Abstract

The design of photonic structures plays a crucial role in the engineering of light-matter interactions. Planar microcavities have been widely used to establish strong light-matter coupling in semiconductor quantum wells, leading to intense research on exciton-polariton systems in the past few decades. However, planar cavities are limited in material compatibility, inflexible for mode engineering, and bulky for integration. Here we demonstrate dielectric slab photonic crystals as a flexible and compact platform for polaritons, where excitons are strongly coupled to photons confined in the leaky modes of the slab. We show our structure is well-suited for van der Waals materials, features unusual adjustable dispersions, and allows for multi-wavelength operation on a single chip.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Van der Waals materials integrated nanophotonic devices [Invited]

Chang-hua Liu, Jiajiu Zheng, Yueyang Chen, Taylor Fryett, and Arka Majumdar
Opt. Mater. Express 9(2) 384-399 (2019)

Raman spectroscopy regulation in van der Waals crystals

Wei Zheng, Yanming Zhu, Fadi Li, and Feng Huang
Photon. Res. 6(11) 991-995 (2018)

Van der Waals enhancement of optical atom potentials via resonant coupling to surface polaritons

Joseph Kerckhoff and Hideo Mabuchi
Opt. Express 17(17) 14744-14760 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. J. Hopfield, “Theory of the contribution of excitons to the complex dielectric constant of crystals,” Phys. Rev. 112, 1555–1567 (1958).
    [Crossref]
  2. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
    [Crossref] [PubMed]
  3. H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82, 1489–1537 (2010).
    [Crossref]
  4. I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299–366 (2013).
    [Crossref]
  5. M. D. Fraser, S. Höfling, and Y. Yamamoto, “Physics and applications of exciton-polariton lasers,” Nat. Mater. 15, 1049–1052 (2016).
    [Crossref] [PubMed]
  6. S. Christopoulos, G. B. H. Von Hogersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
    [Crossref]
  7. F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 1–5 (2013).
    [Crossref]
  8. S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong exciton-photon coupling in an organic single crystal microcavity,” Phys. Rev. Lett. 101, 116401 (2008).
    [Crossref] [PubMed]
  9. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
    [Crossref] [PubMed]
  10. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 2–5 (2010).
    [Crossref]
  11. K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016).
    [Crossref]
  12. X. Liu, T. Galfsky, Z. Sun, F. Xia, and E.-c. Lin, “Strong light-matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9, 30–34 (2015).
    [Crossref]
  13. L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, “Photonic-crystal exciton-polaritons in monolayer semiconductors,” Nat. Commun. 9, 1–8 (2018).
  14. X. Liu, W. Bao, Q. Li, C. Ropp, Y. Wang, and X. Zhang, “Control of coherently coupled exciton-polaritons in monolayer tungsten disulphide,” Phys. Rev. Lett. 027403, 027403 (2017).
    [Crossref]
  15. S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
    [Crossref] [PubMed]
  16. S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16, 4368–4374 (2016).
    [Crossref] [PubMed]
  17. F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
    [Crossref] [PubMed]
  18. S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
    [Crossref] [PubMed]
  19. X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
    [Crossref] [PubMed]
  20. X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. Van Der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2in a photonic crystal nanocavity,” Appl. Phys. Lett. 103, 1–5 (2013).
    [Crossref]
  21. X. T. Gan, C. Y. Zhao, S. Q. Hu, T. Wang, Y. Song, J. Li, Q. H. Zhao, W. Q. Jie, and J. L. Zhao, “Microwatts continuous-wave pumped second harmonic generation in few- and mono-layer GaSe,” Light. Sci. Appl. 7, 1–6 (2018).
    [Crossref]
  22. L. Fang, Q. Yuan, H. Fang, X. Gan, J. Li, T. Wang, Q. Zhao, W. Jie, and J. Zhao, “Multiple Optical Frequency Conversions in Few-Layer GaSe Assisted by a Photonic Crystal Cavity,” Adv. Opt. Mater. 6, 1–7 (2018).
    [Crossref]
  23. T. K. Fryett, K. L. Seyler, J. Zheng, C.-h. Liu, X. Xu, and A. Majumdar, “Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe 2,” 2D Mater. 4, 1–6 (2017).
  24. S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77, 126402 (2014).
    [Crossref] [PubMed]
  25. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
    [Crossref]
  26. E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, C. Dupuis, S. Collin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Free-standing guided-mode resonance band-pass filters: from 1D to 2D structures,” Opt. Express 20, 13082 (2012).
    [Crossref] [PubMed]
  27. R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, “Photonic devices enabled by waveguide-mode resonance effects in periodically modulated films,” in Nano- and Micro-Optics for Information Systems (International Society for Optics and Photonics, 2003), Vol. 5225, pp. 20–34.
    [Crossref]
  28. S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 1–8 (2002).
    [Crossref]
  29. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
    [Crossref]
  30. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993).
    [Crossref] [PubMed]
  31. J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D.-X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17, 18371–80 (2009).
    [Crossref] [PubMed]
  32. R. F. Kazarinov and C. H. Henry, “Second-Order Distributed Feedback Lasers with Mode Selection Provided by First-Order Radiation Losses,” IEEE J. Quantum Electron. 21, 144–150 (1985).
    [Crossref]
  33. P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
    [Crossref]
  34. Z. Wang, R. Gogna, and H. Deng, “What is the best planar cavity for maximizing coherent exciton-photon coupling,” Appl. Phys. Lett. 111, 061102 (2017).
    [Crossref]
  35. D. Aurelio and M. Liscidini, “Electromagnetic field enhancement in Bloch surface waves,” Phys. Rev. B 96, 1–7 (2017).
    [Crossref]
  36. Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114, 1–6 (2015).
  37. Z. S. Liu and R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photonics Technol. Lett. 14, 1091–1093 (2002).
    [Crossref]
  38. B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525, 354–358 (2015).
    [Crossref] [PubMed]
  39. V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18, 694–699 (2010).
    [Crossref] [PubMed]
  40. V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
    [Crossref]

2018 (4)

L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, “Photonic-crystal exciton-polaritons in monolayer semiconductors,” Nat. Commun. 9, 1–8 (2018).

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref] [PubMed]

X. T. Gan, C. Y. Zhao, S. Q. Hu, T. Wang, Y. Song, J. Li, Q. H. Zhao, W. Q. Jie, and J. L. Zhao, “Microwatts continuous-wave pumped second harmonic generation in few- and mono-layer GaSe,” Light. Sci. Appl. 7, 1–6 (2018).
[Crossref]

L. Fang, Q. Yuan, H. Fang, X. Gan, J. Li, T. Wang, Q. Zhao, W. Jie, and J. Zhao, “Multiple Optical Frequency Conversions in Few-Layer GaSe Assisted by a Photonic Crystal Cavity,” Adv. Opt. Mater. 6, 1–7 (2018).
[Crossref]

2017 (4)

T. K. Fryett, K. L. Seyler, J. Zheng, C.-h. Liu, X. Xu, and A. Majumdar, “Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe 2,” 2D Mater. 4, 1–6 (2017).

Z. Wang, R. Gogna, and H. Deng, “What is the best planar cavity for maximizing coherent exciton-photon coupling,” Appl. Phys. Lett. 111, 061102 (2017).
[Crossref]

D. Aurelio and M. Liscidini, “Electromagnetic field enhancement in Bloch surface waves,” Phys. Rev. B 96, 1–7 (2017).
[Crossref]

X. Liu, W. Bao, Q. Li, C. Ropp, Y. Wang, and X. Zhang, “Control of coherently coupled exciton-polaritons in monolayer tungsten disulphide,” Phys. Rev. Lett. 027403, 027403 (2017).
[Crossref]

2016 (3)

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016).
[Crossref]

M. D. Fraser, S. Höfling, and Y. Yamamoto, “Physics and applications of exciton-polariton lasers,” Nat. Mater. 15, 1049–1052 (2016).
[Crossref] [PubMed]

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16, 4368–4374 (2016).
[Crossref] [PubMed]

2015 (5)

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525, 354–358 (2015).
[Crossref] [PubMed]

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114, 1–6 (2015).

X. Liu, T. Galfsky, Z. Sun, F. Xia, and E.-c. Lin, “Strong light-matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9, 30–34 (2015).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref] [PubMed]

2014 (1)

S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77, 126402 (2014).
[Crossref] [PubMed]

2013 (4)

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. Van Der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2in a photonic crystal nanocavity,” Appl. Phys. Lett. 103, 1–5 (2013).
[Crossref]

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299–366 (2013).
[Crossref]

2012 (3)

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref] [PubMed]

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, C. Dupuis, S. Collin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Free-standing guided-mode resonance band-pass filters: from 1D to 2D structures,” Opt. Express 20, 13082 (2012).
[Crossref] [PubMed]

2010 (5)

V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18, 694–699 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 2–5 (2010).
[Crossref]

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82, 1489–1537 (2010).
[Crossref]

2009 (1)

2008 (1)

S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong exciton-photon coupling in an organic single crystal microcavity,” Phys. Rev. Lett. 101, 116401 (2008).
[Crossref] [PubMed]

2007 (1)

S. Christopoulos, G. B. H. Von Hogersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

2002 (2)

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 1–8 (2002).
[Crossref]

Z. S. Liu and R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photonics Technol. Lett. 14, 1091–1093 (2002).
[Crossref]

1997 (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[Crossref]

1993 (1)

1992 (1)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref] [PubMed]

1985 (1)

R. F. Kazarinov and C. H. Henry, “Second-Order Distributed Feedback Lasers with Mode Selection Provided by First-Order Radiation Losses,” IEEE J. Quantum Electron. 21, 144–150 (1985).
[Crossref]

1958 (1)

J. J. Hopfield, “Theory of the contribution of excitons to the complex dielectric constant of crystals,” Phys. Rev. 112, 1555–1567 (1958).
[Crossref]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref] [PubMed]

Aurelio, D.

D. Aurelio and M. Liscidini, “Electromagnetic field enhancement in Bloch surface waves,” Phys. Rev. B 96, 1–7 (2017).
[Crossref]

Azzini, S.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16, 4368–4374 (2016).
[Crossref] [PubMed]

Ballarini, D.

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref] [PubMed]

Bao, W.

X. Liu, W. Bao, Q. Li, C. Ropp, Y. Wang, and X. Zhang, “Control of coherently coupled exciton-polaritons in monolayer tungsten disulphide,” Phys. Rev. Lett. 027403, 027403 (2017).
[Crossref]

Barachati, F.

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref] [PubMed]

Bardou, N.

Baumberg, J. J.

S. Christopoulos, G. B. H. Von Hogersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Bouchoule, S.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Brimont, C.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Buckley, S.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref] [PubMed]

Burg, W.

L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, “Photonic-crystal exciton-polaritons in monolayer semiconductors,” Nat. Commun. 9, 1–8 (2018).

Butte, R.

S. Christopoulos, G. B. H. Von Hogersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Carlin, J. F.

S. Christopoulos, G. B. H. Von Hogersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Carusotto, I.

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299–366 (2013).
[Crossref]

Chakraborty, B.

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref] [PubMed]

Chang-hasnain, C. J.

Chase, C.

Cheben, P.

Chervy, T.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16, 4368–4374 (2016).
[Crossref] [PubMed]

Chim, C. Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Christmann, G.

S. Christopoulos, G. B. H. Von Hogersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Christopoulos, S.

S. Christopoulos, G. B. H. Von Hogersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Chua, S.-L.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525, 354–358 (2015).
[Crossref] [PubMed]

Ciuti, C.

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299–366 (2013).
[Crossref]

Clark, C.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Collin, S.

Davanço, M.

S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong exciton-photon coupling in an organic single crystal microcavity,” Phys. Rev. Lett. 101, 116401 (2008).
[Crossref] [PubMed]

Del Pozo-Zamudio, O.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Delâge, A.

Deng, H.

L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, “Photonic-crystal exciton-polaritons in monolayer semiconductors,” Nat. Commun. 9, 1–8 (2018).

Z. Wang, R. Gogna, and H. Deng, “What is the best planar cavity for maximizing coherent exciton-photon coupling,” Appl. Phys. Lett. 111, 061102 (2017).
[Crossref]

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114, 1–6 (2015).

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82, 1489–1537 (2010).
[Crossref]

Densmore, A.

Ding, Y.

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, “Photonic devices enabled by waveguide-mode resonance effects in periodically modulated films,” in Nano- and Micro-Optics for Information Systems (International Society for Optics and Photonics, 2003), Vol. 5225, pp. 20–34.
[Crossref]

Disseix, P.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Dufferwiel, S.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Dupuis, C.

Durska, M.

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

Ebbesen, T. W.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16, 4368–4374 (2016).
[Crossref] [PubMed]

Englund, D.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. Van Der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2in a photonic crystal nanocavity,” Appl. Phys. Lett. 103, 1–5 (2013).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref] [PubMed]

Fai Mak, K.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. Van Der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2in a photonic crystal nanocavity,” Appl. Phys. Lett. 103, 1–5 (2013).
[Crossref]

Fan, S.

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 1–8 (2002).
[Crossref]

Fang, H.

L. Fang, Q. Yuan, H. Fang, X. Gan, J. Li, T. Wang, Q. Zhao, W. Jie, and J. Zhao, “Multiple Optical Frequency Conversions in Few-Layer GaSe Assisted by a Photonic Crystal Cavity,” Adv. Opt. Mater. 6, 1–7 (2018).
[Crossref]

Fang, L.

L. Fang, Q. Yuan, H. Fang, X. Gan, J. Li, T. Wang, Q. Zhao, W. Jie, and J. Zhao, “Multiple Optical Frequency Conversions in Few-Layer GaSe Assisted by a Photonic Crystal Cavity,” Adv. Opt. Mater. 6, 1–7 (2018).
[Crossref]

Farrer, I.

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

Feltin, E.

S. Christopoulos, G. B. H. Von Hogersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Feng, L.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref] [PubMed]

Fieramosca, A.

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref] [PubMed]

Forrest, S. R.

S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong exciton-photon coupling in an organic single crystal microcavity,” Phys. Rev. Lett. 101, 116401 (2008).
[Crossref] [PubMed]

Fraser, M. D.

M. D. Fraser, S. Höfling, and Y. Yamamoto, “Physics and applications of exciton-polariton lasers,” Nat. Mater. 15, 1049–1052 (2016).
[Crossref] [PubMed]

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[Crossref]

Fryett, T. K.

T. K. Fryett, K. L. Seyler, J. Zheng, C.-h. Liu, X. Xu, and A. Majumdar, “Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe 2,” 2D Mater. 4, 1–6 (2017).

Galfsky, T.

X. Liu, T. Galfsky, Z. Sun, F. Xia, and E.-c. Lin, “Strong light-matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9, 30–34 (2015).
[Crossref]

Galli, G.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref] [PubMed]

Gan, X.

L. Fang, Q. Yuan, H. Fang, X. Gan, J. Li, T. Wang, Q. Zhao, W. Jie, and J. Zhao, “Multiple Optical Frequency Conversions in Few-Layer GaSe Assisted by a Photonic Crystal Cavity,” Adv. Opt. Mater. 6, 1–7 (2018).
[Crossref]

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. Van Der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2in a photonic crystal nanocavity,” Appl. Phys. Lett. 103, 1–5 (2013).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref] [PubMed]

Gan, X. T.

X. T. Gan, C. Y. Zhao, S. Q. Hu, T. Wang, Y. Song, J. Li, Q. H. Zhao, W. Q. Jie, and J. L. Zhao, “Microwatts continuous-wave pumped second harmonic generation in few- and mono-layer GaSe,” Light. Sci. Appl. 7, 1–6 (2018).
[Crossref]

Gao, Y.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. Van Der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2in a photonic crystal nanocavity,” Appl. Phys. Lett. 103, 1–5 (2013).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref] [PubMed]

García, J.

Genet, C.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16, 4368–4374 (2016).
[Crossref] [PubMed]

Ghenuche, P.

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Gogna, R.

L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, “Photonic-crystal exciton-polaritons in monolayer semiconductors,” Nat. Commun. 9, 1–8 (2018).

Z. Wang, R. Gogna, and H. Deng, “What is the best planar cavity for maximizing coherent exciton-photon coupling,” Appl. Phys. Lett. 111, 061102 (2017).
[Crossref]

Grandjean, N.

S. Christopoulos, G. B. H. Von Hogersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Grundy, A. J. D.

S. Christopoulos, G. B. H. Von Hogersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Gu, J.

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref] [PubMed]

Guillet, T.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Hafezian, S.

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref] [PubMed]

Haïdar, R.

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Hatami, F.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref] [PubMed]

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. Van Der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2in a photonic crystal nanocavity,” Appl. Phys. Lett. 103, 1–5 (2013).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref] [PubMed]

Haug, H.

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82, 1489–1537 (2010).
[Crossref]

Heinz, T. F.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. Van Der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2in a photonic crystal nanocavity,” Appl. Phys. Lett. 103, 1–5 (2013).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 2–5 (2010).
[Crossref]

Henry, C. H.

R. F. Kazarinov and C. H. Henry, “Second-Order Distributed Feedback Lasers with Mode Selection Provided by First-Order Radiation Losses,” IEEE J. Quantum Electron. 21, 144–150 (1985).
[Crossref]

Höfling, S.

M. D. Fraser, S. Höfling, and Y. Yamamoto, “Physics and applications of exciton-polariton lasers,” Nat. Mater. 15, 1049–1052 (2016).
[Crossref] [PubMed]

Hofmann, W.

Hone, J.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. Van Der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2in a photonic crystal nanocavity,” Appl. Phys. Lett. 103, 1–5 (2013).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 2–5 (2010).
[Crossref]

Hopfield, J. J.

J. J. Hopfield, “Theory of the contribution of excitons to the complex dielectric constant of crystals,” Phys. Rev. 112, 1555–1567 (1958).
[Crossref]

Hsu, C. W.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525, 354–358 (2015).
[Crossref] [PubMed]

Hu, S. Q.

X. T. Gan, C. Y. Zhao, S. Q. Hu, T. Wang, Y. Song, J. Li, Q. H. Zhao, W. Q. Jie, and J. L. Zhao, “Microwatts continuous-wave pumped second harmonic generation in few- and mono-layer GaSe,” Light. Sci. Appl. 7, 1–6 (2018).
[Crossref]

Hutchison, J. A.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16, 4368–4374 (2016).
[Crossref] [PubMed]

Igarashi, Y.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525, 354–358 (2015).
[Crossref] [PubMed]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref] [PubMed]

Janz, S.

Jie, W.

L. Fang, Q. Yuan, H. Fang, X. Gan, J. Li, T. Wang, Q. Zhao, W. Jie, and J. Zhao, “Multiple Optical Frequency Conversions in Few-Layer GaSe Assisted by a Photonic Crystal Cavity,” Adv. Opt. Mater. 6, 1–7 (2018).
[Crossref]

Jie, W. Q.

X. T. Gan, C. Y. Zhao, S. Q. Hu, T. Wang, Y. Song, J. Li, Q. H. Zhao, W. Q. Jie, and J. L. Zhao, “Microwatts continuous-wave pumped second harmonic generation in few- and mono-layer GaSe,” Light. Sci. Appl. 7, 1–6 (2018).
[Crossref]

Joannopoulos, J.

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 1–8 (2002).
[Crossref]

Joannopoulos, J. D.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525, 354–358 (2015).
[Crossref] [PubMed]

Kaminer, I.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525, 354–358 (2015).
[Crossref] [PubMed]

Kamoun, O.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Karagodsky, V.

Kavokin, A. V.

S. Christopoulos, G. B. H. Von Hogersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Kazarinov, R. F.

R. F. Kazarinov and C. H. Henry, “Second-Order Distributed Feedback Lasers with Mode Selection Provided by First-Order Radiation Losses,” IEEE J. Quantum Electron. 21, 144–150 (1985).
[Crossref]

Kéna-Cohen, S.

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref] [PubMed]

S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong exciton-photon coupling in an organic single crystal microcavity,” Phys. Rev. Lett. 101, 116401 (2008).
[Crossref] [PubMed]

Kim, J.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref] [PubMed]

Koyama, F.

Krizhanovskii, D. N.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

Lafosse, X.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Lagoudakis, P. G.

S. Christopoulos, G. B. H. Von Hogersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Lapointe, J.

Lee, C.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 2–5 (2010).
[Crossref]

Lee, K. J.

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, “Photonic devices enabled by waveguide-mode resonance effects in periodically modulated films,” in Nano- and Micro-Optics for Information Systems (International Society for Optics and Photonics, 2003), Vol. 5225, pp. 20–34.
[Crossref]

Leroux, M.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Leymarie, J.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Li, F.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Li, J.

X. T. Gan, C. Y. Zhao, S. Q. Hu, T. Wang, Y. Song, J. Li, Q. H. Zhao, W. Q. Jie, and J. L. Zhao, “Microwatts continuous-wave pumped second harmonic generation in few- and mono-layer GaSe,” Light. Sci. Appl. 7, 1–6 (2018).
[Crossref]

L. Fang, Q. Yuan, H. Fang, X. Gan, J. Li, T. Wang, Q. Zhao, W. Jie, and J. Zhao, “Multiple Optical Frequency Conversions in Few-Layer GaSe Assisted by a Photonic Crystal Cavity,” Adv. Opt. Mater. 6, 1–7 (2018).
[Crossref]

Li, Q.

X. Liu, W. Bao, Q. Li, C. Ropp, Y. Wang, and X. Zhang, “Control of coherently coupled exciton-polaritons in monolayer tungsten disulphide,” Phys. Rev. Lett. 027403, 027403 (2017).
[Crossref]

Li, S.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16, 4368–4374 (2016).
[Crossref] [PubMed]

Li, T.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref] [PubMed]

Li, Y.

Lin, E.-c.

X. Liu, T. Galfsky, Z. Sun, F. Xia, and E.-c. Lin, “Strong light-matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9, 30–34 (2015).
[Crossref]

Liscidini, M.

D. Aurelio and M. Liscidini, “Electromagnetic field enhancement in Bloch surface waves,” Phys. Rev. B 96, 1–7 (2017).
[Crossref]

Liu, C.-h.

T. K. Fryett, K. L. Seyler, J. Zheng, C.-h. Liu, X. Xu, and A. Majumdar, “Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe 2,” 2D Mater. 4, 1–6 (2017).

Liu, V.

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

Liu, X.

X. Liu, W. Bao, Q. Li, C. Ropp, Y. Wang, and X. Zhang, “Control of coherently coupled exciton-polaritons in monolayer tungsten disulphide,” Phys. Rev. Lett. 027403, 027403 (2017).
[Crossref]

X. Liu, T. Galfsky, Z. Sun, F. Xia, and E.-c. Lin, “Strong light-matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9, 30–34 (2015).
[Crossref]

Liu, Z. S.

Z. S. Liu and R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photonics Technol. Lett. 14, 1091–1093 (2002).
[Crossref]

Lopinski, G.

Lu, L.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525, 354–358 (2015).
[Crossref] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Luxmoore, I. J.

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

Magnusson, R.

Z. S. Liu and R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photonics Technol. Lett. 14, 1091–1093 (2002).
[Crossref]

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993).
[Crossref] [PubMed]

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, “Photonic devices enabled by waveguide-mode resonance effects in periodically modulated films,” in Nano- and Micro-Optics for Information Systems (International Society for Optics and Photonics, 2003), Vol. 5225, pp. 20–34.
[Crossref]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Majumdar, A.

T. K. Fryett, K. L. Seyler, J. Zheng, C.-h. Liu, X. Xu, and A. Majumdar, “Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe 2,” 2D Mater. 4, 1–6 (2017).

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref] [PubMed]

Mak, K. F.

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 2–5 (2010).
[Crossref]

Maldonado, T. A.

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, “Photonic devices enabled by waveguide-mode resonance effects in periodically modulated films,” in Nano- and Micro-Optics for Information Systems (International Society for Optics and Photonics, 2003), Vol. 5225, pp. 20–34.
[Crossref]

Malpuech, G.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Mandrus, D. G.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref] [PubMed]

Martinu, L.

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref] [PubMed]

Menon, V.

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref] [PubMed]

Mexis, M.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Mihailovic, M.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Mischki, T.

Nalitov, A.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref] [PubMed]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Novoselov, K. S.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Orgiu, E.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16, 4368–4374 (2016).
[Crossref] [PubMed]

Orosz, L.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Pardo, F.

Patriarche, G.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Pelouard, J.-L.

Pesala, B.

Pick, A.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525, 354–358 (2015).
[Crossref] [PubMed]

Poitras, D.

Priambodo, P. S.

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, “Photonic devices enabled by waveguide-mode resonance effects in periodically modulated films,” in Nano- and Micro-Optics for Information Systems (International Society for Optics and Photonics, 2003), Vol. 5225, pp. 20–34.
[Crossref]

Réveret, F.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Ritchie, D. A.

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

Ropp, C.

X. Liu, W. Bao, Q. Li, C. Ropp, Y. Wang, and X. Zhang, “Control of coherently coupled exciton-polaritons in monolayer tungsten disulphide,” Phys. Rev. Lett. 027403, 027403 (2017).
[Crossref]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[Crossref]

Royall, B.

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

Sakat, E.

Samorì, P.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16, 4368–4374 (2016).
[Crossref] [PubMed]

Sanvitto, D.

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref] [PubMed]

Schaibley, J. R.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref] [PubMed]

Schmid, J. H.

Schwarz, S.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Seyler, K. L.

T. K. Fryett, K. L. Seyler, J. Zheng, C.-h. Liu, X. Xu, and A. Majumdar, “Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe 2,” 2D Mater. 4, 1–6 (2017).

Shalabney, A.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16, 4368–4374 (2016).
[Crossref] [PubMed]

Shan, J.

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 2–5 (2010).
[Crossref]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[Crossref]

Shin, D.

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, “Photonic devices enabled by waveguide-mode resonance effects in periodically modulated films,” in Nano- and Micro-Optics for Information Systems (International Society for Optics and Photonics, 2003), Vol. 5225, pp. 20–34.
[Crossref]

Shiue, R. J.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. Van Der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2in a photonic crystal nanocavity,” Appl. Phys. Lett. 103, 1–5 (2013).
[Crossref]

Sich, M.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Sinclair, W.

Skolnick, M. S.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

Smith, J. M.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Soljacic, M.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525, 354–358 (2015).
[Crossref] [PubMed]

Solnyshkov, D.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Solnyshkov, D. D.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Song, Y.

X. T. Gan, C. Y. Zhao, S. Q. Hu, T. Wang, Y. Song, J. Li, Q. H. Zhao, W. Q. Jie, and J. L. Zhao, “Microwatts continuous-wave pumped second harmonic generation in few- and mono-layer GaSe,” Light. Sci. Appl. 7, 1–6 (2018).
[Crossref]

Splendiani, A.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref] [PubMed]

Sun, L.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref] [PubMed]

Sun, Z.

X. Liu, T. Galfsky, Z. Sun, F. Xia, and E.-c. Lin, “Strong light-matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9, 30–34 (2015).
[Crossref]

Tartakovskii, A. I.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Tinkler, L.

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

Trichet, A. A. P.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Trusheim, M. E.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. Van Der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2in a photonic crystal nanocavity,” Appl. Phys. Lett. 103, 1–5 (2013).
[Crossref]

Tutuc, E.

L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, “Photonic-crystal exciton-polaritons in monolayer semiconductors,” Nat. Commun. 9, 1–8 (2018).

Van Der Zande, A.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. Van Der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2in a photonic crystal nanocavity,” Appl. Phys. Lett. 103, 1–5 (2013).
[Crossref]

Vincent, G.

Von Hogersthal, G. B. H.

S. Christopoulos, G. B. H. Von Hogersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Vuckovic, J.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref] [PubMed]

Waldron, P.

Walker, P. M.

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

Wang, F.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref] [PubMed]

Wang, S.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16, 4368–4374 (2016).
[Crossref] [PubMed]

Wang, S. S.

Wang, T.

L. Fang, Q. Yuan, H. Fang, X. Gan, J. Li, T. Wang, Q. Zhao, W. Jie, and J. Zhao, “Multiple Optical Frequency Conversions in Few-Layer GaSe Assisted by a Photonic Crystal Cavity,” Adv. Opt. Mater. 6, 1–7 (2018).
[Crossref]

X. T. Gan, C. Y. Zhao, S. Q. Hu, T. Wang, Y. Song, J. Li, Q. H. Zhao, W. Q. Jie, and J. L. Zhao, “Microwatts continuous-wave pumped second harmonic generation in few- and mono-layer GaSe,” Light. Sci. Appl. 7, 1–6 (2018).
[Crossref]

Wang, Y.

X. Liu, W. Bao, Q. Li, C. Ropp, Y. Wang, and X. Zhang, “Control of coherently coupled exciton-polaritons in monolayer tungsten disulphide,” Phys. Rev. Lett. 027403, 027403 (2017).
[Crossref]

Wang, Z.

Z. Wang, R. Gogna, and H. Deng, “What is the best planar cavity for maximizing coherent exciton-photon coupling,” Appl. Phys. Lett. 111, 061102 (2017).
[Crossref]

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114, 1–6 (2015).

Weisbuch, C.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref] [PubMed]

Whittaker, D. M.

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

Withers, F.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Wu, S.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref] [PubMed]

Xia, F.

X. Liu, T. Galfsky, Z. Sun, F. Xia, and E.-c. Lin, “Strong light-matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9, 30–34 (2015).
[Crossref]

Xu, D.-X.

Xu, X.

T. K. Fryett, K. L. Seyler, J. Zheng, C.-h. Liu, X. Xu, and A. Majumdar, “Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe 2,” 2D Mater. 4, 1–6 (2017).

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref] [PubMed]

Yamamoto, Y.

M. D. Fraser, S. Höfling, and Y. Yamamoto, “Physics and applications of exciton-polariton lasers,” Nat. Mater. 15, 1049–1052 (2016).
[Crossref] [PubMed]

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82, 1489–1537 (2010).
[Crossref]

Yan, J.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref] [PubMed]

Yao, W.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref] [PubMed]

Yao, X.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. Van Der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2in a photonic crystal nanocavity,” Appl. Phys. Lett. 103, 1–5 (2013).
[Crossref]

You, Y.

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref] [PubMed]

Young, P. P.

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, “Photonic devices enabled by waveguide-mode resonance effects in periodically modulated films,” in Nano- and Micro-Optics for Information Systems (International Society for Optics and Photonics, 2003), Vol. 5225, pp. 20–34.
[Crossref]

Yuan, Q.

L. Fang, Q. Yuan, H. Fang, X. Gan, J. Li, T. Wang, Q. Zhao, W. Jie, and J. Zhao, “Multiple Optical Frequency Conversions in Few-Layer GaSe Assisted by a Photonic Crystal Cavity,” Adv. Opt. Mater. 6, 1–7 (2018).
[Crossref]

Zhang, B.

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114, 1–6 (2015).

Zhang, L.

L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, “Photonic-crystal exciton-polaritons in monolayer semiconductors,” Nat. Commun. 9, 1–8 (2018).

Zhang, X.

X. Liu, W. Bao, Q. Li, C. Ropp, Y. Wang, and X. Zhang, “Control of coherently coupled exciton-polaritons in monolayer tungsten disulphide,” Phys. Rev. Lett. 027403, 027403 (2017).
[Crossref]

Zhang, Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref] [PubMed]

Zhao, C. Y.

X. T. Gan, C. Y. Zhao, S. Q. Hu, T. Wang, Y. Song, J. Li, Q. H. Zhao, W. Q. Jie, and J. L. Zhao, “Microwatts continuous-wave pumped second harmonic generation in few- and mono-layer GaSe,” Light. Sci. Appl. 7, 1–6 (2018).
[Crossref]

Zhao, J.

L. Fang, Q. Yuan, H. Fang, X. Gan, J. Li, T. Wang, Q. Zhao, W. Jie, and J. Zhao, “Multiple Optical Frequency Conversions in Few-Layer GaSe Assisted by a Photonic Crystal Cavity,” Adv. Opt. Mater. 6, 1–7 (2018).
[Crossref]

Zhao, J. L.

X. T. Gan, C. Y. Zhao, S. Q. Hu, T. Wang, Y. Song, J. Li, Q. H. Zhao, W. Q. Jie, and J. L. Zhao, “Microwatts continuous-wave pumped second harmonic generation in few- and mono-layer GaSe,” Light. Sci. Appl. 7, 1–6 (2018).
[Crossref]

Zhao, Q.

L. Fang, Q. Yuan, H. Fang, X. Gan, J. Li, T. Wang, Q. Zhao, W. Jie, and J. Zhao, “Multiple Optical Frequency Conversions in Few-Layer GaSe Assisted by a Photonic Crystal Cavity,” Adv. Opt. Mater. 6, 1–7 (2018).
[Crossref]

Zhao, Q. H.

X. T. Gan, C. Y. Zhao, S. Q. Hu, T. Wang, Y. Song, J. Li, Q. H. Zhao, W. Q. Jie, and J. L. Zhao, “Microwatts continuous-wave pumped second harmonic generation in few- and mono-layer GaSe,” Light. Sci. Appl. 7, 1–6 (2018).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Zhen, B.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525, 354–358 (2015).
[Crossref] [PubMed]

Zheng, J.

T. K. Fryett, K. L. Seyler, J. Zheng, C.-h. Liu, X. Xu, and A. Majumdar, “Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe 2,” 2D Mater. 4, 1–6 (2017).

Zuniga-Perez, J.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

2D Mater. (1)

T. K. Fryett, K. L. Seyler, J. Zheng, C.-h. Liu, X. Xu, and A. Majumdar, “Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe 2,” 2D Mater. 4, 1–6 (2017).

Adv. Opt. Mater. (1)

L. Fang, Q. Yuan, H. Fang, X. Gan, J. Li, T. Wang, Q. Zhao, W. Jie, and J. Zhao, “Multiple Optical Frequency Conversions in Few-Layer GaSe Assisted by a Photonic Crystal Cavity,” Adv. Opt. Mater. 6, 1–7 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

Z. Wang, R. Gogna, and H. Deng, “What is the best planar cavity for maximizing coherent exciton-photon coupling,” Appl. Phys. Lett. 111, 061102 (2017).
[Crossref]

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R. J. Shiue, A. Van Der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the spontaneous emission rate of monolayer MoS2in a photonic crystal nanocavity,” Appl. Phys. Lett. 103, 1–5 (2013).
[Crossref]

Comput. Phys. Commun. (1)

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

IEEE J. Quantum Electron. (2)

R. F. Kazarinov and C. H. Henry, “Second-Order Distributed Feedback Lasers with Mode Selection Provided by First-Order Radiation Losses,” IEEE J. Quantum Electron. 21, 144–150 (1985).
[Crossref]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z. S. Liu and R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photonics Technol. Lett. 14, 1091–1093 (2002).
[Crossref]

Light. Sci. Appl. (1)

X. T. Gan, C. Y. Zhao, S. Q. Hu, T. Wang, Y. Song, J. Li, Q. H. Zhao, W. Q. Jie, and J. L. Zhao, “Microwatts continuous-wave pumped second harmonic generation in few- and mono-layer GaSe,” Light. Sci. Appl. 7, 1–6 (2018).
[Crossref]

Nano Lett. (3)

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref] [PubMed]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref] [PubMed]

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16, 4368–4374 (2016).
[Crossref] [PubMed]

Nat. Commun. (2)

L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, “Photonic-crystal exciton-polaritons in monolayer semiconductors,” Nat. Commun. 9, 1–8 (2018).

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref] [PubMed]

Nat. Mater. (2)

M. D. Fraser, S. Höfling, and Y. Yamamoto, “Physics and applications of exciton-polariton lasers,” Nat. Mater. 15, 1049–1052 (2016).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Nat. Nanotechnol. (1)

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref] [PubMed]

Nat. Photonics (2)

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216–226 (2016).
[Crossref]

X. Liu, T. Galfsky, Z. Sun, F. Xia, and E.-c. Lin, “Strong light-matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9, 30–34 (2015).
[Crossref]

Nature (2)

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref] [PubMed]

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525, 354–358 (2015).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. (1)

J. J. Hopfield, “Theory of the contribution of excitons to the complex dielectric constant of crystals,” Phys. Rev. 112, 1555–1567 (1958).
[Crossref]

Phys. Rev. B (2)

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 1–8 (2002).
[Crossref]

D. Aurelio and M. Liscidini, “Electromagnetic field enhancement in Bloch surface waves,” Phys. Rev. B 96, 1–7 (2017).
[Crossref]

Phys. Rev. Lett. (7)

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114, 1–6 (2015).

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref] [PubMed]

S. Christopoulos, G. B. H. Von Hogersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butte, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong exciton-photon coupling in an organic single crystal microcavity,” Phys. Rev. Lett. 101, 116401 (2008).
[Crossref] [PubMed]

X. Liu, W. Bao, Q. Li, C. Ropp, Y. Wang, and X. Zhang, “Control of coherently coupled exciton-polaritons in monolayer tungsten disulphide,” Phys. Rev. Lett. 027403, 027403 (2017).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 2–5 (2010).
[Crossref]

Rep. Prog. Phys. (1)

S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77, 126402 (2014).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82, 1489–1537 (2010).
[Crossref]

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299–366 (2013).
[Crossref]

Other (1)

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, “Photonic devices enabled by waveguide-mode resonance effects in periodically modulated films,” in Nano- and Micro-Optics for Information Systems (International Society for Optics and Photonics, 2003), Vol. 5225, pp. 20–34.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) A schematic of the proposed PhC structure. (b) A reflectance spectrum of the guided mode resonance showing the characteristic asymmetric Fano lineshape (Λ = 420 nm, t = 100 nm, Λ = .9, t = 0) (c) The distribution of the amplitude of the electric field for the guided mode resonance in (b).
Fig. 2
Fig. 2 (a) Variation of the average normalized field amplitude at the monolayer (black) with tg, compared with the polariton splitting vs. tg obtained from (c) (red dots); (b–c) The absorption spectrum versus the PhC thickness at high (b) and low (c) temperatures. The period is tuned to maintain zero-detuning with the exciton. All calculations are at normal incidence.
Fig. 3
Fig. 3 (a–b) Polariton dispersions along the two principle k directions; note the different scales on the k-axis. (c) A double-well dispersion, showing two separate local minima located at the first Brillouin zone edges k min = ±π/Λ, well away from k = 0.
Fig. 4
Fig. 4 (a) Tuning of a PhC resonance with the period Λ while all other grating parameters are fixed. The circles mark the resonance wavelength of the exciton resonances of the four commonly used monolayer TMDCs. Inset: A schematic showing the proposed multi-wavelength chip with multiple TMDC heterostructures emitting at different wavelengths. (b) The corresponding absorption spectrum of the TMDC-PhC system as Λ is tuned. Normal mode splitting is evident and maintained throughout the tuning range.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

| k ( ω ) | = | ( k x ( ω ) ± m 2 π Λ ) x ^ + k y ( ω ) y ^ | = | β j ( ω ) |
| E ( r ) | 2 ( r ) d V = 1 2 ω .
ε ( E ) = B + f E X 2 E 2 i Γ E
| k ( ω ) | = | k x ( ω ) ± m 2 π Λ | = | β ( ω ) | ,
| k ( ω ) | = ( m 2 π Λ ) 2 + k y 2 ( ω ) = | β ( ω ) | .

Metrics