Abstract

Photonic force optical coherence elastography (PF-OCE) is a new approach for volumetric characterization of microscopic mechanical properties of three-dimensional viscoelastic medium. It is based on measurements of the complex mechanical response of embedded micro-beads to harmonically modulated radiation-pressure force from a weakly-focused beam. Here, we utilize the Generalized Stokes-Einstein relation to reconstruct local complex shear modulus in polyacrylamide gels by combining PF-OCE measurements of bead mechanical responses and experimentally measured depth-resolved radiation-pressure force profile of our forcing beam. Data exclusion criteria for quantitative PF-OCE based on three noise-related parameters were identified from the analysis of measurement noise at key processing steps. Shear storage modulus measured by quantitative PF-OCE was found to be in good agreement with standard shear rheometry, whereas shear loss modulus was in agreement with previously published atomic force microscopy results. The analysis and results presented here may serve to inform practical, application-specific implementations of PF-OCE, and establish the technique as a viable tool for quantitative mechanical microscopy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Measuring mechanical wave speed, dispersion, and viscoelastic modulus of the cornea using optical coherence elastography

Antoine Ramier, Behrouz Tavakol, and Seok-Hyun Yun
Opt. Express 27(12) 16635-16649 (2019)

Noncontact depth-resolved micro-scale optical coherence elastography of the cornea

Shang Wang and Kirill V. Larin
Biomed. Opt. Express 5(11) 3807-3821 (2014)

Depth-resolved measurement of optical radiation-pressure forces with optical coherence tomography

Nichaluk Leartprapun, Rishyashring R. Iyer, and Steven G. Adie
Opt. Express 26(3) 2410-2426 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [Crossref]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  4. D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
    [Crossref] [PubMed]
  5. R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
    [Crossref] [PubMed]
  6. R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S103–S112 (2007).
    [Crossref]
  7. D. Mizuno, D. A. Head, F. C. MacKintosh, and C. F. Schmidt, “Active and Passive Microrheology in Equilibrium and Nonequilibrium Systems,” Macromolecules 41(19), 7194–7202 (2008).
    [Crossref]
  8. M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration independent modulation of local micromechanics in a fibrin gel,” PLoS One 6(5), e20201 (2011).
    [Crossref] [PubMed]
  9. M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
    [Crossref] [PubMed]
  10. M. T. Wei, A. Zaorski, H. C. Yalcin, J. Wang, S. N. Ghadiali, A. Chiou, and H. D. Ou-Yang, “A comparative study of living cell micromechanical properties by oscillatory optical tweezers,” Opt. Express 16(12), 8594–8603 (2008).
    [Crossref] [PubMed]
  11. J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol. 10(4), 046006 (2013).
    [Crossref] [PubMed]
  12. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
    [Crossref] [PubMed]
  13. K. Dholakia, M. P. MacDonald, P. Zemánek, and T. Cizmár, “Cellular and colloidal separation using optical forces,” Methods Cell Biol. 82, 467–495 (2007).
    [Crossref] [PubMed]
  14. A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
    [Crossref] [PubMed]
  15. N. Leartprapun, R. R. Iyer, and S. G. Adie, “Depth-resolved measurement of optical radiation-pressure forces with optical coherence tomography,” Opt. Express 26(3), 2410–2426 (2018).
    [Crossref] [PubMed]
  16. N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
    [Crossref] [PubMed]
  17. J. A. Mulligan, G. R. Untracht, S. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging Approaches for High-Resolution Imaging of Tissue Biomechanics With Optical Coherence Elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
    [Crossref]
  18. K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
    [Crossref] [PubMed]
  19. B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
    [Crossref]
  20. C. H. Liu, D. Nevozhay, A. Schill, M. Singh, S. Das, A. Nair, Z. Han, S. Aglyamov, K. V. Larin, and K. V. Sokolov, “Nanobomb optical coherence elastography,” Opt. Lett. 43(9), 2006–2009 (2018).
    [Crossref] [PubMed]
  21. C. Li, G. Guan, F. Zhang, G. Nabi, R. K. Wang, and Z. Huang, “Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: a solution for practical application,” Biomed. Opt. Express 5(5), 1403–1419 (2014).
    [Crossref] [PubMed]
  22. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
    [Crossref] [PubMed]
  23. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
    [Crossref] [PubMed]
  24. M. Lapierre-Landry, A. Y. Gordon, J. S. Penn, and M. C. Skala, “In vivo photothermal optical coherence tomography of endogenous and exogenous contrast agents in the eye,” Sci. Rep. 7(1), 9228 (2017).
    [Crossref] [PubMed]
  25. V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, and S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express 17(25), 23114–23122 (2009).
    [Crossref] [PubMed]
  26. R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4 Pt 1), 040903 (2011).
    [Crossref] [PubMed]
  27. R. L. Blackmon, R. Sandhu, B. S. Chapman, P. Casbas-Hernandez, J. B. Tracy, M. A. Troester, and A. L. Oldenburg, “Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography,” Biophys. J. 110(8), 1858–1868 (2016).
    [Crossref] [PubMed]
  28. M. S. Hall, F. Alisafaei, E. Ban, X. Feng, C. Y. Hui, V. B. Shenoy, and M. Wu, “Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs,” Proc. Natl. Acad. Sci. U.S.A. 113(49), 14043–14048 (2016).
    [Crossref] [PubMed]
  29. D. E. Discher, P. Janmey, and Y. L. Wang, “Tissue cells feel and respond to the stiffness of their substrate,” Science 310(5751), 1139–1143 (2005).
    [Crossref] [PubMed]
  30. J. Eyckmans, T. Boudou, X. Yu, and C. S. Chen, “A hitchhiker’s guide to mechanobiology,” Dev. Cell 21(1), 35–47 (2011).
    [Crossref] [PubMed]
  31. F. Guilak, D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen, “Control of stem cell fate by physical interactions with the extracellular matrix,” Cell Stem Cell 5(1), 17–26 (2009).
    [Crossref] [PubMed]
  32. D. Wirtz, K. Konstantopoulos, and P. C. Searson, “The physics of cancer: the role of physical interactions and mechanical forces in metastasis,” Nat. Rev. Cancer 11(7), 512–522 (2011).
    [Crossref] [PubMed]
  33. J. R. Tse and A. J. Engler, “Preparation of hydrogel substrates with tunable mechanical properties,” Curr. Protoc. Cell Biol. 10, 16 (2010).
    [PubMed]
  34. T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
    [Crossref] [PubMed]
  35. F. Gittes, B. Schnurr, P. D. Olmsted, F. C. MacKintosh, and C. F. Schmidt, “Microscopic Viscoelasticity: Shear Moduli of Soft Materials Determined from Thermal Fluctuations,” Phys. Rev. Lett. 79(17), 3286–3289 (1997).
    [Crossref]
  36. E. W. Chang, J. B. Kobler, and S. H. Yun, “Subnanometer optical coherence tomographic vibrography,” Opt. Lett. 37(17), 3678–3680 (2012).
    [Crossref] [PubMed]
  37. B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
    [Crossref] [PubMed]
  38. M. Lapierre-Landry, J. M. Tucker-Schwartz, and M. C. Skala, “Depth-resolved analytical model and correction algorithm for photothermal optical coherence tomography,” Biomed. Opt. Express 7(7), 2607–2622 (2016).
    [Crossref] [PubMed]
  39. J. B. Hawkes and R. W. Astheimer, “The temperature coefficient of the refractive index of water,” J. Opt. Soc. Am. 38(9), 804–806 (1948).
    [Crossref] [PubMed]
  40. N. C. Stellwagen, “Apparent pore size of polyacrylamide gels: comparison of gels cast and run in Tris-acetate-EDTA and Tris-borate-EDTA buffers,” Electrophoresis 19(10), 1542–1547 (1998).
    [Crossref] [PubMed]
  41. G. M. Hale and M. R. Querry, “Optical Constants of Water in the 200-nm to 200-microm Wavelength Region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref] [PubMed]
  42. H. L. Oestreicher, “Field and Impedance of an Oscillating Sphere in a Viscoelastic Medium with an Application to Biophysics,” J. Acoust. Soc. Am. 23(6), 707–714 (1951).
    [Crossref]
  43. W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
    [Crossref] [PubMed]
  44. B. Schnurr, F. Gittes, F. C. MacKintosh, and C. F. Schmidt, “Determining Microscopic Viscoelasticity in Flexible and Semiflexible Polymer Netowrks from Thermal Fluctuations,” Macromolecules 30(25), 7781–7792 (1997).
    [Crossref]
  45. Y. A. Ilinskii, G. D. Meegan, E. A. Zabolotskaya, and S. Y. Emelianov, “Gas bubble and solid sphere motion in elastic media in response to acoustic radiation force,” J. Acoust. Soc. Am. 117(4 Pt 1), 2338–2346 (2005).
    [Crossref] [PubMed]
  46. M. W. Urban, I. Z. Nenadic, S. A. Mitchell, S. Chen, and J. F. Greenleaf, “Generalized response of a sphere embedded in a viscoelastic medium excited by an ultrasonic radiation force,” J. Acoust. Soc. Am. 130(3), 1133–1141 (2011).
    [Crossref] [PubMed]
  47. Y. Abidine, V. Laurent, R. Michel, A. Duperray, L. I. Palade, and C. Verdier, “Physical properties of polyacrylamide gels probed by AFM and rheology,” EPL 109(3), 38003 (2015).
    [Crossref]
  48. T. B. Goudoulas and N. Germann, “Viscoelastic properties of polyacrylamide solutions from creep ringing data,” J. Rheol. (N.Y.N.Y.) 60(3), 491–502 (2016).
    [Crossref]
  49. S. P. Carey, Z. E. Goldblatt, K. E. Martin, B. Romero, R. M. Williams, and C. A. Reinhart-King, “Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK,” Integr. Biol. 8(8), 821–835 (2016).
    [Crossref] [PubMed]
  50. J. A. Mulligan, X. Feng, and S. G. Adie, “Quantitative reconstruction of time-varying 3D cell forces with traction force optical coherence microscopy,” Sci. Rep. 9(1), 4086 (2019).
    [Crossref] [PubMed]
  51. E. Ban, J. M. Franklin, S. Nam, L. R. Smith, H. Wang, R. G. Wells, O. Chaudhuri, J. T. Liphardt, and V. B. Shenoy, “Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces,” Biophys. J. 114(2), 450–461 (2018).
    [Crossref] [PubMed]
  52. S. P. Carey, K. E. Martin, and C. A. Reinhart-King, “Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype,” Sci. Rep. 7(1), 42088 (2017).
    [Crossref] [PubMed]
  53. A. Labernadie, T. Kato, A. Brugués, X. Serra-Picamal, S. Derzsi, E. Arwert, A. Weston, V. González-Tarragó, A. Elosegui-Artola, L. Albertazzi, J. Alcaraz, P. Roca-Cusachs, E. Sahai, and X. Trepat, “A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion,” Nat. Cell Biol. 19(3), 224–237 (2017).
    [Crossref] [PubMed]

2019 (1)

J. A. Mulligan, X. Feng, and S. G. Adie, “Quantitative reconstruction of time-varying 3D cell forces with traction force optical coherence microscopy,” Sci. Rep. 9(1), 4086 (2019).
[Crossref] [PubMed]

2018 (4)

E. Ban, J. M. Franklin, S. Nam, L. R. Smith, H. Wang, R. G. Wells, O. Chaudhuri, J. T. Liphardt, and V. B. Shenoy, “Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces,” Biophys. J. 114(2), 450–461 (2018).
[Crossref] [PubMed]

N. Leartprapun, R. R. Iyer, and S. G. Adie, “Depth-resolved measurement of optical radiation-pressure forces with optical coherence tomography,” Opt. Express 26(3), 2410–2426 (2018).
[Crossref] [PubMed]

N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
[Crossref] [PubMed]

C. H. Liu, D. Nevozhay, A. Schill, M. Singh, S. Das, A. Nair, Z. Han, S. Aglyamov, K. V. Larin, and K. V. Sokolov, “Nanobomb optical coherence elastography,” Opt. Lett. 43(9), 2006–2009 (2018).
[Crossref] [PubMed]

2017 (6)

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref] [PubMed]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

M. Lapierre-Landry, A. Y. Gordon, J. S. Penn, and M. C. Skala, “In vivo photothermal optical coherence tomography of endogenous and exogenous contrast agents in the eye,” Sci. Rep. 7(1), 9228 (2017).
[Crossref] [PubMed]

M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
[Crossref] [PubMed]

S. P. Carey, K. E. Martin, and C. A. Reinhart-King, “Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype,” Sci. Rep. 7(1), 42088 (2017).
[Crossref] [PubMed]

A. Labernadie, T. Kato, A. Brugués, X. Serra-Picamal, S. Derzsi, E. Arwert, A. Weston, V. González-Tarragó, A. Elosegui-Artola, L. Albertazzi, J. Alcaraz, P. Roca-Cusachs, E. Sahai, and X. Trepat, “A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion,” Nat. Cell Biol. 19(3), 224–237 (2017).
[Crossref] [PubMed]

2016 (6)

T. B. Goudoulas and N. Germann, “Viscoelastic properties of polyacrylamide solutions from creep ringing data,” J. Rheol. (N.Y.N.Y.) 60(3), 491–502 (2016).
[Crossref]

S. P. Carey, Z. E. Goldblatt, K. E. Martin, B. Romero, R. M. Williams, and C. A. Reinhart-King, “Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK,” Integr. Biol. 8(8), 821–835 (2016).
[Crossref] [PubMed]

M. Lapierre-Landry, J. M. Tucker-Schwartz, and M. C. Skala, “Depth-resolved analytical model and correction algorithm for photothermal optical coherence tomography,” Biomed. Opt. Express 7(7), 2607–2622 (2016).
[Crossref] [PubMed]

J. A. Mulligan, G. R. Untracht, S. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging Approaches for High-Resolution Imaging of Tissue Biomechanics With Optical Coherence Elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
[Crossref]

R. L. Blackmon, R. Sandhu, B. S. Chapman, P. Casbas-Hernandez, J. B. Tracy, M. A. Troester, and A. L. Oldenburg, “Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography,” Biophys. J. 110(8), 1858–1868 (2016).
[Crossref] [PubMed]

M. S. Hall, F. Alisafaei, E. Ban, X. Feng, C. Y. Hui, V. B. Shenoy, and M. Wu, “Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs,” Proc. Natl. Acad. Sci. U.S.A. 113(49), 14043–14048 (2016).
[Crossref] [PubMed]

2015 (1)

Y. Abidine, V. Laurent, R. Michel, A. Duperray, L. I. Palade, and C. Verdier, “Physical properties of polyacrylamide gels probed by AFM and rheology,” EPL 109(3), 38003 (2015).
[Crossref]

2014 (1)

2013 (2)

J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol. 10(4), 046006 (2013).
[Crossref] [PubMed]

R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (5)

M. W. Urban, I. Z. Nenadic, S. A. Mitchell, S. Chen, and J. F. Greenleaf, “Generalized response of a sphere embedded in a viscoelastic medium excited by an ultrasonic radiation force,” J. Acoust. Soc. Am. 130(3), 1133–1141 (2011).
[Crossref] [PubMed]

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration independent modulation of local micromechanics in a fibrin gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

J. Eyckmans, T. Boudou, X. Yu, and C. S. Chen, “A hitchhiker’s guide to mechanobiology,” Dev. Cell 21(1), 35–47 (2011).
[Crossref] [PubMed]

D. Wirtz, K. Konstantopoulos, and P. C. Searson, “The physics of cancer: the role of physical interactions and mechanical forces in metastasis,” Nat. Rev. Cancer 11(7), 512–522 (2011).
[Crossref] [PubMed]

R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4 Pt 1), 040903 (2011).
[Crossref] [PubMed]

2010 (3)

J. R. Tse and A. J. Engler, “Preparation of hydrogel substrates with tunable mechanical properties,” Curr. Protoc. Cell Biol. 10, 16 (2010).
[PubMed]

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[Crossref] [PubMed]

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref] [PubMed]

2009 (2)

F. Guilak, D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen, “Control of stem cell fate by physical interactions with the extracellular matrix,” Cell Stem Cell 5(1), 17–26 (2009).
[Crossref] [PubMed]

V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, and S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express 17(25), 23114–23122 (2009).
[Crossref] [PubMed]

2008 (5)

D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
[Crossref] [PubMed]

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

D. Mizuno, D. A. Head, F. C. MacKintosh, and C. F. Schmidt, “Active and Passive Microrheology in Equilibrium and Nonequilibrium Systems,” Macromolecules 41(19), 7194–7202 (2008).
[Crossref]

M. T. Wei, A. Zaorski, H. C. Yalcin, J. Wang, S. N. Ghadiali, A. Chiou, and H. D. Ou-Yang, “A comparative study of living cell micromechanical properties by oscillatory optical tweezers,” Opt. Express 16(12), 8594–8603 (2008).
[Crossref] [PubMed]

A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[Crossref] [PubMed]

2007 (2)

K. Dholakia, M. P. MacDonald, P. Zemánek, and T. Cizmár, “Cellular and colloidal separation using optical forces,” Methods Cell Biol. 82, 467–495 (2007).
[Crossref] [PubMed]

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S103–S112 (2007).
[Crossref]

2005 (3)

D. E. Discher, P. Janmey, and Y. L. Wang, “Tissue cells feel and respond to the stiffness of their substrate,” Science 310(5751), 1139–1143 (2005).
[Crossref] [PubMed]

B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
[Crossref] [PubMed]

Y. A. Ilinskii, G. D. Meegan, E. A. Zabolotskaya, and S. Y. Emelianov, “Gas bubble and solid sphere motion in elastic media in response to acoustic radiation force,” J. Acoust. Soc. Am. 117(4 Pt 1), 2338–2346 (2005).
[Crossref] [PubMed]

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

2001 (1)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

1998 (1)

N. C. Stellwagen, “Apparent pore size of polyacrylamide gels: comparison of gels cast and run in Tris-acetate-EDTA and Tris-borate-EDTA buffers,” Electrophoresis 19(10), 1542–1547 (1998).
[Crossref] [PubMed]

1997 (2)

B. Schnurr, F. Gittes, F. C. MacKintosh, and C. F. Schmidt, “Determining Microscopic Viscoelasticity in Flexible and Semiflexible Polymer Netowrks from Thermal Fluctuations,” Macromolecules 30(25), 7781–7792 (1997).
[Crossref]

F. Gittes, B. Schnurr, P. D. Olmsted, F. C. MacKintosh, and C. F. Schmidt, “Microscopic Viscoelasticity: Shear Moduli of Soft Materials Determined from Thermal Fluctuations,” Phys. Rev. Lett. 79(17), 3286–3289 (1997).
[Crossref]

1995 (1)

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
[Crossref] [PubMed]

1986 (1)

1973 (1)

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

1951 (1)

H. L. Oestreicher, “Field and Impedance of an Oscillating Sphere in a Viscoelastic Medium with an Application to Biophysics,” J. Acoust. Soc. Am. 23(6), 707–714 (1951).
[Crossref]

1948 (1)

Abidine, Y.

Y. Abidine, V. Laurent, R. Michel, A. Duperray, L. I. Palade, and C. Verdier, “Physical properties of polyacrylamide gels probed by AFM and rheology,” EPL 109(3), 38003 (2015).
[Crossref]

Adie, S. G.

J. A. Mulligan, X. Feng, and S. G. Adie, “Quantitative reconstruction of time-varying 3D cell forces with traction force optical coherence microscopy,” Sci. Rep. 9(1), 4086 (2019).
[Crossref] [PubMed]

N. Leartprapun, R. R. Iyer, and S. G. Adie, “Depth-resolved measurement of optical radiation-pressure forces with optical coherence tomography,” Opt. Express 26(3), 2410–2426 (2018).
[Crossref] [PubMed]

N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
[Crossref] [PubMed]

J. A. Mulligan, G. R. Untracht, S. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging Approaches for High-Resolution Imaging of Tissue Biomechanics With Optical Coherence Elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
[Crossref]

Adler, D. C.

Aglyamov, S.

Albertazzi, L.

A. Labernadie, T. Kato, A. Brugués, X. Serra-Picamal, S. Derzsi, E. Arwert, A. Weston, V. González-Tarragó, A. Elosegui-Artola, L. Albertazzi, J. Alcaraz, P. Roca-Cusachs, E. Sahai, and X. Trepat, “A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion,” Nat. Cell Biol. 19(3), 224–237 (2017).
[Crossref] [PubMed]

Alcaraz, J.

A. Labernadie, T. Kato, A. Brugués, X. Serra-Picamal, S. Derzsi, E. Arwert, A. Weston, V. González-Tarragó, A. Elosegui-Artola, L. Albertazzi, J. Alcaraz, P. Roca-Cusachs, E. Sahai, and X. Trepat, “A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion,” Nat. Cell Biol. 19(3), 224–237 (2017).
[Crossref] [PubMed]

Alisafaei, F.

M. S. Hall, F. Alisafaei, E. Ban, X. Feng, C. Y. Hui, V. B. Shenoy, and M. Wu, “Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs,” Proc. Natl. Acad. Sci. U.S.A. 113(49), 14043–14048 (2016).
[Crossref] [PubMed]

Alvarez-Elizondo, M.

M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
[Crossref] [PubMed]

Alvarez-Elizondo, M. B.

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration independent modulation of local micromechanics in a fibrin gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Arwert, E.

A. Labernadie, T. Kato, A. Brugués, X. Serra-Picamal, S. Derzsi, E. Arwert, A. Weston, V. González-Tarragó, A. Elosegui-Artola, L. Albertazzi, J. Alcaraz, P. Roca-Cusachs, E. Sahai, and X. Trepat, “A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion,” Nat. Cell Biol. 19(3), 224–237 (2017).
[Crossref] [PubMed]

Ashkin, A.

Astheimer, R. W.

Ban, E.

E. Ban, J. M. Franklin, S. Nam, L. R. Smith, H. Wang, R. G. Wells, O. Chaudhuri, J. T. Liphardt, and V. B. Shenoy, “Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces,” Biophys. J. 114(2), 450–461 (2018).
[Crossref] [PubMed]

M. S. Hall, F. Alisafaei, E. Ban, X. Feng, C. Y. Hui, V. B. Shenoy, and M. Wu, “Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs,” Proc. Natl. Acad. Sci. U.S.A. 113(49), 14043–14048 (2016).
[Crossref] [PubMed]

Berg-Sørensen, K.

J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol. 10(4), 046006 (2013).
[Crossref] [PubMed]

Bjorkholm, J. E.

Blackmon, R. L.

R. L. Blackmon, R. Sandhu, B. S. Chapman, P. Casbas-Hernandez, J. B. Tracy, M. A. Troester, and A. L. Oldenburg, “Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography,” Biophys. J. 110(8), 1858–1868 (2016).
[Crossref] [PubMed]

Blakely, B. L.

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref] [PubMed]

Boppart, S. A.

Botvinick, E.

M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
[Crossref] [PubMed]

Botvinick, E. L.

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration independent modulation of local micromechanics in a fibrin gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Boudou, T.

J. Eyckmans, T. Boudou, X. Yu, and C. S. Chen, “A hitchhiker’s guide to mechanobiology,” Dev. Cell 21(1), 35–47 (2011).
[Crossref] [PubMed]

Bouma, B.

Bowman, R. W.

R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[Crossref] [PubMed]

Boyce, M. C.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S103–S112 (2007).
[Crossref]

Brau, R. R.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S103–S112 (2007).
[Crossref]

Brown, C. N.

J. A. Mulligan, G. R. Untracht, S. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging Approaches for High-Resolution Imaging of Tissue Biomechanics With Optical Coherence Elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
[Crossref]

Brugués, A.

A. Labernadie, T. Kato, A. Brugués, X. Serra-Picamal, S. Derzsi, E. Arwert, A. Weston, V. González-Tarragó, A. Elosegui-Artola, L. Albertazzi, J. Alcaraz, P. Roca-Cusachs, E. Sahai, and X. Trepat, “A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion,” Nat. Cell Biol. 19(3), 224–237 (2017).
[Crossref] [PubMed]

Carey, S. P.

S. P. Carey, K. E. Martin, and C. A. Reinhart-King, “Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype,” Sci. Rep. 7(1), 42088 (2017).
[Crossref] [PubMed]

S. P. Carey, Z. E. Goldblatt, K. E. Martin, B. Romero, R. M. Williams, and C. A. Reinhart-King, “Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK,” Integr. Biol. 8(8), 821–835 (2016).
[Crossref] [PubMed]

Casbas-Hernandez, P.

R. L. Blackmon, R. Sandhu, B. S. Chapman, P. Casbas-Hernandez, J. B. Tracy, M. A. Troester, and A. L. Oldenburg, “Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography,” Biophys. J. 110(8), 1858–1868 (2016).
[Crossref] [PubMed]

Castro, C. E.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S103–S112 (2007).
[Crossref]

Cense, B.

Chandrasekaran, S.

J. A. Mulligan, G. R. Untracht, S. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging Approaches for High-Resolution Imaging of Tissue Biomechanics With Optical Coherence Elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
[Crossref]

Chang, E. W.

Chapman, B. S.

R. L. Blackmon, R. Sandhu, B. S. Chapman, P. Casbas-Hernandez, J. B. Tracy, M. A. Troester, and A. L. Oldenburg, “Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography,” Biophys. J. 110(8), 1858–1868 (2016).
[Crossref] [PubMed]

Chaudhuri, O.

E. Ban, J. M. Franklin, S. Nam, L. R. Smith, H. Wang, R. G. Wells, O. Chaudhuri, J. T. Liphardt, and V. B. Shenoy, “Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces,” Biophys. J. 114(2), 450–461 (2018).
[Crossref] [PubMed]

Chen, C. S.

J. Eyckmans, T. Boudou, X. Yu, and C. S. Chen, “A hitchhiker’s guide to mechanobiology,” Dev. Cell 21(1), 35–47 (2011).
[Crossref] [PubMed]

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref] [PubMed]

F. Guilak, D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen, “Control of stem cell fate by physical interactions with the extracellular matrix,” Cell Stem Cell 5(1), 17–26 (2009).
[Crossref] [PubMed]

Chen, S.

M. W. Urban, I. Z. Nenadic, S. A. Mitchell, S. Chen, and J. F. Greenleaf, “Generalized response of a sphere embedded in a viscoelastic medium excited by an ultrasonic radiation force,” J. Acoust. Soc. Am. 130(3), 1133–1141 (2011).
[Crossref] [PubMed]

Chhetri, R. K.

R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4 Pt 1), 040903 (2011).
[Crossref] [PubMed]

Chiou, A.

Chu, S.

Cizmár, T.

K. Dholakia, M. P. MacDonald, P. Zemánek, and T. Cizmár, “Cellular and colloidal separation using optical forces,” Methods Cell Biol. 82, 467–495 (2007).
[Crossref] [PubMed]

Cohen, D. M.

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref] [PubMed]

F. Guilak, D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen, “Control of stem cell fate by physical interactions with the extracellular matrix,” Cell Stem Cell 5(1), 17–26 (2009).
[Crossref] [PubMed]

Crecea, V.

Crow, M. J.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Das, S.

de Boer, J.

Derzsi, S.

A. Labernadie, T. Kato, A. Brugués, X. Serra-Picamal, S. Derzsi, E. Arwert, A. Weston, V. González-Tarragó, A. Elosegui-Artola, L. Albertazzi, J. Alcaraz, P. Roca-Cusachs, E. Sahai, and X. Trepat, “A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion,” Nat. Cell Biol. 19(3), 224–237 (2017).
[Crossref] [PubMed]

Dholakia, K.

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[Crossref] [PubMed]

K. Dholakia, M. P. MacDonald, P. Zemánek, and T. Cizmár, “Cellular and colloidal separation using optical forces,” Methods Cell Biol. 82, 467–495 (2007).
[Crossref] [PubMed]

Discher, D. E.

D. E. Discher, P. Janmey, and Y. L. Wang, “Tissue cells feel and respond to the stiffness of their substrate,” Science 310(5751), 1139–1143 (2005).
[Crossref] [PubMed]

Duperray, A.

Y. Abidine, V. Laurent, R. Michel, A. Duperray, L. I. Palade, and C. Verdier, “Physical properties of polyacrylamide gels probed by AFM and rheology,” EPL 109(3), 38003 (2015).
[Crossref]

Dziedzic, J. M.

Elosegui-Artola, A.

A. Labernadie, T. Kato, A. Brugués, X. Serra-Picamal, S. Derzsi, E. Arwert, A. Weston, V. González-Tarragó, A. Elosegui-Artola, L. Albertazzi, J. Alcaraz, P. Roca-Cusachs, E. Sahai, and X. Trepat, “A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion,” Nat. Cell Biol. 19(3), 224–237 (2017).
[Crossref] [PubMed]

Emelianov, S. Y.

Y. A. Ilinskii, G. D. Meegan, E. A. Zabolotskaya, and S. Y. Emelianov, “Gas bubble and solid sphere motion in elastic media in response to acoustic radiation force,” J. Acoust. Soc. Am. 117(4 Pt 1), 2338–2346 (2005).
[Crossref] [PubMed]

Engler, A. J.

J. R. Tse and A. J. Engler, “Preparation of hydrogel substrates with tunable mechanical properties,” Curr. Protoc. Cell Biol. 10, 16 (2010).
[PubMed]

Estes, B. T.

F. Guilak, D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen, “Control of stem cell fate by physical interactions with the extracellular matrix,” Cell Stem Cell 5(1), 17–26 (2009).
[Crossref] [PubMed]

Estrada, L. C.

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration independent modulation of local micromechanics in a fibrin gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Eyckmans, J.

J. Eyckmans, T. Boudou, X. Yu, and C. S. Chen, “A hitchhiker’s guide to mechanobiology,” Dev. Cell 21(1), 35–47 (2011).
[Crossref] [PubMed]

Feng, X.

J. A. Mulligan, X. Feng, and S. G. Adie, “Quantitative reconstruction of time-varying 3D cell forces with traction force optical coherence microscopy,” Sci. Rep. 9(1), 4086 (2019).
[Crossref] [PubMed]

M. S. Hall, F. Alisafaei, E. Ban, X. Feng, C. Y. Hui, V. B. Shenoy, and M. Wu, “Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs,” Proc. Natl. Acad. Sci. U.S.A. 113(49), 14043–14048 (2016).
[Crossref] [PubMed]

Ferrer, J. M.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S103–S112 (2007).
[Crossref]

Franklin, J. M.

E. Ban, J. M. Franklin, S. Nam, L. R. Smith, H. Wang, R. G. Wells, O. Chaudhuri, J. T. Liphardt, and V. B. Shenoy, “Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces,” Biophys. J. 114(2), 450–461 (2018).
[Crossref] [PubMed]

Fujimoto, J. G.

Genin, G. M.

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref] [PubMed]

Germann, N.

T. B. Goudoulas and N. Germann, “Viscoelastic properties of polyacrylamide solutions from creep ringing data,” J. Rheol. (N.Y.N.Y.) 60(3), 491–502 (2016).
[Crossref]

Ghadiali, S. N.

Gimble, J. M.

F. Guilak, D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen, “Control of stem cell fate by physical interactions with the extracellular matrix,” Cell Stem Cell 5(1), 17–26 (2009).
[Crossref] [PubMed]

Gittes, F.

F. Gittes, B. Schnurr, P. D. Olmsted, F. C. MacKintosh, and C. F. Schmidt, “Microscopic Viscoelasticity: Shear Moduli of Soft Materials Determined from Thermal Fluctuations,” Phys. Rev. Lett. 79(17), 3286–3289 (1997).
[Crossref]

B. Schnurr, F. Gittes, F. C. MacKintosh, and C. F. Schmidt, “Determining Microscopic Viscoelasticity in Flexible and Semiflexible Polymer Netowrks from Thermal Fluctuations,” Macromolecules 30(25), 7781–7792 (1997).
[Crossref]

Goldblatt, Z. E.

S. P. Carey, Z. E. Goldblatt, K. E. Martin, B. Romero, R. M. Williams, and C. A. Reinhart-King, “Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK,” Integr. Biol. 8(8), 821–835 (2016).
[Crossref] [PubMed]

González-Tarragó, V.

A. Labernadie, T. Kato, A. Brugués, X. Serra-Picamal, S. Derzsi, E. Arwert, A. Weston, V. González-Tarragó, A. Elosegui-Artola, L. Albertazzi, J. Alcaraz, P. Roca-Cusachs, E. Sahai, and X. Trepat, “A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion,” Nat. Cell Biol. 19(3), 224–237 (2017).
[Crossref] [PubMed]

Gordon, A. Y.

M. Lapierre-Landry, A. Y. Gordon, J. S. Penn, and M. C. Skala, “In vivo photothermal optical coherence tomography of endogenous and exogenous contrast agents in the eye,” Sci. Rep. 7(1), 9228 (2017).
[Crossref] [PubMed]

Goudoulas, T. B.

T. B. Goudoulas and N. Germann, “Viscoelastic properties of polyacrylamide solutions from creep ringing data,” J. Rheol. (N.Y.N.Y.) 60(3), 491–502 (2016).
[Crossref]

Gratton, E.

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration independent modulation of local micromechanics in a fibrin gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Greenleaf, J. F.

M. W. Urban, I. Z. Nenadic, S. A. Mitchell, S. Chen, and J. F. Greenleaf, “Generalized response of a sphere embedded in a viscoelastic medium excited by an ultrasonic radiation force,” J. Acoust. Soc. Am. 130(3), 1133–1141 (2011).
[Crossref] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Guan, G.

Guck, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Guilak, F.

F. Guilak, D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen, “Control of stem cell fate by physical interactions with the extracellular matrix,” Cell Stem Cell 5(1), 17–26 (2009).
[Crossref] [PubMed]

Gunn-Moore, F.

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[Crossref] [PubMed]

Hale, G. M.

Hall, M. S.

M. S. Hall, F. Alisafaei, E. Ban, X. Feng, C. Y. Hui, V. B. Shenoy, and M. Wu, “Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs,” Proc. Natl. Acad. Sci. U.S.A. 113(49), 14043–14048 (2016).
[Crossref] [PubMed]

Han, Z.

Hawkes, J. B.

Head, D. A.

D. Mizuno, D. A. Head, F. C. MacKintosh, and C. F. Schmidt, “Active and Passive Microrheology in Equilibrium and Nonequilibrium Systems,” Macromolecules 41(19), 7194–7202 (2008).
[Crossref]

Huang, S. W.

Huang, Z.

Huber, R.

Hui, C. Y.

M. S. Hall, F. Alisafaei, E. Ban, X. Feng, C. Y. Hui, V. B. Shenoy, and M. Wu, “Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs,” Proc. Natl. Acad. Sci. U.S.A. 113(49), 14043–14048 (2016).
[Crossref] [PubMed]

Ilinskii, Y. A.

Y. A. Ilinskii, G. D. Meegan, E. A. Zabolotskaya, and S. Y. Emelianov, “Gas bubble and solid sphere motion in elastic media in response to acoustic radiation force,” J. Acoust. Soc. Am. 117(4 Pt 1), 2338–2346 (2005).
[Crossref] [PubMed]

Iyer, R. R.

N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
[Crossref] [PubMed]

N. Leartprapun, R. R. Iyer, and S. G. Adie, “Depth-resolved measurement of optical radiation-pressure forces with optical coherence tomography,” Opt. Express 26(3), 2410–2426 (2018).
[Crossref] [PubMed]

Izatt, J. A.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

Janmey, P.

D. E. Discher, P. Janmey, and Y. L. Wang, “Tissue cells feel and respond to the stiffness of their substrate,” Science 310(5751), 1139–1143 (2005).
[Crossref] [PubMed]

Johnston-Peck, A. C.

R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4 Pt 1), 040903 (2011).
[Crossref] [PubMed]

Jonás, A.

A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[Crossref] [PubMed]

Kamm, R. D.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S103–S112 (2007).
[Crossref]

Käs, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Kato, T.

A. Labernadie, T. Kato, A. Brugués, X. Serra-Picamal, S. Derzsi, E. Arwert, A. Weston, V. González-Tarragó, A. Elosegui-Artola, L. Albertazzi, J. Alcaraz, P. Roca-Cusachs, E. Sahai, and X. Trepat, “A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion,” Nat. Cell Biol. 19(3), 224–237 (2017).
[Crossref] [PubMed]

Keating, M.

M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
[Crossref] [PubMed]

Kennedy, B. F.

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

Kniazeva, E.

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration independent modulation of local micromechanics in a fibrin gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Kobler, J. B.

Konstantopoulos, K.

D. Wirtz, K. Konstantopoulos, and P. C. Searson, “The physics of cancer: the role of physical interactions and mechanical forces in metastasis,” Nat. Rev. Cancer 11(7), 512–522 (2011).
[Crossref] [PubMed]

Kotlarchyk, M. A.

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration independent modulation of local micromechanics in a fibrin gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Kozek, K. A.

R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4 Pt 1), 040903 (2011).
[Crossref] [PubMed]

Kurup, A.

M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
[Crossref] [PubMed]

Labernadie, A.

A. Labernadie, T. Kato, A. Brugués, X. Serra-Picamal, S. Derzsi, E. Arwert, A. Weston, V. González-Tarragó, A. Elosegui-Artola, L. Albertazzi, J. Alcaraz, P. Roca-Cusachs, E. Sahai, and X. Trepat, “A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion,” Nat. Cell Biol. 19(3), 224–237 (2017).
[Crossref] [PubMed]

Lang, M. J.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S103–S112 (2007).
[Crossref]

Lapierre-Landry, M.

M. Lapierre-Landry, A. Y. Gordon, J. S. Penn, and M. C. Skala, “In vivo photothermal optical coherence tomography of endogenous and exogenous contrast agents in the eye,” Sci. Rep. 7(1), 9228 (2017).
[Crossref] [PubMed]

M. Lapierre-Landry, J. M. Tucker-Schwartz, and M. C. Skala, “Depth-resolved analytical model and correction algorithm for photothermal optical coherence tomography,” Biomed. Opt. Express 7(7), 2607–2622 (2016).
[Crossref] [PubMed]

Larin, K. V.

Laurent, V.

Y. Abidine, V. Laurent, R. Michel, A. Duperray, L. I. Palade, and C. Verdier, “Physical properties of polyacrylamide gels probed by AFM and rheology,” EPL 109(3), 38003 (2015).
[Crossref]

Leartprapun, N.

N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
[Crossref] [PubMed]

N. Leartprapun, R. R. Iyer, and S. G. Adie, “Depth-resolved measurement of optical radiation-pressure forces with optical coherence tomography,” Opt. Express 26(3), 2410–2426 (2018).
[Crossref] [PubMed]

Lee, H.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S103–S112 (2007).
[Crossref]

Legant, W. R.

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref] [PubMed]

Levine, A. J.

M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
[Crossref] [PubMed]

Li, C.

Liang, X.

Liedtke, W.

F. Guilak, D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen, “Control of stem cell fate by physical interactions with the extracellular matrix,” Cell Stem Cell 5(1), 17–26 (2009).
[Crossref] [PubMed]

Liphardt, J. T.

E. Ban, J. M. Franklin, S. Nam, L. R. Smith, H. Wang, R. G. Wells, O. Chaudhuri, J. T. Liphardt, and V. B. Shenoy, “Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces,” Biophys. J. 114(2), 450–461 (2018).
[Crossref] [PubMed]

Liu, C. H.

MacDonald, M. P.

K. Dholakia, M. P. MacDonald, P. Zemánek, and T. Cizmár, “Cellular and colloidal separation using optical forces,” Methods Cell Biol. 82, 467–495 (2007).
[Crossref] [PubMed]

MacKintosh, F. C.

D. Mizuno, D. A. Head, F. C. MacKintosh, and C. F. Schmidt, “Active and Passive Microrheology in Equilibrium and Nonequilibrium Systems,” Macromolecules 41(19), 7194–7202 (2008).
[Crossref]

F. Gittes, B. Schnurr, P. D. Olmsted, F. C. MacKintosh, and C. F. Schmidt, “Microscopic Viscoelasticity: Shear Moduli of Soft Materials Determined from Thermal Fluctuations,” Phys. Rev. Lett. 79(17), 3286–3289 (1997).
[Crossref]

B. Schnurr, F. Gittes, F. C. MacKintosh, and C. F. Schmidt, “Determining Microscopic Viscoelasticity in Flexible and Semiflexible Polymer Netowrks from Thermal Fluctuations,” Macromolecules 30(25), 7781–7792 (1997).
[Crossref]

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Martin, K. E.

S. P. Carey, K. E. Martin, and C. A. Reinhart-King, “Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype,” Sci. Rep. 7(1), 42088 (2017).
[Crossref] [PubMed]

S. P. Carey, Z. E. Goldblatt, K. E. Martin, B. Romero, R. M. Williams, and C. A. Reinhart-King, “Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK,” Integr. Biol. 8(8), 821–835 (2016).
[Crossref] [PubMed]

Mas, J.

J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol. 10(4), 046006 (2013).
[Crossref] [PubMed]

Mason, T. G.

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
[Crossref] [PubMed]

Matsudaira, P.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S103–S112 (2007).
[Crossref]

Meegan, G. D.

Y. A. Ilinskii, G. D. Meegan, E. A. Zabolotskaya, and S. Y. Emelianov, “Gas bubble and solid sphere motion in elastic media in response to acoustic radiation force,” J. Acoust. Soc. Am. 117(4 Pt 1), 2338–2346 (2005).
[Crossref] [PubMed]

Michel, R.

Y. Abidine, V. Laurent, R. Michel, A. Duperray, L. I. Palade, and C. Verdier, “Physical properties of polyacrylamide gels probed by AFM and rheology,” EPL 109(3), 38003 (2015).
[Crossref]

Miller, J. S.

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref] [PubMed]

Mitchell, S. A.

M. W. Urban, I. Z. Nenadic, S. A. Mitchell, S. Chen, and J. F. Greenleaf, “Generalized response of a sphere embedded in a viscoelastic medium excited by an ultrasonic radiation force,” J. Acoust. Soc. Am. 130(3), 1133–1141 (2011).
[Crossref] [PubMed]

Mizuno, D.

D. Mizuno, D. A. Head, F. C. MacKintosh, and C. F. Schmidt, “Active and Passive Microrheology in Equilibrium and Nonequilibrium Systems,” Macromolecules 41(19), 7194–7202 (2008).
[Crossref]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Mujat, M.

Mulligan, J. A.

J. A. Mulligan, X. Feng, and S. G. Adie, “Quantitative reconstruction of time-varying 3D cell forces with traction force optical coherence microscopy,” Sci. Rep. 9(1), 4086 (2019).
[Crossref] [PubMed]

N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
[Crossref] [PubMed]

J. A. Mulligan, G. R. Untracht, S. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging Approaches for High-Resolution Imaging of Tissue Biomechanics With Optical Coherence Elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
[Crossref]

Nabi, G.

Nair, A.

Nam, S.

E. Ban, J. M. Franklin, S. Nam, L. R. Smith, H. Wang, R. G. Wells, O. Chaudhuri, J. T. Liphardt, and V. B. Shenoy, “Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces,” Biophys. J. 114(2), 450–461 (2018).
[Crossref] [PubMed]

Nenadic, I. Z.

M. W. Urban, I. Z. Nenadic, S. A. Mitchell, S. Chen, and J. F. Greenleaf, “Generalized response of a sphere embedded in a viscoelastic medium excited by an ultrasonic radiation force,” J. Acoust. Soc. Am. 130(3), 1133–1141 (2011).
[Crossref] [PubMed]

Nevozhay, D.

Oddershede, L. B.

J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol. 10(4), 046006 (2013).
[Crossref] [PubMed]

Oestreicher, H. L.

H. L. Oestreicher, “Field and Impedance of an Oscillating Sphere in a Viscoelastic Medium with an Application to Biophysics,” J. Acoust. Soc. Am. 23(6), 707–714 (1951).
[Crossref]

Oldenburg, A. L.

R. L. Blackmon, R. Sandhu, B. S. Chapman, P. Casbas-Hernandez, J. B. Tracy, M. A. Troester, and A. L. Oldenburg, “Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography,” Biophys. J. 110(8), 1858–1868 (2016).
[Crossref] [PubMed]

R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4 Pt 1), 040903 (2011).
[Crossref] [PubMed]

V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, and S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express 17(25), 23114–23122 (2009).
[Crossref] [PubMed]

Olmsted, P. D.

F. Gittes, B. Schnurr, P. D. Olmsted, F. C. MacKintosh, and C. F. Schmidt, “Microscopic Viscoelasticity: Shear Moduli of Soft Materials Determined from Thermal Fluctuations,” Phys. Rev. Lett. 79(17), 3286–3289 (1997).
[Crossref]

Ou-Yang, H. D.

Padgett, M. J.

R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[Crossref] [PubMed]

Palade, L. I.

Y. Abidine, V. Laurent, R. Michel, A. Duperray, L. I. Palade, and C. Verdier, “Physical properties of polyacrylamide gels probed by AFM and rheology,” EPL 109(3), 38003 (2015).
[Crossref]

Park, B.

Penn, J. S.

M. Lapierre-Landry, A. Y. Gordon, J. S. Penn, and M. C. Skala, “In vivo photothermal optical coherence tomography of endogenous and exogenous contrast agents in the eye,” Sci. Rep. 7(1), 9228 (2017).
[Crossref] [PubMed]

Pierce, M. C.

Putnam, A. J.

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration independent modulation of local micromechanics in a fibrin gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Querry, M. R.

Ralston, T. S.

Reihani, S. N. S.

J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol. 10(4), 046006 (2013).
[Crossref] [PubMed]

Reinhart-King, C. A.

S. P. Carey, K. E. Martin, and C. A. Reinhart-King, “Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype,” Sci. Rep. 7(1), 42088 (2017).
[Crossref] [PubMed]

S. P. Carey, Z. E. Goldblatt, K. E. Martin, B. Romero, R. M. Williams, and C. A. Reinhart-King, “Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK,” Integr. Biol. 8(8), 821–835 (2016).
[Crossref] [PubMed]

Richardson, A. C.

J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol. 10(4), 046006 (2013).
[Crossref] [PubMed]

Roca-Cusachs, P.

A. Labernadie, T. Kato, A. Brugués, X. Serra-Picamal, S. Derzsi, E. Arwert, A. Weston, V. González-Tarragó, A. Elosegui-Artola, L. Albertazzi, J. Alcaraz, P. Roca-Cusachs, E. Sahai, and X. Trepat, “A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion,” Nat. Cell Biol. 19(3), 224–237 (2017).
[Crossref] [PubMed]

Romero, B.

S. P. Carey, Z. E. Goldblatt, K. E. Martin, B. Romero, R. M. Williams, and C. A. Reinhart-King, “Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK,” Integr. Biol. 8(8), 821–835 (2016).
[Crossref] [PubMed]

Sahai, E.

A. Labernadie, T. Kato, A. Brugués, X. Serra-Picamal, S. Derzsi, E. Arwert, A. Weston, V. González-Tarragó, A. Elosegui-Artola, L. Albertazzi, J. Alcaraz, P. Roca-Cusachs, E. Sahai, and X. Trepat, “A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion,” Nat. Cell Biol. 19(3), 224–237 (2017).
[Crossref] [PubMed]

Sampson, D. D.

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref] [PubMed]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

Sandhu, R.

R. L. Blackmon, R. Sandhu, B. S. Chapman, P. Casbas-Hernandez, J. B. Tracy, M. A. Troester, and A. L. Oldenburg, “Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography,” Biophys. J. 110(8), 1858–1868 (2016).
[Crossref] [PubMed]

Schill, A.

Schmidt, C. F.

D. Mizuno, D. A. Head, F. C. MacKintosh, and C. F. Schmidt, “Active and Passive Microrheology in Equilibrium and Nonequilibrium Systems,” Macromolecules 41(19), 7194–7202 (2008).
[Crossref]

B. Schnurr, F. Gittes, F. C. MacKintosh, and C. F. Schmidt, “Determining Microscopic Viscoelasticity in Flexible and Semiflexible Polymer Netowrks from Thermal Fluctuations,” Macromolecules 30(25), 7781–7792 (1997).
[Crossref]

F. Gittes, B. Schnurr, P. D. Olmsted, F. C. MacKintosh, and C. F. Schmidt, “Microscopic Viscoelasticity: Shear Moduli of Soft Materials Determined from Thermal Fluctuations,” Phys. Rev. Lett. 79(17), 3286–3289 (1997).
[Crossref]

Schnurr, B.

F. Gittes, B. Schnurr, P. D. Olmsted, F. C. MacKintosh, and C. F. Schmidt, “Microscopic Viscoelasticity: Shear Moduli of Soft Materials Determined from Thermal Fluctuations,” Phys. Rev. Lett. 79(17), 3286–3289 (1997).
[Crossref]

B. Schnurr, F. Gittes, F. C. MacKintosh, and C. F. Schmidt, “Determining Microscopic Viscoelasticity in Flexible and Semiflexible Polymer Netowrks from Thermal Fluctuations,” Macromolecules 30(25), 7781–7792 (1997).
[Crossref]

Searson, P. C.

D. Wirtz, K. Konstantopoulos, and P. C. Searson, “The physics of cancer: the role of physical interactions and mechanical forces in metastasis,” Nat. Rev. Cancer 11(7), 512–522 (2011).
[Crossref] [PubMed]

Serra-Picamal, X.

A. Labernadie, T. Kato, A. Brugués, X. Serra-Picamal, S. Derzsi, E. Arwert, A. Weston, V. González-Tarragó, A. Elosegui-Artola, L. Albertazzi, J. Alcaraz, P. Roca-Cusachs, E. Sahai, and X. Trepat, “A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion,” Nat. Cell Biol. 19(3), 224–237 (2017).
[Crossref] [PubMed]

Shenoy, V. B.

E. Ban, J. M. Franklin, S. Nam, L. R. Smith, H. Wang, R. G. Wells, O. Chaudhuri, J. T. Liphardt, and V. B. Shenoy, “Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces,” Biophys. J. 114(2), 450–461 (2018).
[Crossref] [PubMed]

M. S. Hall, F. Alisafaei, E. Ban, X. Feng, C. Y. Hui, V. B. Shenoy, and M. Wu, “Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs,” Proc. Natl. Acad. Sci. U.S.A. 113(49), 14043–14048 (2016).
[Crossref] [PubMed]

Shreim, S. G.

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration independent modulation of local micromechanics in a fibrin gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Singh, M.

Singh, R.

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration independent modulation of local micromechanics in a fibrin gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Skala, M. C.

M. Lapierre-Landry, A. Y. Gordon, J. S. Penn, and M. C. Skala, “In vivo photothermal optical coherence tomography of endogenous and exogenous contrast agents in the eye,” Sci. Rep. 7(1), 9228 (2017).
[Crossref] [PubMed]

M. Lapierre-Landry, J. M. Tucker-Schwartz, and M. C. Skala, “Depth-resolved analytical model and correction algorithm for photothermal optical coherence tomography,” Biomed. Opt. Express 7(7), 2607–2622 (2016).
[Crossref] [PubMed]

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

Smith, L. R.

E. Ban, J. M. Franklin, S. Nam, L. R. Smith, H. Wang, R. G. Wells, O. Chaudhuri, J. T. Liphardt, and V. B. Shenoy, “Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces,” Biophys. J. 114(2), 450–461 (2018).
[Crossref] [PubMed]

Sokolov, K. V.

Stellwagen, N. C.

N. C. Stellwagen, “Apparent pore size of polyacrylamide gels: comparison of gels cast and run in Tris-acetate-EDTA and Tris-borate-EDTA buffers,” Electrophoresis 19(10), 1542–1547 (1998).
[Crossref] [PubMed]

Stevenson, D. J.

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[Crossref] [PubMed]

Tam, B. K.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S103–S112 (2007).
[Crossref]

Tarsa, P. B.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S103–S112 (2007).
[Crossref]

Tearney, G.

Tracy, J. B.

R. L. Blackmon, R. Sandhu, B. S. Chapman, P. Casbas-Hernandez, J. B. Tracy, M. A. Troester, and A. L. Oldenburg, “Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography,” Biophys. J. 110(8), 1858–1868 (2016).
[Crossref] [PubMed]

R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4 Pt 1), 040903 (2011).
[Crossref] [PubMed]

Trepat, X.

A. Labernadie, T. Kato, A. Brugués, X. Serra-Picamal, S. Derzsi, E. Arwert, A. Weston, V. González-Tarragó, A. Elosegui-Artola, L. Albertazzi, J. Alcaraz, P. Roca-Cusachs, E. Sahai, and X. Trepat, “A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion,” Nat. Cell Biol. 19(3), 224–237 (2017).
[Crossref] [PubMed]

Troester, M. A.

R. L. Blackmon, R. Sandhu, B. S. Chapman, P. Casbas-Hernandez, J. B. Tracy, M. A. Troester, and A. L. Oldenburg, “Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography,” Biophys. J. 110(8), 1858–1868 (2016).
[Crossref] [PubMed]

Tse, J. R.

J. R. Tse and A. J. Engler, “Preparation of hydrogel substrates with tunable mechanical properties,” Curr. Protoc. Cell Biol. 10, 16 (2010).
[PubMed]

Tucker-Schwartz, J. M.

Untracht, G. R.

N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
[Crossref] [PubMed]

J. A. Mulligan, G. R. Untracht, S. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging Approaches for High-Resolution Imaging of Tissue Biomechanics With Optical Coherence Elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
[Crossref]

Urban, M. W.

M. W. Urban, I. Z. Nenadic, S. A. Mitchell, S. Chen, and J. F. Greenleaf, “Generalized response of a sphere embedded in a viscoelastic medium excited by an ultrasonic radiation force,” J. Acoust. Soc. Am. 130(3), 1133–1141 (2011).
[Crossref] [PubMed]

Valdevit, L.

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration independent modulation of local micromechanics in a fibrin gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Verdier, C.

Y. Abidine, V. Laurent, R. Michel, A. Duperray, L. I. Palade, and C. Verdier, “Physical properties of polyacrylamide gels probed by AFM and rheology,” EPL 109(3), 38003 (2015).
[Crossref]

Wang, H.

E. Ban, J. M. Franklin, S. Nam, L. R. Smith, H. Wang, R. G. Wells, O. Chaudhuri, J. T. Liphardt, and V. B. Shenoy, “Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces,” Biophys. J. 114(2), 450–461 (2018).
[Crossref] [PubMed]

Wang, J.

Wang, R. K.

Wang, Y. L.

D. E. Discher, P. Janmey, and Y. L. Wang, “Tissue cells feel and respond to the stiffness of their substrate,” Science 310(5751), 1139–1143 (2005).
[Crossref] [PubMed]

Wax, A.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

Wei, M. T.

Weitz, D. A.

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
[Crossref] [PubMed]

Wells, R. G.

E. Ban, J. M. Franklin, S. Nam, L. R. Smith, H. Wang, R. G. Wells, O. Chaudhuri, J. T. Liphardt, and V. B. Shenoy, “Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces,” Biophys. J. 114(2), 450–461 (2018).
[Crossref] [PubMed]

Weston, A.

A. Labernadie, T. Kato, A. Brugués, X. Serra-Picamal, S. Derzsi, E. Arwert, A. Weston, V. González-Tarragó, A. Elosegui-Artola, L. Albertazzi, J. Alcaraz, P. Roca-Cusachs, E. Sahai, and X. Trepat, “A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion,” Nat. Cell Biol. 19(3), 224–237 (2017).
[Crossref] [PubMed]

Wijesinghe, P.

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

Williams, R. M.

S. P. Carey, Z. E. Goldblatt, K. E. Martin, B. Romero, R. M. Williams, and C. A. Reinhart-King, “Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK,” Integr. Biol. 8(8), 821–835 (2016).
[Crossref] [PubMed]

Wirtz, D.

D. Wirtz, K. Konstantopoulos, and P. C. Searson, “The physics of cancer: the role of physical interactions and mechanical forces in metastasis,” Nat. Rev. Cancer 11(7), 512–522 (2011).
[Crossref] [PubMed]

Wu, M.

M. S. Hall, F. Alisafaei, E. Ban, X. Feng, C. Y. Hui, V. B. Shenoy, and M. Wu, “Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs,” Proc. Natl. Acad. Sci. U.S.A. 113(49), 14043–14048 (2016).
[Crossref] [PubMed]

Yalcin, H. C.

Yu, X.

J. Eyckmans, T. Boudou, X. Yu, and C. S. Chen, “A hitchhiker’s guide to mechanobiology,” Dev. Cell 21(1), 35–47 (2011).
[Crossref] [PubMed]

Yun, S. H.

Zabolotskaya, E. A.

Y. A. Ilinskii, G. D. Meegan, E. A. Zabolotskaya, and S. Y. Emelianov, “Gas bubble and solid sphere motion in elastic media in response to acoustic radiation force,” J. Acoust. Soc. Am. 117(4 Pt 1), 2338–2346 (2005).
[Crossref] [PubMed]

Zaorski, A.

Zemánek, P.

A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[Crossref] [PubMed]

K. Dholakia, M. P. MacDonald, P. Zemánek, and T. Cizmár, “Cellular and colloidal separation using optical forces,” Methods Cell Biol. 82, 467–495 (2007).
[Crossref] [PubMed]

Zhang, F.

Acta Biomater. (1)

M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (3)

Biophys. J. (3)

R. L. Blackmon, R. Sandhu, B. S. Chapman, P. Casbas-Hernandez, J. B. Tracy, M. A. Troester, and A. L. Oldenburg, “Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography,” Biophys. J. 110(8), 1858–1868 (2016).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

E. Ban, J. M. Franklin, S. Nam, L. R. Smith, H. Wang, R. G. Wells, O. Chaudhuri, J. T. Liphardt, and V. B. Shenoy, “Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces,” Biophys. J. 114(2), 450–461 (2018).
[Crossref] [PubMed]

Cell Stem Cell (1)

F. Guilak, D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen, “Control of stem cell fate by physical interactions with the extracellular matrix,” Cell Stem Cell 5(1), 17–26 (2009).
[Crossref] [PubMed]

Curr. Protoc. Cell Biol. (1)

J. R. Tse and A. J. Engler, “Preparation of hydrogel substrates with tunable mechanical properties,” Curr. Protoc. Cell Biol. 10, 16 (2010).
[PubMed]

Dev. Cell (1)

J. Eyckmans, T. Boudou, X. Yu, and C. S. Chen, “A hitchhiker’s guide to mechanobiology,” Dev. Cell 21(1), 35–47 (2011).
[Crossref] [PubMed]

Electrophoresis (2)

A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[Crossref] [PubMed]

N. C. Stellwagen, “Apparent pore size of polyacrylamide gels: comparison of gels cast and run in Tris-acetate-EDTA and Tris-borate-EDTA buffers,” Electrophoresis 19(10), 1542–1547 (1998).
[Crossref] [PubMed]

EPL (1)

Y. Abidine, V. Laurent, R. Michel, A. Duperray, L. I. Palade, and C. Verdier, “Physical properties of polyacrylamide gels probed by AFM and rheology,” EPL 109(3), 38003 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Mulligan, G. R. Untracht, S. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging Approaches for High-Resolution Imaging of Tissue Biomechanics With Optical Coherence Elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
[Crossref]

Integr. Biol. (1)

S. P. Carey, Z. E. Goldblatt, K. E. Martin, B. Romero, R. M. Williams, and C. A. Reinhart-King, “Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK,” Integr. Biol. 8(8), 821–835 (2016).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (3)

Y. A. Ilinskii, G. D. Meegan, E. A. Zabolotskaya, and S. Y. Emelianov, “Gas bubble and solid sphere motion in elastic media in response to acoustic radiation force,” J. Acoust. Soc. Am. 117(4 Pt 1), 2338–2346 (2005).
[Crossref] [PubMed]

M. W. Urban, I. Z. Nenadic, S. A. Mitchell, S. Chen, and J. F. Greenleaf, “Generalized response of a sphere embedded in a viscoelastic medium excited by an ultrasonic radiation force,” J. Acoust. Soc. Am. 130(3), 1133–1141 (2011).
[Crossref] [PubMed]

H. L. Oestreicher, “Field and Impedance of an Oscillating Sphere in a Viscoelastic Medium with an Application to Biophysics,” J. Acoust. Soc. Am. 23(6), 707–714 (1951).
[Crossref]

J. Biomed. Opt. (1)

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S103–S112 (2007).
[Crossref]

J. Opt. Soc. Am. (1)

J. Rheol. (N.Y.N.Y.) (1)

T. B. Goudoulas and N. Germann, “Viscoelastic properties of polyacrylamide solutions from creep ringing data,” J. Rheol. (N.Y.N.Y.) 60(3), 491–502 (2016).
[Crossref]

Macromolecules (2)

B. Schnurr, F. Gittes, F. C. MacKintosh, and C. F. Schmidt, “Determining Microscopic Viscoelasticity in Flexible and Semiflexible Polymer Netowrks from Thermal Fluctuations,” Macromolecules 30(25), 7781–7792 (1997).
[Crossref]

D. Mizuno, D. A. Head, F. C. MacKintosh, and C. F. Schmidt, “Active and Passive Microrheology in Equilibrium and Nonequilibrium Systems,” Macromolecules 41(19), 7194–7202 (2008).
[Crossref]

Methods Cell Biol. (1)

K. Dholakia, M. P. MacDonald, P. Zemánek, and T. Cizmár, “Cellular and colloidal separation using optical forces,” Methods Cell Biol. 82, 467–495 (2007).
[Crossref] [PubMed]

Nano Lett. (1)

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

Nat. Cell Biol. (1)

A. Labernadie, T. Kato, A. Brugués, X. Serra-Picamal, S. Derzsi, E. Arwert, A. Weston, V. González-Tarragó, A. Elosegui-Artola, L. Albertazzi, J. Alcaraz, P. Roca-Cusachs, E. Sahai, and X. Trepat, “A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion,” Nat. Cell Biol. 19(3), 224–237 (2017).
[Crossref] [PubMed]

Nat. Commun. (1)

N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
[Crossref] [PubMed]

Nat. Methods (1)

W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices,” Nat. Methods 7(12), 969–971 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

Nat. Rev. Cancer (1)

D. Wirtz, K. Konstantopoulos, and P. C. Searson, “The physics of cancer: the role of physical interactions and mechanical forces in metastasis,” Nat. Rev. Cancer 11(7), 512–522 (2011).
[Crossref] [PubMed]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Phys. Biol. (1)

J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol. 10(4), 046006 (2013).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4 Pt 1), 040903 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
[Crossref] [PubMed]

F. Gittes, B. Schnurr, P. D. Olmsted, F. C. MacKintosh, and C. F. Schmidt, “Microscopic Viscoelasticity: Shear Moduli of Soft Materials Determined from Thermal Fluctuations,” Phys. Rev. Lett. 79(17), 3286–3289 (1997).
[Crossref]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

PLoS One (1)

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration independent modulation of local micromechanics in a fibrin gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. S. Hall, F. Alisafaei, E. Ban, X. Feng, C. Y. Hui, V. B. Shenoy, and M. Wu, “Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs,” Proc. Natl. Acad. Sci. U.S.A. 113(49), 14043–14048 (2016).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[Crossref] [PubMed]

Sci. Rep. (3)

M. Lapierre-Landry, A. Y. Gordon, J. S. Penn, and M. C. Skala, “In vivo photothermal optical coherence tomography of endogenous and exogenous contrast agents in the eye,” Sci. Rep. 7(1), 9228 (2017).
[Crossref] [PubMed]

S. P. Carey, K. E. Martin, and C. A. Reinhart-King, “Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype,” Sci. Rep. 7(1), 42088 (2017).
[Crossref] [PubMed]

J. A. Mulligan, X. Feng, and S. G. Adie, “Quantitative reconstruction of time-varying 3D cell forces with traction force optical coherence microscopy,” Sci. Rep. 9(1), 4086 (2019).
[Crossref] [PubMed]

Science (1)

D. E. Discher, P. Janmey, and Y. L. Wang, “Tissue cells feel and respond to the stiffness of their substrate,” Science 310(5751), 1139–1143 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup and sample configuration. (a) The optical setup consisted of an SD-OCT system and a PF beam combined in free space with the OCT sample arm beam such that the foci of both beams were co-aligned in 3D space. Current-control input from a function generator modulated the power of the PF beam. SLD: superluminencent diode, LD: laser diode, PR: photoreceiver, LP: long-pass dichroic filter, BCM: beam control module, XY: two-axis galvanometer, OBJ: objective lens. (b) Profile of Frad(z) as a function of depth, z, w.r.t. the focal plane of the PF beam at 78-mW PF beam power. (c) Peak Frad as a function of PF beam power, P, at the sample. Linear best-fit line is shown. In (b) and (c), Frad(z) was measured on 1.7-µm polystyrene beads in 10% glycerol-water mixture (refractive index 1.3469).
Fig. 2
Fig. 2 Response of 1.7-µm bead induced by 20-Hz harmonic modulation of Frad. (a) M-mode OCT image. Scale bar: 200 µm (vertical) and 1 s (horizontal). (b) Raw φOCT at pixel depths corresponding to the surface of the petri dish bottom and the 1.7-µm bead (top), and the resulting ΔOPL response at the bead depth after the phase registration (bottom), as a function of t. (c) Frequency-domain representation of the amplitude of ΔOPL. Green dashed line indicates the 20-Hz modulation frequency. Black dashed line indicates the noise amplitude, δA, at 20 Hz. Inset shows zoom-in view of the time-domain ΔOPL response in (b). (d) Amplitude (blue) and phase shift (red) w.r.t. the PF drive waveform, (t), of filtered ΔOPL as a function of t. Black dashed lines and gray dotted lines indicate the median values and standard deviations over the time, respectively. Inset graphically illustrates amplitude (blue arrow) and phase shift (red arrow), where a delay in the bead response corresponds to a negative-valued phase shift.
Fig. 3
Fig. 3 Noise analysis and exclusion criteria for quantitative PF-OCE. (a) Data processing flowchart with exclusion criteria at each step. (b) Noise amplitude, δA, in measured ΔOPL at all pixel depths in a PAM gel sample as a function of OCT SNR (in dB, plotted on a logarithmic scale). Black dotted curve indicates theoretical shot-noise limited noise floor [36]. (c) Oscillation amplitude-to-noise ratio, A/δA, as a function of OCT SNR. (d) Measured A as a function of metric for amplitude instability in time domain, σA/A. (e) Measured φ as a function of metric for phase instability in time domain, σφ. In (d) and (e), data points in light blue correspond to those that were excluded based on the criteria in (b) and (c). In (b)–(e), red dashed lines indicate the exclusion cutoffs.
Fig. 4
Fig. 4 Depth-dependent photothermal response of 4T1C gel. (a) M-mode OCT image with photothermal response data region highlighted in blue. (b) and (c) APT and φPT as a function of z, respectively, where z is defined w.r.t. to the focal plane of the OCT beam. Blue markers are data points from the photothermal response data region. Black solid lines are the best-fit curves obtained from fitting the data to the theoretical curves. Red dotted lines indicate ± 1 median absolute difference between the best-fit curves and the data. In (a)–(c), light blue indicates pixel depths that were excluded from analysis based on the first two exclusion criteria. Dark blue indicates pixel depths that were used for the curve fit to produce APT(z) and φPT(z).
Fig. 5
Fig. 5 Quantitative PF-OCE in PAM gels and comparison to shear rheometry. (a) Box plots of bead mechanical response amplitude, Amech, and phase delay, ‒φmech, measured by PF-OCE in different PAM gel concentrations (N = 7, 9, and 4 beads for 3T1C, 3T2C–5T2C, and 6T1C, respectively). (b) Box plots of shear storage, G, and loss, G, moduli obtained from PF-OCE measurements of Amech and φmech via GSER [34,35]. In (a) and (b), boxes indicate interquartile range, with median indicated by horizontal line inside. Whiskers represent approximately ± 3 standard deviations (if data were normally distributed); data points outside of this range are considered outliers. (c) and (d) Comparison of G and G obtained from quantitative PF-OCE versus parallel-plate shear rheometry at 20 Hz. Data points represent median of PF-OCE measurements against mean (N = 5 trials per PAM gel concentration) of shear rheometry measurements. Vertical and horizontal error bars represent median absolute difference of PF-OCE measurements and standard deviation of shear rheometry measurements, respectively. R2 and p denote correlation coefficient and p-value of Pearson’s linear correlation test, respectively.

Tables (1)

Tables Icon

Table 1 List of polymer concentrations and bulk mechanical properties of PAM gels. Polymer concentrations are given in volume percent (% v/v); remaining percentage corresponds to deionized water. Uncertainties reported for shear moduli represent standard deviations from 5 measurements (see Section 2.6 for details).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S ˜ ( z,t )=| S ˜ ( z,t ) | e i φ OCT ( z,t ) ,
ΔOPL( z,t )= λ 0 4πn ×[ S ˜ ( z,t ) S ˜ ( z ref ,t ) ]= λ 0 4πn [ φ OCT ( z,t ) φ OCT ( z ref ,t ) ],
ΔOPL( z,t )=A( z ) e iφ( z ) h ˜ ( t ),
A( z )=med { | ΔOPL( z,t ) | } t ,
φ( z )=med { [ ΔOPL( z,t ) h ˜ ( t ) ] } t ,
Δ OPL mech ( z,t )=Δ OPL tot ( z,t ) A PT ( z ) e i φ PT ( z ) h ˜ ( t ) Δ OPL PT ( z,t ) ,
Δ OPL mech ( z,t )= A mech ( z ) e i φ mech ( z ) h ˜ ( t ),
G = F rad ( z b ) 6πa A mech ( z b ) e i φ mech ( z b ) ,

Metrics