl. Phys. (1)

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Ultra-narrowband absorption enhancement in monolayer transition-metal dichalcogenides with simple guided-mode resonance filters,” J. Appl. Phys. 125(21), 213108 (2019).
[Crossref]

Nano Lett. (4)

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref]

M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono-and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
[Crossref]

W. Liu, B. Lee, C. H. Naylor, H. S. Ee, J. Park, A. C. Johnson, and R. Agarwal, “Strong exciton-plasmon coupling in MoS2 coupled with plasmonic lattice,” Nano Lett. 16(2), 1262–1269 (2016).
[Crossref]

J. Cuadra, D. G. Baranov, M. Wersäll, R. Verre, T. J. Antosiewicz, and T. Shegai, “Observation of tunable charged exciton polaritons in hybrid monolayer WS2-plasmonic nanoantenna system,” Nano Lett. 18(3), 1777–1785 (2018).
[Crossref]

Nat. Nanotechnol. (1)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Nat. Photonics (3)

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
[Crossref]

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4(6), 371–375 (2010).
[Crossref]

X. Liu, T. Galfsky, Z. Sun, F. Xia, E.-C. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light-matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Nat. Phys. (1)

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Nature (2)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. B: Condens. Matter Mater. Phys. (2)

L. F. Mattheiss, “Band structures of transition-metal-dichalcogenide layer compounds,” Phys. Rev. B: Condens. Matter Mater. Phys. 8(8), 3719–3740 (1973).
[Crossref]

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Phys. Rev. Lett. (3)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref]

L. Shi, T. K. Hakala, H. T. Rekola, J. P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref]

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114(15), 157401 (2015).
[Crossref]

Rep. Prog. Phys. (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Science (1)

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) The sketch of WS2 monolayer on metal gratings. (b) The side-view schematic with the detailed structural description.
Fig. 2.
Fig. 2. (a) The transmission spectrum of individual WS2 monolayer and its imaginary part of the permittivity. (b) The absorption spectrum of the bare metal grating. The inset shows the magnetic field |Hz|2 distribution at the resonance peak with the photon energy of 2.04 eV. (c) The absorption spectrum of the hybrid structure. The inset depicts the two-level coupled oscillator model. Figures 2(d)-2(f) demonstrate the magnetic field Hz distribution at absorption peaks labeled by I, III, and at the absorption dip marked by II, respectively.
Fig. 3.
Fig. 3. (a) Color-coded absorption spectra of the hybrid structure with different nanogroove depths H. (b) The energies of two new hybrid states as a function of nanogroove depths. The purple and blue curves correspond to theoretical and FDTD results, respectively. The black and red curves represent the intrinsic energies of individual excitons and plasmonic MRs, respectively. (c) Plasmonic MR and exciton fractions in HEHM and LEHM, respectively. Figures 3(d)-3(f) show absorption spectra for different nanogroove widths W, refractive indexes n of the dielectric filled into nanogrooves, and incident angles, respectively. The H = 150 nm is used for obtaining the absorption spectra in Fig. (e). Other parameters are same as those used in Fig. 2 except the variable in each figure.
Fig. 4.
Fig. 4. (a) Absorption spectra of metal gratings with WS2 monolayer and with WS2 ribbons, respectively. The width L of the WS2 ribbon varies from 160 to 40 nm. (b) Absorption spectra of metal gratings with WS2 ribbons for different overlapping areas. The width of the WS2 ribbon is assumed to be L = 40 nm. Other parameters are identical to those used in Fig. 2 except the variable in each figure.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2 Re ( β ) H + φ = ( 2 m 1 ) π .
k d ε m tanh ( k d W / 2 ) + ε d k m = 0 k d = β 2 ε d k 0 2 k m = β 2 ε m k 0 2 } .
( E M R i Γ M R / 2 g g E e x i Γ e x / 2 ) ( α β ) = E ± ( α β ) ,

Metrics