Abstract

We examine the dynamics of evolution for an ensemble of three-level Λ atoms localized in a coupled cavity. In this scheme, when many atoms interact with one of the cavities, we observe Rabi oscillations between an atom and the other cavity. We show strong coupling between the ensemble and cavity is not necessary. The effective coupling can be improved by increasing the number of atoms. When the amplitude of the classical field is not equal to the photon hopping rate, for zero detunings, we achieve resonance and observe oscillations. The excited state of the atoms in one cavity may be eliminated hence suppressing atomic spontaneous emissions with an increase in the number of atoms. The optimal process range of hopping rate and classical field amplitude are found to optimize performance for a given parametric condition.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Control of two-atom entanglement with two thermal fields in coupled cavities

Li-Tuo Shen, Zhen-Biao Yang, Huai-Zhi Wu, Xin-Yu Chen, and Shi-Biao Zheng
J. Opt. Soc. Am. B 29(9) 2379-2385 (2012)

Generation of long-living entanglement between two distant three-level atoms in non-Markovian environments

Chuang Li, Sen Yang, Jie Song, Yan Xia, and Weiqiang Ding
Opt. Express 25(10) 10961-10971 (2017)

Quantum-beat based dissipation for spin squeezing and light entanglement

Chen Huang, Xiangming Hu, Yang Zhang, Lingchao Li, and Shi Rao
Opt. Express 24(17) 19094-19111 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90, 043847 (2014).
    [Crossref]
  2. G.-A. Yan, H.-X. Qiao, and H. Lu, “Quantum iSWAP gate in optical cavities with a cyclic three-level system,” Quantum Inf. Process. 17, 71 (2018).
    [Crossref]
  3. D. Xu, X. Xiong, L. Wu, X.-F. Ren, C. E. Png, G.-C. Guo, Q. Gong, and Y.-F. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photon. 10, 703–756 (2018).
    [Crossref]
  4. R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132–1135 (1992).
    [Crossref] [PubMed]
  5. Z.-X. Liu, B. Wang, C. Kong, H. Xiong, and Y. Wu, “Magnetic-field-dependent slow light in strontium atom-cavity system,” Appl. Phys. Lett. 112, 111109 (2018).
    [Crossref]
  6. R.-S. Liu, W.-L. Jin, X.-C. Yu, Y.-C. Liu, and Y.-F. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-q whispering-gallery microresonator,” Phys. Rev. A 91, 043836 (2015).
    [Crossref]
  7. P. Peng, Y.-C. Liu, D. Xu, Q.-T. Cao, G. Lu, Q. Gong, and Y.-F. Xiao, “Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances,” Phys. Rev. Lett. 119, 233901 (2017).
    [Crossref] [PubMed]
  8. S. Hughes, “Coupled-cavity QED using planar photonic crystals,” Phys. Rev. Lett. 98, 083603 (2007).
    [Crossref] [PubMed]
  9. N. Behzadi, S. K. Rudsary, and B. A. Salmas, “Perfect transfer of coherent state-based qubits via coupled cavities,” The Eur. Phys. J. D 67, 247 (2013).
    [Crossref]
  10. F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H. E. Türeci, and J. Keeling, “Nonequilibrium dynamics of coupled qubit-cavity arrays,” Phys. Rev. Lett. 108, 233603 (2012).
    [Crossref] [PubMed]
  11. L. J. Zou, D. Marcos, S. Diehl, S. Putz, J. Schmiedmayer, J. Majer, and P. Rabl, “Implementation of the Dicke lattice model in hybrid quantum system arrays,” Phys. Rev. Lett. 113, 023603 (2014).
    [Crossref] [PubMed]
  12. C. D. Ogden, E. K. Irish, and M. S. Kim, “Dynamics in a coupled-cavity array,” Phys. Rev. A 78, 063805 (2008).
    [Crossref]
  13. L.-T. Shen, W.-Z. Li, R.-X. Chen, and Z.-B. Yang, “Entanglement generation for two coupled multi-excitation fields interacting with qubits,” Int. J. Theor. Phys. 53, 2161–2166 (2014).
    [Crossref]
  14. K. Zhang and Z.-Y. Li, “Transfer behavior of quantum states between atoms in photonic crystal coupled cavities,” Phys. Rev. A 81, 033843 (2010).
    [Crossref]
  15. G. M. A. Almeida, F. Ciccarello, T. J. G. Apollaro, and A. M. C. Souza, “Quantum-state transfer in staggered coupled-cavity arrays,” Phys. Rev. A 93, 032310 (2016).
    [Crossref]
  16. P. T. Fong and C. K. Law, “Bound state in the continuum by spatially separated ensembles of atoms in a coupled-cavity array,” Phys. Rev. A 96, 023842 (2017).
    [Crossref]
  17. Y.-C. Liu, X. Luan, H.-K. Li, Q. Gong, C. W. Wong, and Y.-F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112, 213602 (2014).
    [Crossref]
  18. F. Badshah, S. Qamar, and M. Paternostro, “Dynamics of interacting Dicke model in a coupled-cavity array,” Phys. Rev. A 90, 033813 (2014).
    [Crossref]
  19. Y. O. Dudin and A. Kuzmich, “Strongly interacting Rydberg excitations of a cold atomic gas,” Science 336, 887–889 (2012).
    [Crossref] [PubMed]
  20. M. Saffman and K. Mølmer, “Scaling the neutral-atom Rydberg gate quantum computer by collective encoding in holmium atoms,” Phys. Rev. A 78, 012336 (2008).
    [Crossref]
  21. Q. Bin, X.-Y. Lü, S.-W. Bin, and Y. Wu, “Two-photon blockade in a cascaded cavity-quantum-electrodynamics system,” Phys. Rev. A 98, 043858 (2018).
    [Crossref]
  22. J.-F. Huang, Q. Ai, Y. Deng, C. P. Sun, and F. Nori, “Quantum statistics of the collective excitations of an atomic ensemble inside a cavity,” Phys. Rev. A 85, 023801 (2012).
    [Crossref]
  23. G. Cheng, H. Tan, and A. Chen, “Dissipation induced asymmetric steering of distant atomic ensembles,” Opt. Commun. 412, 166 – 171 (2018).
    [Crossref]
  24. M. Macovei, Z. Ficek, and C. H. Keitel, “Collective coherent population trapping in a thermal field,” Phys. Rev. A 73, 063821 (2006).
    [Crossref]
  25. P. Zhao, X. Tan, H. Yu, S.-L. Zhu, and Y. Yu, “Circuit QED with qutrits: Coupling three or more atoms via virtual-photon exchange,” Phys. Rev. A 96, 043833 (2017).
    [Crossref]
  26. M. Ebert, M. Kwon, T. G. Walker, and M. Saffman, “Coherence and Rydberg blockade of atomic ensemble qubits,” Phys. Rev. Lett. 115, 093601 (2015).
    [Crossref] [PubMed]
  27. M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232–4235 (2000).
    [Crossref] [PubMed]
  28. H.-J. Chen, “Auxiliary-cavity-assisted vacuum Rabi splitting of a semiconductor quantum dot in a photonic crystal nanocavity,” Photon. Res. 6, 1171–1176 (2018).
    [Crossref]
  29. D. F. James and J. Jerke, “Effective Hamiltonian theory and its applications in quantum information,” Can. J. Phys. 85, 625–632 (2007).
    [Crossref]
  30. W. Shao, C. Wu, and X.-L. Feng, “Generalized James’ effective Hamiltonian method,” Phys. Rev. A 95, 032124 (2017).
    [Crossref]
  31. J. Song, C. Li, Y. Xia, Z.-J. Zhang, and Y.-Y. Jiang, “Noise-induced quantum state transfer in distant cavities,” J. Phys. B: At. Mol. Opt. Phys. 50, 175502 (2017).
    [Crossref]
  32. J. Song, X.-D. Sun, Y. Xia, and H.-S. Song, “Efficient creation of continuous-variable entanglement for two atomic ensembles in coupled cavities,” Phys. Rev. A 83, 052309 (2011).
    [Crossref]
  33. M. O. Scully and M. S. Zubairy, “Cavity QED implementation of the discrete quantum fourier transform,” Phys. Rev. A 65, 052324 (2002).
    [Crossref]

2018 (6)

Z.-X. Liu, B. Wang, C. Kong, H. Xiong, and Y. Wu, “Magnetic-field-dependent slow light in strontium atom-cavity system,” Appl. Phys. Lett. 112, 111109 (2018).
[Crossref]

Q. Bin, X.-Y. Lü, S.-W. Bin, and Y. Wu, “Two-photon blockade in a cascaded cavity-quantum-electrodynamics system,” Phys. Rev. A 98, 043858 (2018).
[Crossref]

G. Cheng, H. Tan, and A. Chen, “Dissipation induced asymmetric steering of distant atomic ensembles,” Opt. Commun. 412, 166 – 171 (2018).
[Crossref]

G.-A. Yan, H.-X. Qiao, and H. Lu, “Quantum iSWAP gate in optical cavities with a cyclic three-level system,” Quantum Inf. Process. 17, 71 (2018).
[Crossref]

D. Xu, X. Xiong, L. Wu, X.-F. Ren, C. E. Png, G.-C. Guo, Q. Gong, and Y.-F. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photon. 10, 703–756 (2018).
[Crossref]

H.-J. Chen, “Auxiliary-cavity-assisted vacuum Rabi splitting of a semiconductor quantum dot in a photonic crystal nanocavity,” Photon. Res. 6, 1171–1176 (2018).
[Crossref]

2017 (5)

P. Zhao, X. Tan, H. Yu, S.-L. Zhu, and Y. Yu, “Circuit QED with qutrits: Coupling three or more atoms via virtual-photon exchange,” Phys. Rev. A 96, 043833 (2017).
[Crossref]

W. Shao, C. Wu, and X.-L. Feng, “Generalized James’ effective Hamiltonian method,” Phys. Rev. A 95, 032124 (2017).
[Crossref]

J. Song, C. Li, Y. Xia, Z.-J. Zhang, and Y.-Y. Jiang, “Noise-induced quantum state transfer in distant cavities,” J. Phys. B: At. Mol. Opt. Phys. 50, 175502 (2017).
[Crossref]

P. Peng, Y.-C. Liu, D. Xu, Q.-T. Cao, G. Lu, Q. Gong, and Y.-F. Xiao, “Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances,” Phys. Rev. Lett. 119, 233901 (2017).
[Crossref] [PubMed]

P. T. Fong and C. K. Law, “Bound state in the continuum by spatially separated ensembles of atoms in a coupled-cavity array,” Phys. Rev. A 96, 023842 (2017).
[Crossref]

2016 (1)

G. M. A. Almeida, F. Ciccarello, T. J. G. Apollaro, and A. M. C. Souza, “Quantum-state transfer in staggered coupled-cavity arrays,” Phys. Rev. A 93, 032310 (2016).
[Crossref]

2015 (2)

R.-S. Liu, W.-L. Jin, X.-C. Yu, Y.-C. Liu, and Y.-F. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-q whispering-gallery microresonator,” Phys. Rev. A 91, 043836 (2015).
[Crossref]

M. Ebert, M. Kwon, T. G. Walker, and M. Saffman, “Coherence and Rydberg blockade of atomic ensemble qubits,” Phys. Rev. Lett. 115, 093601 (2015).
[Crossref] [PubMed]

2014 (5)

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90, 043847 (2014).
[Crossref]

L. J. Zou, D. Marcos, S. Diehl, S. Putz, J. Schmiedmayer, J. Majer, and P. Rabl, “Implementation of the Dicke lattice model in hybrid quantum system arrays,” Phys. Rev. Lett. 113, 023603 (2014).
[Crossref] [PubMed]

L.-T. Shen, W.-Z. Li, R.-X. Chen, and Z.-B. Yang, “Entanglement generation for two coupled multi-excitation fields interacting with qubits,” Int. J. Theor. Phys. 53, 2161–2166 (2014).
[Crossref]

Y.-C. Liu, X. Luan, H.-K. Li, Q. Gong, C. W. Wong, and Y.-F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112, 213602 (2014).
[Crossref]

F. Badshah, S. Qamar, and M. Paternostro, “Dynamics of interacting Dicke model in a coupled-cavity array,” Phys. Rev. A 90, 033813 (2014).
[Crossref]

2013 (1)

N. Behzadi, S. K. Rudsary, and B. A. Salmas, “Perfect transfer of coherent state-based qubits via coupled cavities,” The Eur. Phys. J. D 67, 247 (2013).
[Crossref]

2012 (3)

F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H. E. Türeci, and J. Keeling, “Nonequilibrium dynamics of coupled qubit-cavity arrays,” Phys. Rev. Lett. 108, 233603 (2012).
[Crossref] [PubMed]

Y. O. Dudin and A. Kuzmich, “Strongly interacting Rydberg excitations of a cold atomic gas,” Science 336, 887–889 (2012).
[Crossref] [PubMed]

J.-F. Huang, Q. Ai, Y. Deng, C. P. Sun, and F. Nori, “Quantum statistics of the collective excitations of an atomic ensemble inside a cavity,” Phys. Rev. A 85, 023801 (2012).
[Crossref]

2011 (1)

J. Song, X.-D. Sun, Y. Xia, and H.-S. Song, “Efficient creation of continuous-variable entanglement for two atomic ensembles in coupled cavities,” Phys. Rev. A 83, 052309 (2011).
[Crossref]

2010 (1)

K. Zhang and Z.-Y. Li, “Transfer behavior of quantum states between atoms in photonic crystal coupled cavities,” Phys. Rev. A 81, 033843 (2010).
[Crossref]

2008 (2)

M. Saffman and K. Mølmer, “Scaling the neutral-atom Rydberg gate quantum computer by collective encoding in holmium atoms,” Phys. Rev. A 78, 012336 (2008).
[Crossref]

C. D. Ogden, E. K. Irish, and M. S. Kim, “Dynamics in a coupled-cavity array,” Phys. Rev. A 78, 063805 (2008).
[Crossref]

2007 (2)

S. Hughes, “Coupled-cavity QED using planar photonic crystals,” Phys. Rev. Lett. 98, 083603 (2007).
[Crossref] [PubMed]

D. F. James and J. Jerke, “Effective Hamiltonian theory and its applications in quantum information,” Can. J. Phys. 85, 625–632 (2007).
[Crossref]

2006 (1)

M. Macovei, Z. Ficek, and C. H. Keitel, “Collective coherent population trapping in a thermal field,” Phys. Rev. A 73, 063821 (2006).
[Crossref]

2002 (1)

M. O. Scully and M. S. Zubairy, “Cavity QED implementation of the discrete quantum fourier transform,” Phys. Rev. A 65, 052324 (2002).
[Crossref]

2000 (1)

M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232–4235 (2000).
[Crossref] [PubMed]

1992 (1)

R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132–1135 (1992).
[Crossref] [PubMed]

Ai, Q.

J.-F. Huang, Q. Ai, Y. Deng, C. P. Sun, and F. Nori, “Quantum statistics of the collective excitations of an atomic ensemble inside a cavity,” Phys. Rev. A 85, 023801 (2012).
[Crossref]

Almeida, G. M. A.

G. M. A. Almeida, F. Ciccarello, T. J. G. Apollaro, and A. M. C. Souza, “Quantum-state transfer in staggered coupled-cavity arrays,” Phys. Rev. A 93, 032310 (2016).
[Crossref]

Apollaro, T. J. G.

G. M. A. Almeida, F. Ciccarello, T. J. G. Apollaro, and A. M. C. Souza, “Quantum-state transfer in staggered coupled-cavity arrays,” Phys. Rev. A 93, 032310 (2016).
[Crossref]

Arnold, S.

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90, 043847 (2014).
[Crossref]

Badshah, F.

F. Badshah, S. Qamar, and M. Paternostro, “Dynamics of interacting Dicke model in a coupled-cavity array,” Phys. Rev. A 90, 033813 (2014).
[Crossref]

Behzadi, N.

N. Behzadi, S. K. Rudsary, and B. A. Salmas, “Perfect transfer of coherent state-based qubits via coupled cavities,” The Eur. Phys. J. D 67, 247 (2013).
[Crossref]

Bin, Q.

Q. Bin, X.-Y. Lü, S.-W. Bin, and Y. Wu, “Two-photon blockade in a cascaded cavity-quantum-electrodynamics system,” Phys. Rev. A 98, 043858 (2018).
[Crossref]

Bin, S.-W.

Q. Bin, X.-Y. Lü, S.-W. Bin, and Y. Wu, “Two-photon blockade in a cascaded cavity-quantum-electrodynamics system,” Phys. Rev. A 98, 043858 (2018).
[Crossref]

Biondi, M.

F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H. E. Türeci, and J. Keeling, “Nonequilibrium dynamics of coupled qubit-cavity arrays,” Phys. Rev. Lett. 108, 233603 (2012).
[Crossref] [PubMed]

Blatter, G.

F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H. E. Türeci, and J. Keeling, “Nonequilibrium dynamics of coupled qubit-cavity arrays,” Phys. Rev. Lett. 108, 233603 (2012).
[Crossref] [PubMed]

Cao, Q.-T.

P. Peng, Y.-C. Liu, D. Xu, Q.-T. Cao, G. Lu, Q. Gong, and Y.-F. Xiao, “Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances,” Phys. Rev. Lett. 119, 233901 (2017).
[Crossref] [PubMed]

Chen, A.

G. Cheng, H. Tan, and A. Chen, “Dissipation induced asymmetric steering of distant atomic ensembles,” Opt. Commun. 412, 166 – 171 (2018).
[Crossref]

Chen, H.-J.

Chen, R.-X.

L.-T. Shen, W.-Z. Li, R.-X. Chen, and Z.-B. Yang, “Entanglement generation for two coupled multi-excitation fields interacting with qubits,” Int. J. Theor. Phys. 53, 2161–2166 (2014).
[Crossref]

Cheng, G.

G. Cheng, H. Tan, and A. Chen, “Dissipation induced asymmetric steering of distant atomic ensembles,” Opt. Commun. 412, 166 – 171 (2018).
[Crossref]

Ciccarello, F.

G. M. A. Almeida, F. Ciccarello, T. J. G. Apollaro, and A. M. C. Souza, “Quantum-state transfer in staggered coupled-cavity arrays,” Phys. Rev. A 93, 032310 (2016).
[Crossref]

Deng, Y.

J.-F. Huang, Q. Ai, Y. Deng, C. P. Sun, and F. Nori, “Quantum statistics of the collective excitations of an atomic ensemble inside a cavity,” Phys. Rev. A 85, 023801 (2012).
[Crossref]

Diehl, S.

L. J. Zou, D. Marcos, S. Diehl, S. Putz, J. Schmiedmayer, J. Majer, and P. Rabl, “Implementation of the Dicke lattice model in hybrid quantum system arrays,” Phys. Rev. Lett. 113, 023603 (2014).
[Crossref] [PubMed]

Dudin, Y. O.

Y. O. Dudin and A. Kuzmich, “Strongly interacting Rydberg excitations of a cold atomic gas,” Science 336, 887–889 (2012).
[Crossref] [PubMed]

Ebert, M.

M. Ebert, M. Kwon, T. G. Walker, and M. Saffman, “Coherence and Rydberg blockade of atomic ensemble qubits,” Phys. Rev. Lett. 115, 093601 (2015).
[Crossref] [PubMed]

Feng, X.-L.

W. Shao, C. Wu, and X.-L. Feng, “Generalized James’ effective Hamiltonian method,” Phys. Rev. A 95, 032124 (2017).
[Crossref]

Ficek, Z.

M. Macovei, Z. Ficek, and C. H. Keitel, “Collective coherent population trapping in a thermal field,” Phys. Rev. A 73, 063821 (2006).
[Crossref]

Fleischhauer, M.

M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232–4235 (2000).
[Crossref] [PubMed]

Fong, P. T.

P. T. Fong and C. K. Law, “Bound state in the continuum by spatially separated ensembles of atoms in a coupled-cavity array,” Phys. Rev. A 96, 023842 (2017).
[Crossref]

Gong, Q.

D. Xu, X. Xiong, L. Wu, X.-F. Ren, C. E. Png, G.-C. Guo, Q. Gong, and Y.-F. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photon. 10, 703–756 (2018).
[Crossref]

P. Peng, Y.-C. Liu, D. Xu, Q.-T. Cao, G. Lu, Q. Gong, and Y.-F. Xiao, “Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances,” Phys. Rev. Lett. 119, 233901 (2017).
[Crossref] [PubMed]

Y.-C. Liu, X. Luan, H.-K. Li, Q. Gong, C. W. Wong, and Y.-F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112, 213602 (2014).
[Crossref]

Guo, G.-C.

Hu, Y.

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90, 043847 (2014).
[Crossref]

Huang, J.-F.

J.-F. Huang, Q. Ai, Y. Deng, C. P. Sun, and F. Nori, “Quantum statistics of the collective excitations of an atomic ensemble inside a cavity,” Phys. Rev. A 85, 023801 (2012).
[Crossref]

Hughes, S.

S. Hughes, “Coupled-cavity QED using planar photonic crystals,” Phys. Rev. Lett. 98, 083603 (2007).
[Crossref] [PubMed]

Irish, E. K.

C. D. Ogden, E. K. Irish, and M. S. Kim, “Dynamics in a coupled-cavity array,” Phys. Rev. A 78, 063805 (2008).
[Crossref]

James, D. F.

D. F. James and J. Jerke, “Effective Hamiltonian theory and its applications in quantum information,” Can. J. Phys. 85, 625–632 (2007).
[Crossref]

Jerke, J.

D. F. James and J. Jerke, “Effective Hamiltonian theory and its applications in quantum information,” Can. J. Phys. 85, 625–632 (2007).
[Crossref]

Jiang, Y.-Y.

J. Song, C. Li, Y. Xia, Z.-J. Zhang, and Y.-Y. Jiang, “Noise-induced quantum state transfer in distant cavities,” J. Phys. B: At. Mol. Opt. Phys. 50, 175502 (2017).
[Crossref]

Jin, W.-L.

R.-S. Liu, W.-L. Jin, X.-C. Yu, Y.-C. Liu, and Y.-F. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-q whispering-gallery microresonator,” Phys. Rev. A 91, 043836 (2015).
[Crossref]

Keeling, J.

F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H. E. Türeci, and J. Keeling, “Nonequilibrium dynamics of coupled qubit-cavity arrays,” Phys. Rev. Lett. 108, 233603 (2012).
[Crossref] [PubMed]

Keitel, C. H.

M. Macovei, Z. Ficek, and C. H. Keitel, “Collective coherent population trapping in a thermal field,” Phys. Rev. A 73, 063821 (2006).
[Crossref]

Kim, M. S.

C. D. Ogden, E. K. Irish, and M. S. Kim, “Dynamics in a coupled-cavity array,” Phys. Rev. A 78, 063805 (2008).
[Crossref]

Kimble, H. J.

R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132–1135 (1992).
[Crossref] [PubMed]

Kong, C.

Z.-X. Liu, B. Wang, C. Kong, H. Xiong, and Y. Wu, “Magnetic-field-dependent slow light in strontium atom-cavity system,” Appl. Phys. Lett. 112, 111109 (2018).
[Crossref]

Kuzmich, A.

Y. O. Dudin and A. Kuzmich, “Strongly interacting Rydberg excitations of a cold atomic gas,” Science 336, 887–889 (2012).
[Crossref] [PubMed]

Kwon, M.

M. Ebert, M. Kwon, T. G. Walker, and M. Saffman, “Coherence and Rydberg blockade of atomic ensemble qubits,” Phys. Rev. Lett. 115, 093601 (2015).
[Crossref] [PubMed]

Law, C. K.

P. T. Fong and C. K. Law, “Bound state in the continuum by spatially separated ensembles of atoms in a coupled-cavity array,” Phys. Rev. A 96, 023842 (2017).
[Crossref]

Li, C.

J. Song, C. Li, Y. Xia, Z.-J. Zhang, and Y.-Y. Jiang, “Noise-induced quantum state transfer in distant cavities,” J. Phys. B: At. Mol. Opt. Phys. 50, 175502 (2017).
[Crossref]

Li, H.-K.

Y.-C. Liu, X. Luan, H.-K. Li, Q. Gong, C. W. Wong, and Y.-F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112, 213602 (2014).
[Crossref]

Li, W.-Z.

L.-T. Shen, W.-Z. Li, R.-X. Chen, and Z.-B. Yang, “Entanglement generation for two coupled multi-excitation fields interacting with qubits,” Int. J. Theor. Phys. 53, 2161–2166 (2014).
[Crossref]

Li, Z.-Y.

K. Zhang and Z.-Y. Li, “Transfer behavior of quantum states between atoms in photonic crystal coupled cavities,” Phys. Rev. A 81, 033843 (2010).
[Crossref]

Liu, R.-S.

R.-S. Liu, W.-L. Jin, X.-C. Yu, Y.-C. Liu, and Y.-F. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-q whispering-gallery microresonator,” Phys. Rev. A 91, 043836 (2015).
[Crossref]

Liu, Y.-C.

P. Peng, Y.-C. Liu, D. Xu, Q.-T. Cao, G. Lu, Q. Gong, and Y.-F. Xiao, “Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances,” Phys. Rev. Lett. 119, 233901 (2017).
[Crossref] [PubMed]

R.-S. Liu, W.-L. Jin, X.-C. Yu, Y.-C. Liu, and Y.-F. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-q whispering-gallery microresonator,” Phys. Rev. A 91, 043836 (2015).
[Crossref]

Y.-C. Liu, X. Luan, H.-K. Li, Q. Gong, C. W. Wong, and Y.-F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112, 213602 (2014).
[Crossref]

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90, 043847 (2014).
[Crossref]

Liu, Z.-X.

Z.-X. Liu, B. Wang, C. Kong, H. Xiong, and Y. Wu, “Magnetic-field-dependent slow light in strontium atom-cavity system,” Appl. Phys. Lett. 112, 111109 (2018).
[Crossref]

Lu, G.

P. Peng, Y.-C. Liu, D. Xu, Q.-T. Cao, G. Lu, Q. Gong, and Y.-F. Xiao, “Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances,” Phys. Rev. Lett. 119, 233901 (2017).
[Crossref] [PubMed]

Lu, H.

G.-A. Yan, H.-X. Qiao, and H. Lu, “Quantum iSWAP gate in optical cavities with a cyclic three-level system,” Quantum Inf. Process. 17, 71 (2018).
[Crossref]

Lü, X.-Y.

Q. Bin, X.-Y. Lü, S.-W. Bin, and Y. Wu, “Two-photon blockade in a cascaded cavity-quantum-electrodynamics system,” Phys. Rev. A 98, 043858 (2018).
[Crossref]

Luan, X.

Y.-C. Liu, X. Luan, H.-K. Li, Q. Gong, C. W. Wong, and Y.-F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112, 213602 (2014).
[Crossref]

Lukin, M. D.

M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232–4235 (2000).
[Crossref] [PubMed]

Ma, C.-Y.

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90, 043847 (2014).
[Crossref]

Macovei, M.

M. Macovei, Z. Ficek, and C. H. Keitel, “Collective coherent population trapping in a thermal field,” Phys. Rev. A 73, 063821 (2006).
[Crossref]

Majer, J.

L. J. Zou, D. Marcos, S. Diehl, S. Putz, J. Schmiedmayer, J. Majer, and P. Rabl, “Implementation of the Dicke lattice model in hybrid quantum system arrays,” Phys. Rev. Lett. 113, 023603 (2014).
[Crossref] [PubMed]

Marcos, D.

L. J. Zou, D. Marcos, S. Diehl, S. Putz, J. Schmiedmayer, J. Majer, and P. Rabl, “Implementation of the Dicke lattice model in hybrid quantum system arrays,” Phys. Rev. Lett. 113, 023603 (2014).
[Crossref] [PubMed]

Mølmer, K.

M. Saffman and K. Mølmer, “Scaling the neutral-atom Rydberg gate quantum computer by collective encoding in holmium atoms,” Phys. Rev. A 78, 012336 (2008).
[Crossref]

Nissen, F.

F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H. E. Türeci, and J. Keeling, “Nonequilibrium dynamics of coupled qubit-cavity arrays,” Phys. Rev. Lett. 108, 233603 (2012).
[Crossref] [PubMed]

Nori, F.

J.-F. Huang, Q. Ai, Y. Deng, C. P. Sun, and F. Nori, “Quantum statistics of the collective excitations of an atomic ensemble inside a cavity,” Phys. Rev. A 85, 023801 (2012).
[Crossref]

Ogden, C. D.

C. D. Ogden, E. K. Irish, and M. S. Kim, “Dynamics in a coupled-cavity array,” Phys. Rev. A 78, 063805 (2008).
[Crossref]

Paternostro, M.

F. Badshah, S. Qamar, and M. Paternostro, “Dynamics of interacting Dicke model in a coupled-cavity array,” Phys. Rev. A 90, 033813 (2014).
[Crossref]

Peng, P.

P. Peng, Y.-C. Liu, D. Xu, Q.-T. Cao, G. Lu, Q. Gong, and Y.-F. Xiao, “Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances,” Phys. Rev. Lett. 119, 233901 (2017).
[Crossref] [PubMed]

Png, C. E.

Putz, S.

L. J. Zou, D. Marcos, S. Diehl, S. Putz, J. Schmiedmayer, J. Majer, and P. Rabl, “Implementation of the Dicke lattice model in hybrid quantum system arrays,” Phys. Rev. Lett. 113, 023603 (2014).
[Crossref] [PubMed]

Qamar, S.

F. Badshah, S. Qamar, and M. Paternostro, “Dynamics of interacting Dicke model in a coupled-cavity array,” Phys. Rev. A 90, 033813 (2014).
[Crossref]

Qiao, H.-X.

G.-A. Yan, H.-X. Qiao, and H. Lu, “Quantum iSWAP gate in optical cavities with a cyclic three-level system,” Quantum Inf. Process. 17, 71 (2018).
[Crossref]

Rabl, P.

L. J. Zou, D. Marcos, S. Diehl, S. Putz, J. Schmiedmayer, J. Majer, and P. Rabl, “Implementation of the Dicke lattice model in hybrid quantum system arrays,” Phys. Rev. Lett. 113, 023603 (2014).
[Crossref] [PubMed]

Rempe, G.

R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132–1135 (1992).
[Crossref] [PubMed]

Ren, X.-F.

Rudsary, S. K.

N. Behzadi, S. K. Rudsary, and B. A. Salmas, “Perfect transfer of coherent state-based qubits via coupled cavities,” The Eur. Phys. J. D 67, 247 (2013).
[Crossref]

Saffman, M.

M. Ebert, M. Kwon, T. G. Walker, and M. Saffman, “Coherence and Rydberg blockade of atomic ensemble qubits,” Phys. Rev. Lett. 115, 093601 (2015).
[Crossref] [PubMed]

M. Saffman and K. Mølmer, “Scaling the neutral-atom Rydberg gate quantum computer by collective encoding in holmium atoms,” Phys. Rev. A 78, 012336 (2008).
[Crossref]

Salmas, B. A.

N. Behzadi, S. K. Rudsary, and B. A. Salmas, “Perfect transfer of coherent state-based qubits via coupled cavities,” The Eur. Phys. J. D 67, 247 (2013).
[Crossref]

Schmidt, S.

F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H. E. Türeci, and J. Keeling, “Nonequilibrium dynamics of coupled qubit-cavity arrays,” Phys. Rev. Lett. 108, 233603 (2012).
[Crossref] [PubMed]

Schmiedmayer, J.

L. J. Zou, D. Marcos, S. Diehl, S. Putz, J. Schmiedmayer, J. Majer, and P. Rabl, “Implementation of the Dicke lattice model in hybrid quantum system arrays,” Phys. Rev. Lett. 113, 023603 (2014).
[Crossref] [PubMed]

Scully, M. O.

M. O. Scully and M. S. Zubairy, “Cavity QED implementation of the discrete quantum fourier transform,” Phys. Rev. A 65, 052324 (2002).
[Crossref]

Shao, L.

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90, 043847 (2014).
[Crossref]

Shao, W.

W. Shao, C. Wu, and X.-L. Feng, “Generalized James’ effective Hamiltonian method,” Phys. Rev. A 95, 032124 (2017).
[Crossref]

Shen, L.-T.

L.-T. Shen, W.-Z. Li, R.-X. Chen, and Z.-B. Yang, “Entanglement generation for two coupled multi-excitation fields interacting with qubits,” Int. J. Theor. Phys. 53, 2161–2166 (2014).
[Crossref]

Song, H.-S.

J. Song, X.-D. Sun, Y. Xia, and H.-S. Song, “Efficient creation of continuous-variable entanglement for two atomic ensembles in coupled cavities,” Phys. Rev. A 83, 052309 (2011).
[Crossref]

Song, J.

J. Song, C. Li, Y. Xia, Z.-J. Zhang, and Y.-Y. Jiang, “Noise-induced quantum state transfer in distant cavities,” J. Phys. B: At. Mol. Opt. Phys. 50, 175502 (2017).
[Crossref]

J. Song, X.-D. Sun, Y. Xia, and H.-S. Song, “Efficient creation of continuous-variable entanglement for two atomic ensembles in coupled cavities,” Phys. Rev. A 83, 052309 (2011).
[Crossref]

Souza, A. M. C.

G. M. A. Almeida, F. Ciccarello, T. J. G. Apollaro, and A. M. C. Souza, “Quantum-state transfer in staggered coupled-cavity arrays,” Phys. Rev. A 93, 032310 (2016).
[Crossref]

Sun, C. P.

J.-F. Huang, Q. Ai, Y. Deng, C. P. Sun, and F. Nori, “Quantum statistics of the collective excitations of an atomic ensemble inside a cavity,” Phys. Rev. A 85, 023801 (2012).
[Crossref]

Sun, X.-D.

J. Song, X.-D. Sun, Y. Xia, and H.-S. Song, “Efficient creation of continuous-variable entanglement for two atomic ensembles in coupled cavities,” Phys. Rev. A 83, 052309 (2011).
[Crossref]

Tan, H.

G. Cheng, H. Tan, and A. Chen, “Dissipation induced asymmetric steering of distant atomic ensembles,” Opt. Commun. 412, 166 – 171 (2018).
[Crossref]

Tan, X.

P. Zhao, X. Tan, H. Yu, S.-L. Zhu, and Y. Yu, “Circuit QED with qutrits: Coupling three or more atoms via virtual-photon exchange,” Phys. Rev. A 96, 043833 (2017).
[Crossref]

Thompson, R. J.

R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132–1135 (1992).
[Crossref] [PubMed]

Türeci, H. E.

F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H. E. Türeci, and J. Keeling, “Nonequilibrium dynamics of coupled qubit-cavity arrays,” Phys. Rev. Lett. 108, 233603 (2012).
[Crossref] [PubMed]

Walker, T. G.

M. Ebert, M. Kwon, T. G. Walker, and M. Saffman, “Coherence and Rydberg blockade of atomic ensemble qubits,” Phys. Rev. Lett. 115, 093601 (2015).
[Crossref] [PubMed]

Wang, B.

Z.-X. Liu, B. Wang, C. Kong, H. Xiong, and Y. Wu, “Magnetic-field-dependent slow light in strontium atom-cavity system,” Appl. Phys. Lett. 112, 111109 (2018).
[Crossref]

Wong, C. W.

Y.-C. Liu, X. Luan, H.-K. Li, Q. Gong, C. W. Wong, and Y.-F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112, 213602 (2014).
[Crossref]

Wu, C.

W. Shao, C. Wu, and X.-L. Feng, “Generalized James’ effective Hamiltonian method,” Phys. Rev. A 95, 032124 (2017).
[Crossref]

Wu, L.

Wu, Y.

Q. Bin, X.-Y. Lü, S.-W. Bin, and Y. Wu, “Two-photon blockade in a cascaded cavity-quantum-electrodynamics system,” Phys. Rev. A 98, 043858 (2018).
[Crossref]

Z.-X. Liu, B. Wang, C. Kong, H. Xiong, and Y. Wu, “Magnetic-field-dependent slow light in strontium atom-cavity system,” Appl. Phys. Lett. 112, 111109 (2018).
[Crossref]

Xia, Y.

J. Song, C. Li, Y. Xia, Z.-J. Zhang, and Y.-Y. Jiang, “Noise-induced quantum state transfer in distant cavities,” J. Phys. B: At. Mol. Opt. Phys. 50, 175502 (2017).
[Crossref]

J. Song, X.-D. Sun, Y. Xia, and H.-S. Song, “Efficient creation of continuous-variable entanglement for two atomic ensembles in coupled cavities,” Phys. Rev. A 83, 052309 (2011).
[Crossref]

Xiao, Y.-F.

D. Xu, X. Xiong, L. Wu, X.-F. Ren, C. E. Png, G.-C. Guo, Q. Gong, and Y.-F. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photon. 10, 703–756 (2018).
[Crossref]

P. Peng, Y.-C. Liu, D. Xu, Q.-T. Cao, G. Lu, Q. Gong, and Y.-F. Xiao, “Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances,” Phys. Rev. Lett. 119, 233901 (2017).
[Crossref] [PubMed]

R.-S. Liu, W.-L. Jin, X.-C. Yu, Y.-C. Liu, and Y.-F. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-q whispering-gallery microresonator,” Phys. Rev. A 91, 043836 (2015).
[Crossref]

Y.-C. Liu, X. Luan, H.-K. Li, Q. Gong, C. W. Wong, and Y.-F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112, 213602 (2014).
[Crossref]

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90, 043847 (2014).
[Crossref]

Xiong, H.

Z.-X. Liu, B. Wang, C. Kong, H. Xiong, and Y. Wu, “Magnetic-field-dependent slow light in strontium atom-cavity system,” Appl. Phys. Lett. 112, 111109 (2018).
[Crossref]

Xiong, X.

Xu, D.

D. Xu, X. Xiong, L. Wu, X.-F. Ren, C. E. Png, G.-C. Guo, Q. Gong, and Y.-F. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photon. 10, 703–756 (2018).
[Crossref]

P. Peng, Y.-C. Liu, D. Xu, Q.-T. Cao, G. Lu, Q. Gong, and Y.-F. Xiao, “Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances,” Phys. Rev. Lett. 119, 233901 (2017).
[Crossref] [PubMed]

Yan, G.-A.

G.-A. Yan, H.-X. Qiao, and H. Lu, “Quantum iSWAP gate in optical cavities with a cyclic three-level system,” Quantum Inf. Process. 17, 71 (2018).
[Crossref]

Yang, Z.-B.

L.-T. Shen, W.-Z. Li, R.-X. Chen, and Z.-B. Yang, “Entanglement generation for two coupled multi-excitation fields interacting with qubits,” Int. J. Theor. Phys. 53, 2161–2166 (2014).
[Crossref]

Yelin, S. F.

M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232–4235 (2000).
[Crossref] [PubMed]

Yu, H.

P. Zhao, X. Tan, H. Yu, S.-L. Zhu, and Y. Yu, “Circuit QED with qutrits: Coupling three or more atoms via virtual-photon exchange,” Phys. Rev. A 96, 043833 (2017).
[Crossref]

Yu, X.-C.

R.-S. Liu, W.-L. Jin, X.-C. Yu, Y.-C. Liu, and Y.-F. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-q whispering-gallery microresonator,” Phys. Rev. A 91, 043836 (2015).
[Crossref]

Yu, Y.

P. Zhao, X. Tan, H. Yu, S.-L. Zhu, and Y. Yu, “Circuit QED with qutrits: Coupling three or more atoms via virtual-photon exchange,” Phys. Rev. A 96, 043833 (2017).
[Crossref]

Zhang, K.

K. Zhang and Z.-Y. Li, “Transfer behavior of quantum states between atoms in photonic crystal coupled cavities,” Phys. Rev. A 81, 033843 (2010).
[Crossref]

Zhang, Z.-J.

J. Song, C. Li, Y. Xia, Z.-J. Zhang, and Y.-Y. Jiang, “Noise-induced quantum state transfer in distant cavities,” J. Phys. B: At. Mol. Opt. Phys. 50, 175502 (2017).
[Crossref]

Zhao, P.

P. Zhao, X. Tan, H. Yu, S.-L. Zhu, and Y. Yu, “Circuit QED with qutrits: Coupling three or more atoms via virtual-photon exchange,” Phys. Rev. A 96, 043833 (2017).
[Crossref]

Zhu, S.-L.

P. Zhao, X. Tan, H. Yu, S.-L. Zhu, and Y. Yu, “Circuit QED with qutrits: Coupling three or more atoms via virtual-photon exchange,” Phys. Rev. A 96, 043833 (2017).
[Crossref]

Zou, L. J.

L. J. Zou, D. Marcos, S. Diehl, S. Putz, J. Schmiedmayer, J. Majer, and P. Rabl, “Implementation of the Dicke lattice model in hybrid quantum system arrays,” Phys. Rev. Lett. 113, 023603 (2014).
[Crossref] [PubMed]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, “Cavity QED implementation of the discrete quantum fourier transform,” Phys. Rev. A 65, 052324 (2002).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

Z.-X. Liu, B. Wang, C. Kong, H. Xiong, and Y. Wu, “Magnetic-field-dependent slow light in strontium atom-cavity system,” Appl. Phys. Lett. 112, 111109 (2018).
[Crossref]

Can. J. Phys. (1)

D. F. James and J. Jerke, “Effective Hamiltonian theory and its applications in quantum information,” Can. J. Phys. 85, 625–632 (2007).
[Crossref]

Int. J. Theor. Phys. (1)

L.-T. Shen, W.-Z. Li, R.-X. Chen, and Z.-B. Yang, “Entanglement generation for two coupled multi-excitation fields interacting with qubits,” Int. J. Theor. Phys. 53, 2161–2166 (2014).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

J. Song, C. Li, Y. Xia, Z.-J. Zhang, and Y.-Y. Jiang, “Noise-induced quantum state transfer in distant cavities,” J. Phys. B: At. Mol. Opt. Phys. 50, 175502 (2017).
[Crossref]

Opt. Commun. (1)

G. Cheng, H. Tan, and A. Chen, “Dissipation induced asymmetric steering of distant atomic ensembles,” Opt. Commun. 412, 166 – 171 (2018).
[Crossref]

Photon. Res. (1)

Phys. Rev. A (15)

W. Shao, C. Wu, and X.-L. Feng, “Generalized James’ effective Hamiltonian method,” Phys. Rev. A 95, 032124 (2017).
[Crossref]

M. Macovei, Z. Ficek, and C. H. Keitel, “Collective coherent population trapping in a thermal field,” Phys. Rev. A 73, 063821 (2006).
[Crossref]

P. Zhao, X. Tan, H. Yu, S.-L. Zhu, and Y. Yu, “Circuit QED with qutrits: Coupling three or more atoms via virtual-photon exchange,” Phys. Rev. A 96, 043833 (2017).
[Crossref]

J. Song, X.-D. Sun, Y. Xia, and H.-S. Song, “Efficient creation of continuous-variable entanglement for two atomic ensembles in coupled cavities,” Phys. Rev. A 83, 052309 (2011).
[Crossref]

M. O. Scully and M. S. Zubairy, “Cavity QED implementation of the discrete quantum fourier transform,” Phys. Rev. A 65, 052324 (2002).
[Crossref]

Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, and Y.-F. Xiao, “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A 90, 043847 (2014).
[Crossref]

K. Zhang and Z.-Y. Li, “Transfer behavior of quantum states between atoms in photonic crystal coupled cavities,” Phys. Rev. A 81, 033843 (2010).
[Crossref]

G. M. A. Almeida, F. Ciccarello, T. J. G. Apollaro, and A. M. C. Souza, “Quantum-state transfer in staggered coupled-cavity arrays,” Phys. Rev. A 93, 032310 (2016).
[Crossref]

P. T. Fong and C. K. Law, “Bound state in the continuum by spatially separated ensembles of atoms in a coupled-cavity array,” Phys. Rev. A 96, 023842 (2017).
[Crossref]

F. Badshah, S. Qamar, and M. Paternostro, “Dynamics of interacting Dicke model in a coupled-cavity array,” Phys. Rev. A 90, 033813 (2014).
[Crossref]

M. Saffman and K. Mølmer, “Scaling the neutral-atom Rydberg gate quantum computer by collective encoding in holmium atoms,” Phys. Rev. A 78, 012336 (2008).
[Crossref]

Q. Bin, X.-Y. Lü, S.-W. Bin, and Y. Wu, “Two-photon blockade in a cascaded cavity-quantum-electrodynamics system,” Phys. Rev. A 98, 043858 (2018).
[Crossref]

J.-F. Huang, Q. Ai, Y. Deng, C. P. Sun, and F. Nori, “Quantum statistics of the collective excitations of an atomic ensemble inside a cavity,” Phys. Rev. A 85, 023801 (2012).
[Crossref]

R.-S. Liu, W.-L. Jin, X.-C. Yu, Y.-C. Liu, and Y.-F. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-q whispering-gallery microresonator,” Phys. Rev. A 91, 043836 (2015).
[Crossref]

C. D. Ogden, E. K. Irish, and M. S. Kim, “Dynamics in a coupled-cavity array,” Phys. Rev. A 78, 063805 (2008).
[Crossref]

Phys. Rev. Lett. (8)

R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132–1135 (1992).
[Crossref] [PubMed]

F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H. E. Türeci, and J. Keeling, “Nonequilibrium dynamics of coupled qubit-cavity arrays,” Phys. Rev. Lett. 108, 233603 (2012).
[Crossref] [PubMed]

L. J. Zou, D. Marcos, S. Diehl, S. Putz, J. Schmiedmayer, J. Majer, and P. Rabl, “Implementation of the Dicke lattice model in hybrid quantum system arrays,” Phys. Rev. Lett. 113, 023603 (2014).
[Crossref] [PubMed]

P. Peng, Y.-C. Liu, D. Xu, Q.-T. Cao, G. Lu, Q. Gong, and Y.-F. Xiao, “Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances,” Phys. Rev. Lett. 119, 233901 (2017).
[Crossref] [PubMed]

S. Hughes, “Coupled-cavity QED using planar photonic crystals,” Phys. Rev. Lett. 98, 083603 (2007).
[Crossref] [PubMed]

Y.-C. Liu, X. Luan, H.-K. Li, Q. Gong, C. W. Wong, and Y.-F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112, 213602 (2014).
[Crossref]

M. Ebert, M. Kwon, T. G. Walker, and M. Saffman, “Coherence and Rydberg blockade of atomic ensemble qubits,” Phys. Rev. Lett. 115, 093601 (2015).
[Crossref] [PubMed]

M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232–4235 (2000).
[Crossref] [PubMed]

Quantum Inf. Process. (1)

G.-A. Yan, H.-X. Qiao, and H. Lu, “Quantum iSWAP gate in optical cavities with a cyclic three-level system,” Quantum Inf. Process. 17, 71 (2018).
[Crossref]

Science (1)

Y. O. Dudin and A. Kuzmich, “Strongly interacting Rydberg excitations of a cold atomic gas,” Science 336, 887–889 (2012).
[Crossref] [PubMed]

The Eur. Phys. J. D (1)

N. Behzadi, S. K. Rudsary, and B. A. Salmas, “Perfect transfer of coherent state-based qubits via coupled cavities,” The Eur. Phys. J. D 67, 247 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The schematic of N three-level atoms in cavity 1 and an empty cavity 2 for a coupled cavity system. κ1 and κ2 are decay rates of cavity 1 and 2, respectively. (b) The energy level scheme of the atom. γ1 and γ2 are the atomic spontaneous emission rates.
Fig. 2
Fig. 2 Dynamics as functions of N g and evolution time for the initial and final state for cavity 1 and 2, respectively. (a),(d) The evolution dynamics as functions of N g and evolution time for the initial and final state, respectively. (b),(c) Occupation of the initial state with time for various values of N g. (e),(f) Occupation of the final state with time for various values of N g. The common parameters are (a),(b),(d),(e) Ω = r = 2g. (c),(f) Ω = 10g, r = 2g. All figures Δ1 = Δ2 = 0.
Fig. 3
Fig. 3 Dynamics as functions of N g and evolution time for the initial and final state population. (a) Initial state, and (d) the corresponding final state dynamics when Ω = r = 2g (b) Initial state, and (e) the corresponding final state dynamics when Ω = r = 4g. (c) Initial state, and (f) the corresponding final state dynamics when Ω = 8g, r = 2g. The common parameters in all figures are Δ1 = Δ2 = 10g.
Fig. 4
Fig. 4 Dynamics as functions of detunings and evolution time for the final state. (a) N g = 50 g. (b) N g = 70 g. (c) N g = 50 g. (d) Variation of population of the final state with time at different values of Δ1,2; N g = 50 g. (e) N g = 70 g. (f) N g = 50 g. The common parameters are (a),(b),(d),(e) Ω = r = g. (c),(f) Ω = 2g, r = g
Fig. 5
Fig. 5 Dynamics as functions of N g and evolution time for the initial and final state. (a), (b) Initial state. (c), (d) Final state. The common parameters are; (a), (c) Δ1 = 60g, Δ2 = 60.0282g. (b), (d) Δ1 = 120g, Δ2 = 119.918g. (a)-(d) r = 2g, Ω = g, N = 104.
Fig. 6
Fig. 6 The various dissipation channels in the excitation subspace.
Fig. 7
Fig. 7 The evolution of the initial state (red dashed) curves and final state (blue solid) curves. (a) N = 100. (b) N = 400. (c) Ω = 2g, r = 4g. (d) Ω = 3g, r = 6g. The common parameters in (a),(b) Ω = 2g, r = 4g, Δ1 = Δ2 = 0. (c),(d) N = 400, Δ1 = 4.0g, Δ2 = 4.2g. The common parameters in all figures are κ1 = 10g, κ2 = 0.1g, γ1 = g, γ2 = 0.1g.
Fig. 8
Fig. 8 Dynamics as functions of r or Ω and time, t. (a),(b) Ω = 2g. (a),(c) Δ1 = Δ2 = 1g (b),(d) Δ1 = 4.0g, Δ2 = 4.2g (c),(d) r = 4g. The common parameters are N = 400, κ1 = 5g, κ2 = 0.01g, γ1 = 0.5g, γ2 = 0.01g.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

H = H 0 + V ,
H 0 = j ( ω f | f j f | + ω g | g j g | + ω e | e j e | ) + ω a a a + ω b b b ,
V = j ( Ω j e i ω t | e j f | + g a | e j g | ) +   r a b + H . c . ,
H i ( 1 ) = j ( Ω j e i Δ j t |   e j f | + g e i Δ j   t a | e j g | ) +   r e i Δ j   t a b + H . c . ,
H i ( 2 ) = j ( Ω j | e j f | + g a | e j g | Δ 1 | f j f | + Δ 2 b b ) + r a b + H . c ..
H i ( 3 ) = Δ 1 | ψ 1 00 ψ 1 00 | + N g [ ( | + + | ) ( | | ) ] + Δ 2 | ψ 3 01 ψ 3 01 | + [ Ω 2 | i 1 00 ( + | + | ) + r 2 ( | + | ) ψ 3 01 | + H . c . ] ,
H i ( 4 ) = Ω 2 | ψ 1 00 + | e i Δ m t + Ω 2 | ψ 1 00 | e i Δ m   t + r 2 | + ψ 3 01 | e i Δ n t r 2 | ψ 3 01 | e i Δ n   t + H . c ..
H e f f ( 1 ) = ( Ω 2 + r 2 ) 2 N g ( | + + | | | ) g e f f ( 1 ) ( | ψ 1 00 ψ 3 01 | + | ψ 3 01 ψ 1 00 | ) ,
H e f f ( 2 ) = A ( Ω 2 | ψ 1 00 ψ 1 00 | + r 2 | ψ 3 01 ψ 3 01 | ) B | + + | C | | + [ g e f f ( 2 ) | ψ 1 00 ψ 3 01 | + H . c . ] ,
H e f f 3 = D | ψ 1 00 ψ 1 00 | + E | ψ 3 01 ψ 3 01 | F | + + | G | | + [ S | ψ 1 00 ψ 3 01 | e i Δ t + W | ψ 3 01 ψ 1 00 | e i Δ t + H . c . ] ,
( r 2 Δ 2 ( Δ 2 2 g 2 N ) ) ( Ω 2 Δ 1 ( Δ 1 2 g 2 N ) ) Δ 1 + Δ 2 = 0.
ρ ˙ = i [ H , ρ ] + κ 1 ( 2 a ρ a a a ρ ρ a a ) + κ 2 ( 2 b ρ b b b ρ ρ b b ) + j = 1 N γ 1 ( 2 σ j ρ σ j + σ j + σ j ρ ρ σ j + σ j + j = 1 N γ 2 ( 2 χ j ρ χ j + χ j + χ j ρ ρ χ j + χ j ) ,
M j = L = 1 N σ L e 2 i L j π N N , X j = L = 1 N χ L e 2 i L j π N N ,
ρ ˙ = i [ H , ρ ] + κ 1 ( 2 a ρ a a a ρ ρ a a ) + κ 2 ( 2 b ρ b b b ρ ρ b b ) + j = 1 N γ 1 ( 2 M j ρ M j + M j + M j ρ ρ M j + M j ) + j = 1 N γ 2 ( 2 X j ρ X j + X j + X j ρ ρ X j + X j ) .
ρ ˙   = i [ H , ρ ] + κ 1 ( 2 a ρ a a a ρ ρ a a ) + κ 2 ( 2 b ρ b b b ρ ρ b b ) + γ 1 ( 2 M N ρ M N + M N + M N ρ ρ M N + M N ) + γ 2 ( 2 X N ρ X N + X N + X N ρ ρ X N + X N ) + j = 1 N 1 γ 2 ( 2 k j ρ k j + k j + k j ρ ρ k j + k j ) ,

Metrics