Abstract

A plasmonic structure with transmission highly tunable in the mid-infrared spectral range is developed. This structure consists of a hexagonal array of metallic discs located on top of silicon pillars protruding through holes in a metallic Babinet complementary film. We reveal with FDTD simulations that changing the hole diameter tunes the main plasmonic resonance frequency of this structure throughout the infrared range. Due to the underlying Babinet physics of these coupled arrays, the spectral width of these plasmonic resonances is strongly reduced, and the higher harmonics are suppressed. Furthermore, we demonstrate that this structure can be easily produced by a combination of the nanosphere lithography and the metal-assisted chemical etching technique.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays

Mohamadreza Najiminaini, Fartash Vasefi, Bozena Kaminska, and Jeffrey J. L. Carson
Opt. Express 18(21) 22255-22270 (2010)

Hybrid metal-organic nanocavity arrays for efficient light out-coupling

Verena Kolb and Jens Pflaum
Opt. Express 25(6) 6678-6689 (2017)

Infrared transmission resonances in double-layered, complementary-structure metallic gratings

Jingyu Zhang, Shuang Zhang, Dong Li, Alexander Neumann, Chris Hains, Andrew Frauenglass, and S. R. J. Brueck
Opt. Express 15(14) 8737-8744 (2007)

References

  • View by:
  • |
  • |
  • |

  1. W.-D. Li, F. Ding, J. Hu, and S. Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt. Express 19(5), 3925–3936 (2011).
    [Crossref] [PubMed]
  2. W. Li, X. Jiang, J. Xue, Z. Zhou, and J. Zhou, “Antibody modified gold nano-mushroom arrays for rapid detection of alpha-fetoprotein,” Biosens. Bioelectron. 68, 468–474 (2015).
    [Crossref] [PubMed]
  3. Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
    [Crossref] [PubMed]
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  5. W.-D. Li, J. Hu, and S. Y. Chou, “Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks,” Opt. Express 19(21), 21098–21108 (2011).
    [Crossref] [PubMed]
  6. Q. Zhang, P. Hu, and C. Liu, “Giant-enhancement of extraordinary optical transmission through nanohole arrays blocked by plasmonic gold mushroom caps,” Opt. Commun. 335, 231–236 (2015).
    [Crossref]
  7. F. Fan, M. Chen, S. Chen, X. H. Wang, and S. J. Chang, “Complementary Plasmonic Arrays for Extraordinary Transmission and Modulation of Terahertz Wave,” IEEE Photonics Technol. Lett. 27(23), 2485–2488 (2015).
    [Crossref]
  8. Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
    [Crossref] [PubMed]
  9. C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Nanostructured plasmonic metapixels,” Sci. Rep. 7(1), 7745 (2017).
    [Crossref] [PubMed]
  10. R. Mudachathi and T. Tanaka, “Up Scalable Full Colour Plasmonic Pixels with Controllable Hue, Brightness and Saturation,” Sci. Rep. 7(1), 1199 (2017).
    [Crossref] [PubMed]
  11. K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
    [Crossref] [PubMed]
  12. J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
    [Crossref] [PubMed]
  13. M. Tabatabaei, M. Najiminaini, K. Davieau, B. Kaminska, M. R. Singh, J. J. L. Carson, and F. Lagugné-Labarthet, “Tunable 3D Plasmonic Cavity Nanosensors for Surface-Enhanced Raman Spectroscopy with Sub-femtomolar Limit of Detection,” ACS Photonics 2(6), 752–759 (2015).
    [Crossref]
  14. X. Chen, C. Wang, Y. Yao, and C. Wang, “Plasmonic Vertically Coupled Complementary Antennas for Dual-Mode Infrared Molecule Sensing,” ACS Nano 11(8), 8034–8046 (2017).
    [Crossref] [PubMed]
  15. W. Zhang, F. Ding, W. D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology 23(22), 225301 (2012).
    [Crossref] [PubMed]
  16. J. Yuan, H. Z. Cao, Y. Y. Xie, Z. X. Geng, Q. Kan, X. M. Duan, and H. D. Chen, “Gold Elliptic Nanocavity Array Biosensor With High Refractive Index Sensitivity Based on Two-Photon Nanolithography,” IEEE Photonics J. 7(1), 1–8 (2015).
    [Crossref]
  17. C. Wang, Q. Zhang, Y. Song, and S. Y. Chou, “Plasmonic Bar-Coupled Dots-on-Pillar Cavity Antenna with Dual Resonances for Infrared Absorption and Sensing: Performance and Nanoimprint Fabrication,” ACS Nano 8(3), 2618–2624 (2014).
    [Crossref] [PubMed]
  18. J. C. Hulteen and R. P. V. Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
    [Crossref]
  19. E. M. Akinoglu, A. J. Morfa, and M. Giersig, “Nanosphere lithography-exploiting self-assembly on the nanoscale for sophisticated nanostructure fabrication,” Turk. J. Phys. 38, 563–572 (2014).
    [Crossref]
  20. M. Pisco, F. Galeotti, G. Quero, G. Grisci, A. Micco, L. V. Mercaldo, P. D. Veneri, A. Cutolo, and A. Cusano, “Nanosphere lithography for optical fiber tip nanoprobes,” Light Sci. Appl. 6(5), e16229 (2017).
    [Crossref] [PubMed]
  21. E. M. Akinoglu, A. J. Morfa, and M. Giersig, “Understanding Anisotropic Plasma Etching of Two-Dimensional Polystyrene Opals for Advanced Materials Fabrication,” Langmuir 30(41), 12354–12361 (2014).
    [Crossref] [PubMed]
  22. K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, and S.-T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Appl. Phys. Lett. 90(16), 163123 (2007).
    [Crossref]
  23. B. Mikhael, B. Elise, M. Xavier, S. Sebastian, M. Johann, and P. Laetitia, “New silicon architectures by gold-assisted chemical etching,” ACS Appl. Mater. Interfaces 3(10), 3866–3873 (2011).
    [Crossref] [PubMed]
  24. A. Cowley, J. Steele, D. Byrne, R. Vijayaraghavan, and P. McNally, “Fabrication and characterisation of GaAs nanopillars using nanosphere lithography and metal assisted chemical etching,” RSC Advances 6(36), 30468–30473 (2016).
    [Crossref]
  25. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  26. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370 (1972).
  27. C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
    [Crossref]
  28. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
    [Crossref]
  29. Y. Wang, E. W. Plummer, and K. Kempa, “Foundations of Plasmonics,” Adv. Phys. 60(5), 799–898 (2011).
    [Crossref]
  30. Y. Peng, C. Marcoux, P. Patoka, M. Hilgendorff, M. Giersig, and K. Kempa, “Plasmonics of thin film quasitriangular nanoparticles,” Appl. Phys. Lett. 96(13), 133104 (2010).
    [Crossref]
  31. D. Franklin, S. Modak, A. Vázquez-Guardado, A. Safaei, and D. Chanda, “Covert infrared image encoding through imprinted plasmonic cavities,” Light Sci. Appl. 7(1), 93 (2018).
    [Crossref] [PubMed]

2018 (1)

D. Franklin, S. Modak, A. Vázquez-Guardado, A. Safaei, and D. Chanda, “Covert infrared image encoding through imprinted plasmonic cavities,” Light Sci. Appl. 7(1), 93 (2018).
[Crossref] [PubMed]

2017 (4)

M. Pisco, F. Galeotti, G. Quero, G. Grisci, A. Micco, L. V. Mercaldo, P. D. Veneri, A. Cutolo, and A. Cusano, “Nanosphere lithography for optical fiber tip nanoprobes,” Light Sci. Appl. 6(5), e16229 (2017).
[Crossref] [PubMed]

C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Nanostructured plasmonic metapixels,” Sci. Rep. 7(1), 7745 (2017).
[Crossref] [PubMed]

R. Mudachathi and T. Tanaka, “Up Scalable Full Colour Plasmonic Pixels with Controllable Hue, Brightness and Saturation,” Sci. Rep. 7(1), 1199 (2017).
[Crossref] [PubMed]

X. Chen, C. Wang, Y. Yao, and C. Wang, “Plasmonic Vertically Coupled Complementary Antennas for Dual-Mode Infrared Molecule Sensing,” ACS Nano 11(8), 8034–8046 (2017).
[Crossref] [PubMed]

2016 (1)

A. Cowley, J. Steele, D. Byrne, R. Vijayaraghavan, and P. McNally, “Fabrication and characterisation of GaAs nanopillars using nanosphere lithography and metal assisted chemical etching,” RSC Advances 6(36), 30468–30473 (2016).
[Crossref]

2015 (6)

Q. Zhang, P. Hu, and C. Liu, “Giant-enhancement of extraordinary optical transmission through nanohole arrays blocked by plasmonic gold mushroom caps,” Opt. Commun. 335, 231–236 (2015).
[Crossref]

F. Fan, M. Chen, S. Chen, X. H. Wang, and S. J. Chang, “Complementary Plasmonic Arrays for Extraordinary Transmission and Modulation of Terahertz Wave,” IEEE Photonics Technol. Lett. 27(23), 2485–2488 (2015).
[Crossref]

Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
[Crossref] [PubMed]

J. Yuan, H. Z. Cao, Y. Y. Xie, Z. X. Geng, Q. Kan, X. M. Duan, and H. D. Chen, “Gold Elliptic Nanocavity Array Biosensor With High Refractive Index Sensitivity Based on Two-Photon Nanolithography,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

M. Tabatabaei, M. Najiminaini, K. Davieau, B. Kaminska, M. R. Singh, J. J. L. Carson, and F. Lagugné-Labarthet, “Tunable 3D Plasmonic Cavity Nanosensors for Surface-Enhanced Raman Spectroscopy with Sub-femtomolar Limit of Detection,” ACS Photonics 2(6), 752–759 (2015).
[Crossref]

W. Li, X. Jiang, J. Xue, Z. Zhou, and J. Zhou, “Antibody modified gold nano-mushroom arrays for rapid detection of alpha-fetoprotein,” Biosens. Bioelectron. 68, 468–474 (2015).
[Crossref] [PubMed]

2014 (3)

E. M. Akinoglu, A. J. Morfa, and M. Giersig, “Nanosphere lithography-exploiting self-assembly on the nanoscale for sophisticated nanostructure fabrication,” Turk. J. Phys. 38, 563–572 (2014).
[Crossref]

C. Wang, Q. Zhang, Y. Song, and S. Y. Chou, “Plasmonic Bar-Coupled Dots-on-Pillar Cavity Antenna with Dual Resonances for Infrared Absorption and Sensing: Performance and Nanoimprint Fabrication,” ACS Nano 8(3), 2618–2624 (2014).
[Crossref] [PubMed]

E. M. Akinoglu, A. J. Morfa, and M. Giersig, “Understanding Anisotropic Plasma Etching of Two-Dimensional Polystyrene Opals for Advanced Materials Fabrication,” Langmuir 30(41), 12354–12361 (2014).
[Crossref] [PubMed]

2013 (1)

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

2012 (2)

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

W. Zhang, F. Ding, W. D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology 23(22), 225301 (2012).
[Crossref] [PubMed]

2011 (5)

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

W.-D. Li, F. Ding, J. Hu, and S. Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt. Express 19(5), 3925–3936 (2011).
[Crossref] [PubMed]

W.-D. Li, J. Hu, and S. Y. Chou, “Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks,” Opt. Express 19(21), 21098–21108 (2011).
[Crossref] [PubMed]

Y. Wang, E. W. Plummer, and K. Kempa, “Foundations of Plasmonics,” Adv. Phys. 60(5), 799–898 (2011).
[Crossref]

B. Mikhael, B. Elise, M. Xavier, S. Sebastian, M. Johann, and P. Laetitia, “New silicon architectures by gold-assisted chemical etching,” ACS Appl. Mater. Interfaces 3(10), 3866–3873 (2011).
[Crossref] [PubMed]

2010 (2)

Y. Peng, C. Marcoux, P. Patoka, M. Hilgendorff, M. Giersig, and K. Kempa, “Plasmonics of thin film quasitriangular nanoparticles,” Appl. Phys. Lett. 96(13), 133104 (2010).
[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

2008 (1)

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[Crossref]

2007 (1)

K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, and S.-T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Appl. Phys. Lett. 90(16), 163123 (2007).
[Crossref]

2004 (1)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1995 (1)

J. C. Hulteen and R. P. V. Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370 (1972).

Akinoglu, E. M.

E. M. Akinoglu, A. J. Morfa, and M. Giersig, “Nanosphere lithography-exploiting self-assembly on the nanoscale for sophisticated nanostructure fabrication,” Turk. J. Phys. 38, 563–572 (2014).
[Crossref]

E. M. Akinoglu, A. J. Morfa, and M. Giersig, “Understanding Anisotropic Plasma Etching of Two-Dimensional Polystyrene Opals for Advanced Materials Fabrication,” Langmuir 30(41), 12354–12361 (2014).
[Crossref] [PubMed]

Bassim, N. D.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Bezares, F. J.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

Byrne, D.

A. Cowley, J. Steele, D. Byrne, R. Vijayaraghavan, and P. McNally, “Fabrication and characterisation of GaAs nanopillars using nanosphere lithography and metal assisted chemical etching,” RSC Advances 6(36), 30468–30473 (2016).
[Crossref]

Caldwell, J. D.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

Cao, H. Z.

J. Yuan, H. Z. Cao, Y. Y. Xie, Z. X. Geng, Q. Kan, X. M. Duan, and H. D. Chen, “Gold Elliptic Nanocavity Array Biosensor With High Refractive Index Sensitivity Based on Two-Photon Nanolithography,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

Carson, J. J. L.

M. Tabatabaei, M. Najiminaini, K. Davieau, B. Kaminska, M. R. Singh, J. J. L. Carson, and F. Lagugné-Labarthet, “Tunable 3D Plasmonic Cavity Nanosensors for Surface-Enhanced Raman Spectroscopy with Sub-femtomolar Limit of Detection,” ACS Photonics 2(6), 752–759 (2015).
[Crossref]

Chanda, D.

D. Franklin, S. Modak, A. Vázquez-Guardado, A. Safaei, and D. Chanda, “Covert infrared image encoding through imprinted plasmonic cavities,” Light Sci. Appl. 7(1), 93 (2018).
[Crossref] [PubMed]

Chang, S. J.

F. Fan, M. Chen, S. Chen, X. H. Wang, and S. J. Chang, “Complementary Plasmonic Arrays for Extraordinary Transmission and Modulation of Terahertz Wave,” IEEE Photonics Technol. Lett. 27(23), 2485–2488 (2015).
[Crossref]

Chen, H. D.

J. Yuan, H. Z. Cao, Y. Y. Xie, Z. X. Geng, Q. Kan, X. M. Duan, and H. D. Chen, “Gold Elliptic Nanocavity Array Biosensor With High Refractive Index Sensitivity Based on Two-Photon Nanolithography,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

Chen, M.

F. Fan, M. Chen, S. Chen, X. H. Wang, and S. J. Chang, “Complementary Plasmonic Arrays for Extraordinary Transmission and Modulation of Terahertz Wave,” IEEE Photonics Technol. Lett. 27(23), 2485–2488 (2015).
[Crossref]

Chen, S.

F. Fan, M. Chen, S. Chen, X. H. Wang, and S. J. Chang, “Complementary Plasmonic Arrays for Extraordinary Transmission and Modulation of Terahertz Wave,” IEEE Photonics Technol. Lett. 27(23), 2485–2488 (2015).
[Crossref]

Chen, X.

X. Chen, C. Wang, Y. Yao, and C. Wang, “Plasmonic Vertically Coupled Complementary Antennas for Dual-Mode Infrared Molecule Sensing,” ACS Nano 11(8), 8034–8046 (2017).
[Crossref] [PubMed]

Chou, S. Y.

C. Wang, Q. Zhang, Y. Song, and S. Y. Chou, “Plasmonic Bar-Coupled Dots-on-Pillar Cavity Antenna with Dual Resonances for Infrared Absorption and Sensing: Performance and Nanoimprint Fabrication,” ACS Nano 8(3), 2618–2624 (2014).
[Crossref] [PubMed]

W. Zhang, F. Ding, W. D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology 23(22), 225301 (2012).
[Crossref] [PubMed]

W.-D. Li, F. Ding, J. Hu, and S. Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt. Express 19(5), 3925–3936 (2011).
[Crossref] [PubMed]

W.-D. Li, J. Hu, and S. Y. Chou, “Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks,” Opt. Express 19(21), 21098–21108 (2011).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370 (1972).

Cowley, A.

A. Cowley, J. Steele, D. Byrne, R. Vijayaraghavan, and P. McNally, “Fabrication and characterisation of GaAs nanopillars using nanosphere lithography and metal assisted chemical etching,” RSC Advances 6(36), 30468–30473 (2016).
[Crossref]

Cusano, A.

M. Pisco, F. Galeotti, G. Quero, G. Grisci, A. Micco, L. V. Mercaldo, P. D. Veneri, A. Cutolo, and A. Cusano, “Nanosphere lithography for optical fiber tip nanoprobes,” Light Sci. Appl. 6(5), e16229 (2017).
[Crossref] [PubMed]

Cutolo, A.

M. Pisco, F. Galeotti, G. Quero, G. Grisci, A. Micco, L. V. Mercaldo, P. D. Veneri, A. Cutolo, and A. Cusano, “Nanosphere lithography for optical fiber tip nanoprobes,” Light Sci. Appl. 6(5), e16229 (2017).
[Crossref] [PubMed]

Davieau, K.

M. Tabatabaei, M. Najiminaini, K. Davieau, B. Kaminska, M. R. Singh, J. J. L. Carson, and F. Lagugné-Labarthet, “Tunable 3D Plasmonic Cavity Nanosensors for Surface-Enhanced Raman Spectroscopy with Sub-femtomolar Limit of Detection,” ACS Photonics 2(6), 752–759 (2015).
[Crossref]

Ding, F.

W. Zhang, F. Ding, W. D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology 23(22), 225301 (2012).
[Crossref] [PubMed]

W.-D. Li, F. Ding, J. Hu, and S. Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt. Express 19(5), 3925–3936 (2011).
[Crossref] [PubMed]

Duan, H.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Duan, X. M.

J. Yuan, H. Z. Cao, Y. Y. Xie, Z. X. Geng, Q. Kan, X. M. Duan, and H. D. Chen, “Gold Elliptic Nanocavity Array Biosensor With High Refractive Index Sensitivity Based on Two-Photon Nanolithography,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

Duyne, R. P. V.

J. C. Hulteen and R. P. V. Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[Crossref]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Elise, B.

B. Mikhael, B. Elise, M. Xavier, S. Sebastian, M. Johann, and P. Laetitia, “New silicon architectures by gold-assisted chemical etching,” ACS Appl. Mater. Interfaces 3(10), 3866–3873 (2011).
[Crossref] [PubMed]

Fan, F.

F. Fan, M. Chen, S. Chen, X. H. Wang, and S. J. Chang, “Complementary Plasmonic Arrays for Extraordinary Transmission and Modulation of Terahertz Wave,” IEEE Photonics Technol. Lett. 27(23), 2485–2488 (2015).
[Crossref]

Feygelson, M.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

Flewitt, A. J.

C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Nanostructured plasmonic metapixels,” Sci. Rep. 7(1), 7745 (2017).
[Crossref] [PubMed]

Franklin, D.

D. Franklin, S. Modak, A. Vázquez-Guardado, A. Safaei, and D. Chanda, “Covert infrared image encoding through imprinted plasmonic cavities,” Light Sci. Appl. 7(1), 93 (2018).
[Crossref] [PubMed]

Galeotti, F.

M. Pisco, F. Galeotti, G. Quero, G. Grisci, A. Micco, L. V. Mercaldo, P. D. Veneri, A. Cutolo, and A. Cusano, “Nanosphere lithography for optical fiber tip nanoprobes,” Light Sci. Appl. 6(5), e16229 (2017).
[Crossref] [PubMed]

Geng, Z. X.

J. Yuan, H. Z. Cao, Y. Y. Xie, Z. X. Geng, Q. Kan, X. M. Duan, and H. D. Chen, “Gold Elliptic Nanocavity Array Biosensor With High Refractive Index Sensitivity Based on Two-Photon Nanolithography,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Giersig, M.

E. M. Akinoglu, A. J. Morfa, and M. Giersig, “Nanosphere lithography-exploiting self-assembly on the nanoscale for sophisticated nanostructure fabrication,” Turk. J. Phys. 38, 563–572 (2014).
[Crossref]

E. M. Akinoglu, A. J. Morfa, and M. Giersig, “Understanding Anisotropic Plasma Etching of Two-Dimensional Polystyrene Opals for Advanced Materials Fabrication,” Langmuir 30(41), 12354–12361 (2014).
[Crossref] [PubMed]

Y. Peng, C. Marcoux, P. Patoka, M. Hilgendorff, M. Giersig, and K. Kempa, “Plasmonics of thin film quasitriangular nanoparticles,” Appl. Phys. Lett. 96(13), 133104 (2010).
[Crossref]

Glembocki, O.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

Grisci, G.

M. Pisco, F. Galeotti, G. Quero, G. Grisci, A. Micco, L. V. Mercaldo, P. D. Veneri, A. Cutolo, and A. Cusano, “Nanosphere lithography for optical fiber tip nanoprobes,” Light Sci. Appl. 6(5), e16229 (2017).
[Crossref] [PubMed]

Gu, Y.

Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
[Crossref] [PubMed]

Hegde, R. S.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Hilgendorff, M.

Y. Peng, C. Marcoux, P. Patoka, M. Hilgendorff, M. Giersig, and K. Kempa, “Plasmonics of thin film quasitriangular nanoparticles,” Appl. Phys. Lett. 96(13), 133104 (2010).
[Crossref]

Hosten, C.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

Hu, J.

Hu, P.

Q. Zhang, P. Hu, and C. Liu, “Giant-enhancement of extraordinary optical transmission through nanohole arrays blocked by plasmonic gold mushroom caps,” Opt. Commun. 335, 231–236 (2015).
[Crossref]

Hulteen, J. C.

J. C. Hulteen and R. P. V. Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Jiang, B.

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[Crossref]

Jiang, P.

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[Crossref]

Jiang, R.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Jiang, X.

W. Li, X. Jiang, J. Xue, Z. Zhou, and J. Zhou, “Antibody modified gold nano-mushroom arrays for rapid detection of alpha-fetoprotein,” Biosens. Bioelectron. 68, 468–474 (2015).
[Crossref] [PubMed]

Jin, C.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johann, M.

B. Mikhael, B. Elise, M. Xavier, S. Sebastian, M. Johann, and P. Laetitia, “New silicon architectures by gold-assisted chemical etching,” ACS Appl. Mater. Interfaces 3(10), 3866–3873 (2011).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370 (1972).

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Kaminska, B.

M. Tabatabaei, M. Najiminaini, K. Davieau, B. Kaminska, M. R. Singh, J. J. L. Carson, and F. Lagugné-Labarthet, “Tunable 3D Plasmonic Cavity Nanosensors for Surface-Enhanced Raman Spectroscopy with Sub-femtomolar Limit of Detection,” ACS Photonics 2(6), 752–759 (2015).
[Crossref]

Kan, Q.

J. Yuan, H. Z. Cao, Y. Y. Xie, Z. X. Geng, Q. Kan, X. M. Duan, and H. D. Chen, “Gold Elliptic Nanocavity Array Biosensor With High Refractive Index Sensitivity Based on Two-Photon Nanolithography,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

Kasica, R.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

Kempa, K.

Y. Wang, E. W. Plummer, and K. Kempa, “Foundations of Plasmonics,” Adv. Phys. 60(5), 799–898 (2011).
[Crossref]

Y. Peng, C. Marcoux, P. Patoka, M. Hilgendorff, M. Giersig, and K. Kempa, “Plasmonics of thin film quasitriangular nanoparticles,” Appl. Phys. Lett. 96(13), 133104 (2010).
[Crossref]

Koh, S. C. W.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Kumar, K.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Laetitia, P.

B. Mikhael, B. Elise, M. Xavier, S. Sebastian, M. Johann, and P. Laetitia, “New silicon architectures by gold-assisted chemical etching,” ACS Appl. Mater. Interfaces 3(10), 3866–3873 (2011).
[Crossref] [PubMed]

Lagugné-Labarthet, F.

M. Tabatabaei, M. Najiminaini, K. Davieau, B. Kaminska, M. R. Singh, J. J. L. Carson, and F. Lagugné-Labarthet, “Tunable 3D Plasmonic Cavity Nanosensors for Surface-Enhanced Raman Spectroscopy with Sub-femtomolar Limit of Detection,” ACS Photonics 2(6), 752–759 (2015).
[Crossref]

Lee, S.-T.

K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, and S.-T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Appl. Phys. Lett. 90(16), 163123 (2007).
[Crossref]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Li, W.

W. Li, X. Jiang, J. Xue, Z. Zhou, and J. Zhou, “Antibody modified gold nano-mushroom arrays for rapid detection of alpha-fetoprotein,” Biosens. Bioelectron. 68, 468–474 (2015).
[Crossref] [PubMed]

Li, W. D.

W. Zhang, F. Ding, W. D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology 23(22), 225301 (2012).
[Crossref] [PubMed]

Li, W.-D.

Liu, C.

Q. Zhang, P. Hu, and C. Liu, “Giant-enhancement of extraordinary optical transmission through nanohole arrays blocked by plasmonic gold mushroom caps,” Opt. Commun. 335, 231–236 (2015).
[Crossref]

Liu, M.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Liu, T.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Lu, A.

K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, and S.-T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Appl. Phys. Lett. 90(16), 163123 (2007).
[Crossref]

Marcoux, C.

Y. Peng, C. Marcoux, P. Patoka, M. Hilgendorff, M. Giersig, and K. Kempa, “Plasmonics of thin film quasitriangular nanoparticles,” Appl. Phys. Lett. 96(13), 133104 (2010).
[Crossref]

McNally, P.

A. Cowley, J. Steele, D. Byrne, R. Vijayaraghavan, and P. McNally, “Fabrication and characterisation of GaAs nanopillars using nanosphere lithography and metal assisted chemical etching,” RSC Advances 6(36), 30468–30473 (2016).
[Crossref]

Mercaldo, L. V.

M. Pisco, F. Galeotti, G. Quero, G. Grisci, A. Micco, L. V. Mercaldo, P. D. Veneri, A. Cutolo, and A. Cusano, “Nanosphere lithography for optical fiber tip nanoprobes,” Light Sci. Appl. 6(5), e16229 (2017).
[Crossref] [PubMed]

Micco, A.

M. Pisco, F. Galeotti, G. Quero, G. Grisci, A. Micco, L. V. Mercaldo, P. D. Veneri, A. Cutolo, and A. Cusano, “Nanosphere lithography for optical fiber tip nanoprobes,” Light Sci. Appl. 6(5), e16229 (2017).
[Crossref] [PubMed]

Mikhael, B.

B. Mikhael, B. Elise, M. Xavier, S. Sebastian, M. Johann, and P. Laetitia, “New silicon architectures by gold-assisted chemical etching,” ACS Appl. Mater. Interfaces 3(10), 3866–3873 (2011).
[Crossref] [PubMed]

Modak, S.

D. Franklin, S. Modak, A. Vázquez-Guardado, A. Safaei, and D. Chanda, “Covert infrared image encoding through imprinted plasmonic cavities,” Light Sci. Appl. 7(1), 93 (2018).
[Crossref] [PubMed]

Morfa, A. J.

E. M. Akinoglu, A. J. Morfa, and M. Giersig, “Understanding Anisotropic Plasma Etching of Two-Dimensional Polystyrene Opals for Advanced Materials Fabrication,” Langmuir 30(41), 12354–12361 (2014).
[Crossref] [PubMed]

E. M. Akinoglu, A. J. Morfa, and M. Giersig, “Nanosphere lithography-exploiting self-assembly on the nanoscale for sophisticated nanostructure fabrication,” Turk. J. Phys. 38, 563–572 (2014).
[Crossref]

Mudachathi, R.

R. Mudachathi and T. Tanaka, “Up Scalable Full Colour Plasmonic Pixels with Controllable Hue, Brightness and Saturation,” Sci. Rep. 7(1), 1199 (2017).
[Crossref] [PubMed]

Najiminaini, M.

M. Tabatabaei, M. Najiminaini, K. Davieau, B. Kaminska, M. R. Singh, J. J. L. Carson, and F. Lagugné-Labarthet, “Tunable 3D Plasmonic Cavity Nanosensors for Surface-Enhanced Raman Spectroscopy with Sub-femtomolar Limit of Detection,” ACS Photonics 2(6), 752–759 (2015).
[Crossref]

Nordlander, P.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Patoka, P.

Y. Peng, C. Marcoux, P. Patoka, M. Hilgendorff, M. Giersig, and K. Kempa, “Plasmonics of thin film quasitriangular nanoparticles,” Appl. Phys. Lett. 96(13), 133104 (2010).
[Crossref]

Peng, K.

K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, and S.-T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Appl. Phys. Lett. 90(16), 163123 (2007).
[Crossref]

Peng, Y.

Y. Peng, C. Marcoux, P. Patoka, M. Hilgendorff, M. Giersig, and K. Kempa, “Plasmonics of thin film quasitriangular nanoparticles,” Appl. Phys. Lett. 96(13), 133104 (2010).
[Crossref]

Pisco, M.

M. Pisco, F. Galeotti, G. Quero, G. Grisci, A. Micco, L. V. Mercaldo, P. D. Veneri, A. Cutolo, and A. Cusano, “Nanosphere lithography for optical fiber tip nanoprobes,” Light Sci. Appl. 6(5), e16229 (2017).
[Crossref] [PubMed]

Plummer, E. W.

Y. Wang, E. W. Plummer, and K. Kempa, “Foundations of Plasmonics,” Adv. Phys. 60(5), 799–898 (2011).
[Crossref]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Qiu, C.-W.

Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
[Crossref] [PubMed]

Quero, G.

M. Pisco, F. Galeotti, G. Quero, G. Grisci, A. Micco, L. V. Mercaldo, P. D. Veneri, A. Cutolo, and A. Cusano, “Nanosphere lithography for optical fiber tip nanoprobes,” Light Sci. Appl. 6(5), e16229 (2017).
[Crossref] [PubMed]

Rendell, R. W.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Rughoobur, G.

C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Nanostructured plasmonic metapixels,” Sci. Rep. 7(1), 7745 (2017).
[Crossref] [PubMed]

Safaei, A.

D. Franklin, S. Modak, A. Vázquez-Guardado, A. Safaei, and D. Chanda, “Covert infrared image encoding through imprinted plasmonic cavities,” Light Sci. Appl. 7(1), 93 (2018).
[Crossref] [PubMed]

Sebastian, S.

B. Mikhael, B. Elise, M. Xavier, S. Sebastian, M. Johann, and P. Laetitia, “New silicon architectures by gold-assisted chemical etching,” ACS Appl. Mater. Interfaces 3(10), 3866–3873 (2011).
[Crossref] [PubMed]

Shen, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Shirey, L.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

Singh, M. R.

M. Tabatabaei, M. Najiminaini, K. Davieau, B. Kaminska, M. R. Singh, J. J. L. Carson, and F. Lagugné-Labarthet, “Tunable 3D Plasmonic Cavity Nanosensors for Surface-Enhanced Raman Spectroscopy with Sub-femtomolar Limit of Detection,” ACS Photonics 2(6), 752–759 (2015).
[Crossref]

Song, Y.

C. Wang, Q. Zhang, Y. Song, and S. Y. Chou, “Plasmonic Bar-Coupled Dots-on-Pillar Cavity Antenna with Dual Resonances for Infrared Absorption and Sensing: Performance and Nanoimprint Fabrication,” ACS Nano 8(3), 2618–2624 (2014).
[Crossref] [PubMed]

Steele, J.

A. Cowley, J. Steele, D. Byrne, R. Vijayaraghavan, and P. McNally, “Fabrication and characterisation of GaAs nanopillars using nanosphere lithography and metal assisted chemical etching,” RSC Advances 6(36), 30468–30473 (2016).
[Crossref]

Stockman, M.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Sun, C.-H.

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[Crossref]

Tabatabaei, M.

M. Tabatabaei, M. Najiminaini, K. Davieau, B. Kaminska, M. R. Singh, J. J. L. Carson, and F. Lagugné-Labarthet, “Tunable 3D Plasmonic Cavity Nanosensors for Surface-Enhanced Raman Spectroscopy with Sub-femtomolar Limit of Detection,” ACS Photonics 2(6), 752–759 (2015).
[Crossref]

Tanaka, T.

R. Mudachathi and T. Tanaka, “Up Scalable Full Colour Plasmonic Pixels with Controllable Hue, Brightness and Saturation,” Sci. Rep. 7(1), 1199 (2017).
[Crossref] [PubMed]

Tao, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Ukaegbu, M.

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

Vázquez-Guardado, A.

D. Franklin, S. Modak, A. Vázquez-Guardado, A. Safaei, and D. Chanda, “Covert infrared image encoding through imprinted plasmonic cavities,” Light Sci. Appl. 7(1), 93 (2018).
[Crossref] [PubMed]

Veneri, P. D.

M. Pisco, F. Galeotti, G. Quero, G. Grisci, A. Micco, L. V. Mercaldo, P. D. Veneri, A. Cutolo, and A. Cusano, “Nanosphere lithography for optical fiber tip nanoprobes,” Light Sci. Appl. 6(5), e16229 (2017).
[Crossref] [PubMed]

Vijayaraghavan, R.

A. Cowley, J. Steele, D. Byrne, R. Vijayaraghavan, and P. McNally, “Fabrication and characterisation of GaAs nanopillars using nanosphere lithography and metal assisted chemical etching,” RSC Advances 6(36), 30468–30473 (2016).
[Crossref]

Wang, C.

X. Chen, C. Wang, Y. Yao, and C. Wang, “Plasmonic Vertically Coupled Complementary Antennas for Dual-Mode Infrared Molecule Sensing,” ACS Nano 11(8), 8034–8046 (2017).
[Crossref] [PubMed]

X. Chen, C. Wang, Y. Yao, and C. Wang, “Plasmonic Vertically Coupled Complementary Antennas for Dual-Mode Infrared Molecule Sensing,” ACS Nano 11(8), 8034–8046 (2017).
[Crossref] [PubMed]

C. Wang, Q. Zhang, Y. Song, and S. Y. Chou, “Plasmonic Bar-Coupled Dots-on-Pillar Cavity Antenna with Dual Resonances for Infrared Absorption and Sensing: Performance and Nanoimprint Fabrication,” ACS Nano 8(3), 2618–2624 (2014).
[Crossref] [PubMed]

Wang, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Wang, X.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Wang, X. H.

F. Fan, M. Chen, S. Chen, X. H. Wang, and S. J. Chang, “Complementary Plasmonic Arrays for Extraordinary Transmission and Modulation of Terahertz Wave,” IEEE Photonics Technol. Lett. 27(23), 2485–2488 (2015).
[Crossref]

Wang, Y.

W. Zhang, F. Ding, W. D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology 23(22), 225301 (2012).
[Crossref] [PubMed]

Y. Wang, E. W. Plummer, and K. Kempa, “Foundations of Plasmonics,” Adv. Phys. 60(5), 799–898 (2011).
[Crossref]

Wei, J. N.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Wilkinson, T. D.

C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Nanostructured plasmonic metapixels,” Sci. Rep. 7(1), 7745 (2017).
[Crossref] [PubMed]

Williams, C.

C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Nanostructured plasmonic metapixels,” Sci. Rep. 7(1), 7745 (2017).
[Crossref] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wong, N.-B.

K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, and S.-T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Appl. Phys. Lett. 90(16), 163123 (2007).
[Crossref]

Xavier, M.

B. Mikhael, B. Elise, M. Xavier, S. Sebastian, M. Johann, and P. Laetitia, “New silicon architectures by gold-assisted chemical etching,” ACS Appl. Mater. Interfaces 3(10), 3866–3873 (2011).
[Crossref] [PubMed]

Xiao, G.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Xie, Y. Y.

J. Yuan, H. Z. Cao, Y. Y. Xie, Z. X. Geng, Q. Kan, X. M. Duan, and H. D. Chen, “Gold Elliptic Nanocavity Array Biosensor With High Refractive Index Sensitivity Based on Two-Photon Nanolithography,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

Xue, J.

W. Li, X. Jiang, J. Xue, Z. Zhou, and J. Zhou, “Antibody modified gold nano-mushroom arrays for rapid detection of alpha-fetoprotein,” Biosens. Bioelectron. 68, 468–474 (2015).
[Crossref] [PubMed]

Yang, J. K. W.

Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
[Crossref] [PubMed]

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Yao, Y.

X. Chen, C. Wang, Y. Yao, and C. Wang, “Plasmonic Vertically Coupled Complementary Antennas for Dual-Mode Infrared Molecule Sensing,” ACS Nano 11(8), 8034–8046 (2017).
[Crossref] [PubMed]

Yeo, S. P.

Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
[Crossref] [PubMed]

Yuan, J.

J. Yuan, H. Z. Cao, Y. Y. Xie, Z. X. Geng, Q. Kan, X. M. Duan, and H. D. Chen, “Gold Elliptic Nanocavity Array Biosensor With High Refractive Index Sensitivity Based on Two-Photon Nanolithography,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

Zhang, L.

Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
[Crossref] [PubMed]

Zhang, M.

K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, and S.-T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Appl. Phys. Lett. 90(16), 163123 (2007).
[Crossref]

Zhang, Q.

Q. Zhang, P. Hu, and C. Liu, “Giant-enhancement of extraordinary optical transmission through nanohole arrays blocked by plasmonic gold mushroom caps,” Opt. Commun. 335, 231–236 (2015).
[Crossref]

C. Wang, Q. Zhang, Y. Song, and S. Y. Chou, “Plasmonic Bar-Coupled Dots-on-Pillar Cavity Antenna with Dual Resonances for Infrared Absorption and Sensing: Performance and Nanoimprint Fabrication,” ACS Nano 8(3), 2618–2624 (2014).
[Crossref] [PubMed]

Zhang, R.

K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, and S.-T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Appl. Phys. Lett. 90(16), 163123 (2007).
[Crossref]

Zhang, W.

W. Zhang, F. Ding, W. D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology 23(22), 225301 (2012).
[Crossref] [PubMed]

Zhou, J.

W. Li, X. Jiang, J. Xue, Z. Zhou, and J. Zhou, “Antibody modified gold nano-mushroom arrays for rapid detection of alpha-fetoprotein,” Biosens. Bioelectron. 68, 468–474 (2015).
[Crossref] [PubMed]

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Zhou, Z.

W. Li, X. Jiang, J. Xue, Z. Zhou, and J. Zhou, “Antibody modified gold nano-mushroom arrays for rapid detection of alpha-fetoprotein,” Biosens. Bioelectron. 68, 468–474 (2015).
[Crossref] [PubMed]

Zhou, Z.-K.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Zhu, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

B. Mikhael, B. Elise, M. Xavier, S. Sebastian, M. Johann, and P. Laetitia, “New silicon architectures by gold-assisted chemical etching,” ACS Appl. Mater. Interfaces 3(10), 3866–3873 (2011).
[Crossref] [PubMed]

ACS Nano (3)

C. Wang, Q. Zhang, Y. Song, and S. Y. Chou, “Plasmonic Bar-Coupled Dots-on-Pillar Cavity Antenna with Dual Resonances for Infrared Absorption and Sensing: Performance and Nanoimprint Fabrication,” ACS Nano 8(3), 2618–2624 (2014).
[Crossref] [PubMed]

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors,” ACS Nano 5(5), 4046–4055 (2011).
[Crossref] [PubMed]

X. Chen, C. Wang, Y. Yao, and C. Wang, “Plasmonic Vertically Coupled Complementary Antennas for Dual-Mode Infrared Molecule Sensing,” ACS Nano 11(8), 8034–8046 (2017).
[Crossref] [PubMed]

ACS Photonics (1)

M. Tabatabaei, M. Najiminaini, K. Davieau, B. Kaminska, M. R. Singh, J. J. L. Carson, and F. Lagugné-Labarthet, “Tunable 3D Plasmonic Cavity Nanosensors for Surface-Enhanced Raman Spectroscopy with Sub-femtomolar Limit of Detection,” ACS Photonics 2(6), 752–759 (2015).
[Crossref]

Adv. Phys. (1)

Y. Wang, E. W. Plummer, and K. Kempa, “Foundations of Plasmonics,” Adv. Phys. 60(5), 799–898 (2011).
[Crossref]

Appl. Phys. Lett. (3)

Y. Peng, C. Marcoux, P. Patoka, M. Hilgendorff, M. Giersig, and K. Kempa, “Plasmonics of thin film quasitriangular nanoparticles,” Appl. Phys. Lett. 96(13), 133104 (2010).
[Crossref]

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[Crossref]

K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, and S.-T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Appl. Phys. Lett. 90(16), 163123 (2007).
[Crossref]

Biosens. Bioelectron. (1)

W. Li, X. Jiang, J. Xue, Z. Zhou, and J. Zhou, “Antibody modified gold nano-mushroom arrays for rapid detection of alpha-fetoprotein,” Biosens. Bioelectron. 68, 468–474 (2015).
[Crossref] [PubMed]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

IEEE Photonics J. (1)

J. Yuan, H. Z. Cao, Y. Y. Xie, Z. X. Geng, Q. Kan, X. M. Duan, and H. D. Chen, “Gold Elliptic Nanocavity Array Biosensor With High Refractive Index Sensitivity Based on Two-Photon Nanolithography,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

F. Fan, M. Chen, S. Chen, X. H. Wang, and S. J. Chang, “Complementary Plasmonic Arrays for Extraordinary Transmission and Modulation of Terahertz Wave,” IEEE Photonics Technol. Lett. 27(23), 2485–2488 (2015).
[Crossref]

J. Vac. Sci. Technol. A (1)

J. C. Hulteen and R. P. V. Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[Crossref]

Langmuir (1)

E. M. Akinoglu, A. J. Morfa, and M. Giersig, “Understanding Anisotropic Plasma Etching of Two-Dimensional Polystyrene Opals for Advanced Materials Fabrication,” Langmuir 30(41), 12354–12361 (2014).
[Crossref] [PubMed]

Light Sci. Appl. (2)

M. Pisco, F. Galeotti, G. Quero, G. Grisci, A. Micco, L. V. Mercaldo, P. D. Veneri, A. Cutolo, and A. Cusano, “Nanosphere lithography for optical fiber tip nanoprobes,” Light Sci. Appl. 6(5), e16229 (2017).
[Crossref] [PubMed]

D. Franklin, S. Modak, A. Vázquez-Guardado, A. Safaei, and D. Chanda, “Covert infrared image encoding through imprinted plasmonic cavities,” Light Sci. Appl. 7(1), 93 (2018).
[Crossref] [PubMed]

Nano Lett. (1)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Nanoscale (1)

Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

W. Zhang, F. Ding, W. D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology 23(22), 225301 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Opt. Commun. (1)

Q. Zhang, P. Hu, and C. Liu, “Giant-enhancement of extraordinary optical transmission through nanohole arrays blocked by plasmonic gold mushroom caps,” Opt. Commun. 335, 231–236 (2015).
[Crossref]

Opt. Express (2)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370 (1972).

RSC Advances (1)

A. Cowley, J. Steele, D. Byrne, R. Vijayaraghavan, and P. McNally, “Fabrication and characterisation of GaAs nanopillars using nanosphere lithography and metal assisted chemical etching,” RSC Advances 6(36), 30468–30473 (2016).
[Crossref]

Sci. Rep. (2)

C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Nanostructured plasmonic metapixels,” Sci. Rep. 7(1), 7745 (2017).
[Crossref] [PubMed]

R. Mudachathi and T. Tanaka, “Up Scalable Full Colour Plasmonic Pixels with Controllable Hue, Brightness and Saturation,” Sci. Rep. 7(1), 1199 (2017).
[Crossref] [PubMed]

Turk. J. Phys. (1)

E. M. Akinoglu, A. J. Morfa, and M. Giersig, “Nanosphere lithography-exploiting self-assembly on the nanoscale for sophisticated nanostructure fabrication,” Turk. J. Phys. 38, 563–572 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (A – C) Schematic presentation of the processing steps in the VCPA fabrication. (D) SEM image of the gold hole array, (E) after metal assisted etching and (F) after VCPA formation.
Fig. 2
Fig. 2 (A - B) SEM images of the cross-sections of two fabricated VCPA structures, with different pillar heights. (C) Normalized experimental (FTIR) result for one of our VCPA structures is shown as a solid blue line. Red and green solid lines are for our FDTD simulated results.
Fig. 3
Fig. 3 (A) Crosssection of the computational cells in the FDTD simulation. The inset shows the top view of the simulation cell. (B) Transmittance spectra for different d, and fixed h=200 nm and a=784 nm. (C) Transmittance spectra for different a, and fixed h=200 nm and d=627 nm. (D) Transmittance spectra for different h, and fixed a=784 nm and d=627 nm.
Fig. 4
Fig. 4 Comparison between simulated and estimated plasmon resonance position.
Fig. 5
Fig. 5 Babinet complementary arrays of holes (blue lines) and discs (red lines) on Si for various d and fixed a=784 nm. (A) 470 nm (B) 549 nm (C) 627 nm (D) 706 nm.
Fig. 6
Fig. 6 Transmittance versus wavelength for our structures with for various pillar diameters d and with fixed h=200 nm and a=784 nm. (A) pillars alone, (B) gold discs on top of pillars, (C) gold only on the bottom, with pillars protruding (no discs), and (D) structure with both arrays present: discs on top of pillars, and the Babinet complementary array at the pillar bottom.
Fig. 7
Fig. 7 Transmittance versus wavelength for our structures with for various array pitches a and with fixed h=200 nm and d=627 nm. (A) pillars alone, (B) gold discs on top of pillars, (C) gold only on the bottom, with pillars protruding (no discs), and (D) structure with both arrays present: discs on top of pillars, and the Babinet complementary array at the pillar bottom.
Fig. 8
Fig. 8 Transmittance versus wavelength for our structures with for various pillar heights h and with fixed a=784 nm and d=627 nm. (A) pillars alone, (B) gold discs on top of pillars, (C) gold only on the bottom, with pillars protruding (no discs), and (D) structure with both arrays present: discs on top of pillars, and the Babinet complementary array at the pillar bottom.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T disc  +  T holes  = 1
T= T disc T holes = T disc ( 1 T disc )= T disc ( T disc ) 2
λ max λ pl =πd ε