Abstract

In this paper we demonstrate fast-response Pancharatnam-Berry (PB) phase optical elements (PBOEs) based on polymer-stabilized liquid crystal (PSLC). First, a non-interferometric photo-alignment technique is employed to generate PB patterns in a dye-doped liquid crystal by green laser light. Then the samples are exposed to UV light to form polymer networks. Due to the greatly increased elastic constant in PSLC, all PBOEs can achieve submillisecond response time, while maintaining high diffraction efficiency (>90%). Furthermore, a varifocus PB lens (PBL) is implemented based on two identical PB lens elements and its application in fatigue free augmented-reality (AR) displays is verified. The fast response PBOEs based on PSLC hold great potential for various display and photonics applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fast switching ferroelectric liquid crystal Pancharatnam-Berry lens

Y. Ma, Alwin M. W. Tam, X. T. Gan, L. Y. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, and J. L. Zhao
Opt. Express 27(7) 10079-10086 (2019)

Pancharatnam–Berry optical elements for head-up and near-eye displays [Invited]

Tao Zhan, Yun-Han Lee, Guanjun Tan, Jianghao Xiong, Kun Yin, Fangwang Gou, Junyu Zou, Nannan Zhang, Dongfeng Zhao, Jilin Yang, Sheng Liu, and Shin-Tson Wu
J. Opt. Soc. Am. B 36(5) D52-D65 (2019)

Fabrication of Pancharatnam-Berry phase optical elements with highly stable polarization holography

Tao Zhan, Jianghao Xiong, Yun-Han Lee, Ran Chen, and Shin-Tson Wu
Opt. Express 27(3) 2632-2642 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Pancharatnam, “Generalized theory of interference and its applications,” Proc. Indian Acad. Sci. Sect. A Phys. Sci. 44(5), 247–262 (1956).
    [Crossref]
  2. L. Marruccia, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
    [Crossref]
  3. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
    [Crossref] [PubMed]
  4. R. K. Komanduri and M. J. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95(9), 091106 (2009).
    [Crossref]
  5. J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings,” Appl. Opt. 50(17), 2636–2639 (2011).
    [Crossref] [PubMed]
  6. T. Zhan, Y. H. Lee, and S. T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses,” Opt. Express 26(4), 4863–4872 (2018).
    [Crossref] [PubMed]
  7. G. Tan, T. Zhan, Y. H. Lee, J. Xiong, and S. T. Wu, “Polarization-multiplexed multiplane display,” Opt. Lett. 43(22), 5651–5654 (2018).
    [Crossref] [PubMed]
  8. Z. He, Y. H. Lee, R. Chen, D. Chanda, and S. T. Wu, “Switchable Pancharatnam-Berry microlens array with nano-imprinted liquid crystal alignment,” Opt. Lett. 43(20), 5062–5065 (2018).
    [Crossref] [PubMed]
  9. Y. H. Lee, G. Tan, K. Yin, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26(2), 64–70 (2018).
    [Crossref]
  10. T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
    [Crossref] [PubMed]
  11. H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S. T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
    [Crossref] [PubMed]
  12. Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
    [Crossref]
  13. P. Chen, Y. Q. Lu, and W. Hu, “Beam shaping via photopatterned liquid crystals,” Liq. Cryst. 43(13–15), 2051–2061 (2016).
    [Crossref]
  14. M. J. Escuti, C. Oh, C. Sánchez, C. W. M. Bastiaansen, and D. J. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006).
    [Crossref]
  15. Y. Li, J. Kim, and M. J. Escuti, “Orbital angular momentum generation and mode transformation with high efficiency using forked polarization gratings,” Appl. Opt. 51(34), 8236–8245 (2012).
    [Crossref] [PubMed]
  16. X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39(35), 6545–6555 (2000).
    [Crossref] [PubMed]
  17. L. Li, C. Liu, and Q. H. Wang, “Optical switch based on tunable aperture,” Opt. Lett. 37(16), 3306–3308 (2012).
    [Crossref] [PubMed]
  18. J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
    [Crossref] [PubMed]
  19. G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
    [Crossref]
  20. Y. H. Lee, T. Zhan, and S. T. Wu, “Enhancing the resolution of a near-eye display with a Pancharatnam-Berry phase deflector,” Opt. Lett. 42(22), 4732–4735 (2017).
    [Crossref] [PubMed]
  21. W. Duan, P. Chen, B. Y. Wei, S. J. Ge, X. Liang, W. Hu, and Y. Q. Lu, “Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating,” Opt. Mater. Express 6(2), 597–602 (2016).
    [Crossref]
  22. Y. Ma, A. M. W. Tam, X. T. Gan, L. Y. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, and J. L. Zhao, “Fast switching ferroelectric liquid crystal Pancharatnam-Berry lens,” Opt. Express 27(7), 10079–10086 (2019).
    [Crossref] [PubMed]
  23. Y. Li, Y. Liu, S. Li, P. Zhou, T. Zhan, Q. Chen, Y. Su, and S. T. Wu, “Single-exposure fabrication of tunable Pancharatnam-Berry devices using a dye-doped liquid crystal,” Opt. Express 27(6), 9054–9060 (2019).
    [Crossref] [PubMed]
  24. S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
    [Crossref]
  25. W. Ruan, X. Wang, Y. Lian, Y. Huang, and A. Niu, “Superabsorbent hydrogel of acrylic acid/potassium acrylate copolymers by ultraviolet photopolymerization: Synthesis and properties,” J. Appl. Polym. Sci. 101(2), 1181–1187 (2006).
    [Crossref]
  26. T. Zhan, Y. H. Lee, G. Tan, J. Xiong, K. Yin, F. Gou, J. Zou, N. Zhang, D. Zhao, J. Yang, S. Liu, and S. T. Wu, “Pancharatnam-Berry optical elements for head-up and near-eye Displays,” J. Opt. Soc. Am. B 36(5), D52–D65 (2019).
    [Crossref]
  27. H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
    [Crossref]
  28. H. Ren and S. T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys. 92(2), 797–800 (2002).
    [Crossref]
  29. I. Dierking, “Polymer network–stabilized liquid crystals,” Adv. Mater. 12(3), 167–181 (2000).
    [Crossref]
  30. J. Yan, Y. Chen, S. T. Wu, S. H. Liu, K. L. Cheng, and J. W. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” J. Appl. Phys. 111(6), 063103 (2012).
    [Crossref]
  31. X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
    [Crossref]

2019 (3)

2018 (4)

2017 (2)

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Y. H. Lee, T. Zhan, and S. T. Wu, “Enhancing the resolution of a near-eye display with a Pancharatnam-Berry phase deflector,” Opt. Lett. 42(22), 4732–4735 (2017).
[Crossref] [PubMed]

2016 (4)

W. Duan, P. Chen, B. Y. Wei, S. J. Ge, X. Liang, W. Hu, and Y. Q. Lu, “Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating,” Opt. Mater. Express 6(2), 597–602 (2016).
[Crossref]

H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S. T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
[Crossref] [PubMed]

P. Chen, Y. Q. Lu, and W. Hu, “Beam shaping via photopatterned liquid crystals,” Liq. Cryst. 43(13–15), 2051–2061 (2016).
[Crossref]

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

2014 (1)

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

2012 (3)

2011 (2)

2009 (2)

R. K. Komanduri and M. J. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95(9), 091106 (2009).
[Crossref]

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

2008 (1)

2006 (3)

W. Ruan, X. Wang, Y. Lian, Y. Huang, and A. Niu, “Superabsorbent hydrogel of acrylic acid/potassium acrylate copolymers by ultraviolet photopolymerization: Synthesis and properties,” J. Appl. Polym. Sci. 101(2), 1181–1187 (2006).
[Crossref]

L. Marruccia, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

M. J. Escuti, C. Oh, C. Sánchez, C. W. M. Bastiaansen, and D. J. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006).
[Crossref]

2005 (1)

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

2002 (1)

H. Ren and S. T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys. 92(2), 797–800 (2002).
[Crossref]

2000 (2)

1995 (1)

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[Crossref] [PubMed]

1956 (1)

S. Pancharatnam, “Generalized theory of interference and its applications,” Proc. Indian Acad. Sci. Sect. A Phys. Sci. 44(5), 247–262 (1956).
[Crossref]

Bartolino, R.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Bastiaansen, C. W. M.

M. J. Escuti, C. Oh, C. Sánchez, C. W. M. Bastiaansen, and D. J. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006).
[Crossref]

Broer, D. J.

M. J. Escuti, C. Oh, C. Sánchez, C. W. M. Bastiaansen, and D. J. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006).
[Crossref]

Carbone, G.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Chanda, D.

Chen, H.

Chen, P.

Chen, Q.

Chen, R.

Chen, Y.

J. Yan, Y. Chen, S. T. Wu, S. H. Liu, K. L. Cheng, and J. W. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” J. Appl. Phys. 111(6), 063103 (2012).
[Crossref]

Cheng, K. L.

J. Yan, Y. Chen, S. T. Wu, S. H. Liu, K. L. Cheng, and J. W. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” J. Appl. Phys. 111(6), 063103 (2012).
[Crossref]

Chigrinov, V. G.

De Sio, L.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Dierking, I.

I. Dierking, “Polymer network–stabilized liquid crystals,” Adv. Mater. 12(3), 167–181 (2000).
[Crossref]

Duan, W.

Elston, S. J.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Escuti, M. J.

Fan, Y. H.

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Ferjani, S.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Gan, X. T.

Gauza, S.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Ge, S. J.

Gou, F.

T. Zhan, Y. H. Lee, G. Tan, J. Xiong, K. Yin, F. Gou, J. Zou, N. Zhang, D. Zhao, J. Yang, S. Liu, and S. T. Wu, “Pancharatnam-Berry optical elements for head-up and near-eye Displays,” J. Opt. Soc. Am. B 36(5), D52–D65 (2019).
[Crossref]

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

He, Z.

Hu, W.

Hu, X.

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

Hua, H.

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

Huang, S.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Huang, Y.

W. Ruan, X. Wang, Y. Lian, Y. Huang, and A. Niu, “Superabsorbent hydrogel of acrylic acid/potassium acrylate copolymers by ultraviolet photopolymerization: Synthesis and properties,” J. Appl. Polym. Sci. 101(2), 1181–1187 (2006).
[Crossref]

Ikeda, T.

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[Crossref] [PubMed]

Kim, J.

Komanduri, R. K.

R. K. Komanduri and M. J. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95(9), 091106 (2009).
[Crossref]

Kwok, H. S.

Lee, Y. H.

Li, L.

Li, S.

Li, X.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Li, Y.

Lian, Y.

W. Ruan, X. Wang, Y. Lian, Y. Huang, and A. Niu, “Superabsorbent hydrogel of acrylic acid/potassium acrylate copolymers by ultraviolet photopolymerization: Synthesis and properties,” J. Appl. Polym. Sci. 101(2), 1181–1187 (2006).
[Crossref]

Liang, X.

Lin, Y. H.

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Liu, C.

Liu, G.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Liu, S.

T. Zhan, Y. H. Lee, G. Tan, J. Xiong, K. Yin, F. Gou, J. Zou, N. Zhang, D. Zhao, J. Yang, S. Liu, and S. T. Wu, “Pancharatnam-Berry optical elements for head-up and near-eye Displays,” J. Opt. Soc. Am. B 36(5), D52–D65 (2019).
[Crossref]

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Liu, S. H.

J. Yan, Y. Chen, S. T. Wu, S. H. Liu, K. L. Cheng, and J. W. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” J. Appl. Phys. 111(6), 063103 (2012).
[Crossref]

Liu, Y.

Lu, W.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Lu, Y. Q.

Ma, Y.

Maker, P.

Manzo, C.

L. Marruccia, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

Marruccia, L.

L. Marruccia, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

Muller, R.

Niu, A.

W. Ruan, X. Wang, Y. Lian, Y. Huang, and A. Niu, “Superabsorbent hydrogel of acrylic acid/potassium acrylate copolymers by ultraviolet photopolymerization: Synthesis and properties,” J. Appl. Polym. Sci. 101(2), 1181–1187 (2006).
[Crossref]

Oh, C.

Pancharatnam, S.

S. Pancharatnam, “Generalized theory of interference and its applications,” Proc. Indian Acad. Sci. Sect. A Phys. Sci. 44(5), 247–262 (1956).
[Crossref]

Paparo, D.

L. Marruccia, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

Peng, F.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Psaltis, D.

Raynes, P.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Ren, H.

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

H. Ren and S. T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys. 92(2), 797–800 (2002).
[Crossref]

Rong, N.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Ruan, W.

W. Ruan, X. Wang, Y. Lian, Y. Huang, and A. Niu, “Superabsorbent hydrogel of acrylic acid/potassium acrylate copolymers by ultraviolet photopolymerization: Synthesis and properties,” J. Appl. Polym. Sci. 101(2), 1181–1187 (2006).
[Crossref]

Salter, P.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Sánchez, C.

M. J. Escuti, C. Oh, C. Sánchez, C. W. M. Bastiaansen, and D. J. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006).
[Crossref]

Serati, S.

Shi, L. Y.

Shiu, J. W.

J. Yan, Y. Chen, S. T. Wu, S. H. Liu, K. L. Cheng, and J. W. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” J. Appl. Phys. 111(6), 063103 (2012).
[Crossref]

Srivastava, A. K.

Strangi, G.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Su, Y.

Y. Li, Y. Liu, S. Li, P. Zhou, T. Zhan, Q. Chen, Y. Su, and S. T. Wu, “Single-exposure fabrication of tunable Pancharatnam-Berry devices using a dye-doped liquid crystal,” Opt. Express 27(6), 9054–9060 (2019).
[Crossref] [PubMed]

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Tabiryan, N. V.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S. T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
[Crossref] [PubMed]

Tam, A. M. W.

Tan, G.

T. Zhan, Y. H. Lee, G. Tan, J. Xiong, K. Yin, F. Gou, J. Zou, N. Zhang, D. Zhao, J. Yang, S. Liu, and S. T. Wu, “Pancharatnam-Berry optical elements for head-up and near-eye Displays,” J. Opt. Soc. Am. B 36(5), D52–D65 (2019).
[Crossref]

G. Tan, T. Zhan, Y. H. Lee, J. Xiong, and S. T. Wu, “Polarization-multiplexed multiplane display,” Opt. Lett. 43(22), 5651–5654 (2018).
[Crossref] [PubMed]

Y. H. Lee, G. Tan, K. Yin, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26(2), 64–70 (2018).
[Crossref]

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Tsutsumi, O.

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[Crossref] [PubMed]

Umeton, C.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Wang, Q. H.

Wang, X.

W. Ruan, X. Wang, Y. Lian, Y. Huang, and A. Niu, “Superabsorbent hydrogel of acrylic acid/potassium acrylate copolymers by ultraviolet photopolymerization: Synthesis and properties,” J. Appl. Polym. Sci. 101(2), 1181–1187 (2006).
[Crossref]

X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39(35), 6545–6555 (2000).
[Crossref] [PubMed]

Wei, B. Y.

Weng, Y.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S. T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
[Crossref] [PubMed]

Wilson, D.

Wu, S. T.

Y. Li, Y. Liu, S. Li, P. Zhou, T. Zhan, Q. Chen, Y. Su, and S. T. Wu, “Single-exposure fabrication of tunable Pancharatnam-Berry devices using a dye-doped liquid crystal,” Opt. Express 27(6), 9054–9060 (2019).
[Crossref] [PubMed]

T. Zhan, Y. H. Lee, G. Tan, J. Xiong, K. Yin, F. Gou, J. Zou, N. Zhang, D. Zhao, J. Yang, S. Liu, and S. T. Wu, “Pancharatnam-Berry optical elements for head-up and near-eye Displays,” J. Opt. Soc. Am. B 36(5), D52–D65 (2019).
[Crossref]

Z. He, Y. H. Lee, R. Chen, D. Chanda, and S. T. Wu, “Switchable Pancharatnam-Berry microlens array with nano-imprinted liquid crystal alignment,” Opt. Lett. 43(20), 5062–5065 (2018).
[Crossref] [PubMed]

G. Tan, T. Zhan, Y. H. Lee, J. Xiong, and S. T. Wu, “Polarization-multiplexed multiplane display,” Opt. Lett. 43(22), 5651–5654 (2018).
[Crossref] [PubMed]

T. Zhan, Y. H. Lee, and S. T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses,” Opt. Express 26(4), 4863–4872 (2018).
[Crossref] [PubMed]

Y. H. Lee, G. Tan, K. Yin, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26(2), 64–70 (2018).
[Crossref]

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Y. H. Lee, T. Zhan, and S. T. Wu, “Enhancing the resolution of a near-eye display with a Pancharatnam-Berry phase deflector,” Opt. Lett. 42(22), 4732–4735 (2017).
[Crossref] [PubMed]

H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S. T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
[Crossref] [PubMed]

J. Yan, Y. Chen, S. T. Wu, S. H. Liu, K. L. Cheng, and J. W. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” J. Appl. Phys. 111(6), 063103 (2012).
[Crossref]

J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
[Crossref] [PubMed]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

H. Ren and S. T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys. 92(2), 797–800 (2002).
[Crossref]

Xiong, J.

Xu, D.

Yan, J.

J. Yan, Y. Chen, S. T. Wu, S. H. Liu, K. L. Cheng, and J. W. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” J. Appl. Phys. 111(6), 063103 (2012).
[Crossref]

J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
[Crossref] [PubMed]

Yang, J.

Yin, K.

Zhan, T.

Zhang, N.

Zhao, D.

Zhao, J. L.

Zhou, P.

Y. Li, Y. Liu, S. Li, P. Zhou, T. Zhan, Q. Chen, Y. Su, and S. T. Wu, “Single-exposure fabrication of tunable Pancharatnam-Berry devices using a dye-doped liquid crystal,” Opt. Express 27(6), 9054–9060 (2019).
[Crossref] [PubMed]

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Zou, J.

Adv. Mater. (1)

I. Dierking, “Polymer network–stabilized liquid crystals,” Adv. Mater. 12(3), 167–181 (2000).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (4)

L. Marruccia, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

R. K. Komanduri and M. J. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95(9), 091106 (2009).
[Crossref]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

J. Appl. Phys. (2)

H. Ren and S. T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys. 92(2), 797–800 (2002).
[Crossref]

J. Yan, Y. Chen, S. T. Wu, S. H. Liu, K. L. Cheng, and J. W. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” J. Appl. Phys. 111(6), 063103 (2012).
[Crossref]

J. Appl. Polym. Sci. (1)

W. Ruan, X. Wang, Y. Lian, Y. Huang, and A. Niu, “Superabsorbent hydrogel of acrylic acid/potassium acrylate copolymers by ultraviolet photopolymerization: Synthesis and properties,” J. Appl. Polym. Sci. 101(2), 1181–1187 (2006).
[Crossref]

J. Disp. Technol. (1)

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Soc. Inf. Disp. (2)

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Y. H. Lee, G. Tan, K. Yin, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26(2), 64–70 (2018).
[Crossref]

Liq. Cryst. (1)

P. Chen, Y. Q. Lu, and W. Hu, “Beam shaping via photopatterned liquid crystals,” Liq. Cryst. 43(13–15), 2051–2061 (2016).
[Crossref]

Opt. Data Process. Storage (1)

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Opt. Mater. Express (1)

Proc. Indian Acad. Sci. Sect. A Phys. Sci. (1)

S. Pancharatnam, “Generalized theory of interference and its applications,” Proc. Indian Acad. Sci. Sect. A Phys. Sci. 44(5), 247–262 (1956).
[Crossref]

Proc. SPIE (1)

M. J. Escuti, C. Oh, C. Sánchez, C. W. M. Bastiaansen, and D. J. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006).
[Crossref]

Science (1)

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Fabrication of PBOEs based on PSLC: (a) Optical setup of the single-exposure photo-alignment method and (b) polymer stabilization process by UV curing. (c) Normalized absorptance and transmittance of MR. Schematic distributions of LC directors in (d) a PB grating and (e) a PBL, respectively.
Fig. 2
Fig. 2 (a) Microscopic image of a PB grating based on PSLC with 6 wt.% RM257. Diffraction patterns of the PB grating at (b) voltage-off and (c) voltage-on states.
Fig. 3
Fig. 3 Response times of PB gratings (a) without and (b) with polymer networks, respectively.
Fig. 4
Fig. 4 Voltage-dependent first-order diffraction efficiency curves of PB gratings with different RM concentrations.
Fig. 5
Fig. 5 (a) Microscopic image of a PBL base on PSLC with 6 wt.% RM257. Diffraction patterns of the PBL at (b) voltage-off and (c) voltage-on states in the focal plane. (d) Response time of the PBL. Captured images through the PBL at (e) voltage-off and (f) voltage-on states.
Fig. 6
Fig. 6 Lensing effects of a PBL for (a) left-handed CP and (b) right-handed CP light coming from different sides.
Fig. 7
Fig. 7 Schematic diagrams of the varifocus lens when f = 50 cm (a), 100 cm (b), ∞ (c) and −100 cm (d), respectively. Beam spots with different sizes captured by a camera when f = 50 cm (e), 100 cm (f), ∞ (g) and −100 cm (h), respectively. LCP: left-handed circular polarizer. RS: Receiving screen.
Fig. 8
Fig. 8 Schematic diagram of the proposed AR design.
Fig. 9
Fig. 9 Photographs taken through the vary-focal plane AR system when “SJTU” was rendered at (a) 28 cm, (b) 40 cm, (c) 67 cm and (d) 200 cm, respectively. The camera was always focused on “SJTU”.

Tables (1)

Tables Icon

Table 1 Measured response times of PB gratings with different RM257 concentrations

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

φ(r)= 2π λ ( r 2 + f 2 f)

Metrics