Abstract

Metasurfaces have been widely studied for manipulating light fields. In this work, a novel metasurface element is achieved with a high circular polarization amplitude conversion efficiency of 88.5% that creates an opposite phase shift ranging from −180° to 180° between incidence and reflection for different spin components. By arranging the elements according to different requirements, spin-dependent reflection, focusing and scattering are demonstrated. It is also demonstrated that tuning of the Fermi energy is an viable way to active control the circular polarization conversion efficiency and expand the applicable bandwidth. The results open a new route for modifying and designing the wavefront of circular polarized light.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-thin and high-efficiency graphene metasurface for tunable terahertz wave manipulation

Zhen Liu and Benfeng Bai
Opt. Express 25(8) 8584-8592 (2017)

Tunable multifunctional reflection polarizer based on a graphene metasurface

Zhifei Yao, Tongtong Wei, Yueke Wang, Mengjia Lu, Chunyang Zhang, and Lulu Zhang
Appl. Opt. 58(13) 3570-3574 (2019)

Spin-selected focusing and imaging based on metasurface lens

Sen Wang, Xinke Wang, Qiang Kan, Jiasheng Ye, Shengfei Feng, Wenfeng Sun, Peng Han, Shiliang Qu, and Yan Zhang
Opt. Express 23(20) 26434-26441 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
    [Crossref]
  2. Y. Fan, N. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta–surface with graphene cut–wires,” ACS Photonics 2, 151–156 (2015).
    [Crossref]
  3. S. Chen, Z. Li, Y. Zhang, H. Cheng, and J. Tian, “Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics,” Adv. Opt. Mater. 6, 1800104 (2018).
    [Crossref]
  4. L. Tang, J. Nong, W. Wei, S. Zhang, Y. Zhu, Z. Shang, J. Yi, and W. Wang, “Mode energy of graphene plasmons and its role in determining the local field magnitudes,” Opt. Express 26, 6214–6221 (2018).
    [Crossref] [PubMed]
  5. W. Yao, L. Tang, J. Wang, C. Ji, X. Wei, and Y. Jiang, “Spectrally and spatially tunable terahertz metasurface lens based on graphene surface plasmons,” IEEE Photonics J. 10, 1–8 (2018).
  6. F. Lu, B. Liu, and S. Shen, “Infrared wavefront control based on graphene metasurfaces,” Adv. Opt. Mater. 2, 794–799 (2014).
    [Crossref]
  7. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref] [PubMed]
  8. Y. Wang, Y. Liu, C. Liu, B. Sun, X. Sun, F. Li, and Y. Lu, “New design for transmitted phase of reflectionless metasurfaces with 2 π coverage,” IEEE Photonics J. 7, 1–8 (2015).
    [Crossref]
  9. G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
    [Crossref] [PubMed]
  10. H. Ren, X. Li, Q. Zhang, and M. Gu, “On–chip noninterference angular momentum multiplexing of broadband light,” Science 352, 805–809 (2016).
    [Crossref] [PubMed]
  11. L. Jin, Z. Dong, S. Mei, Y. F. Yu, Z. Wei, Z. Pan, S. D. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C.-W. Qiu, “Noninterleaved metasurface for (2(6)−1) spin– and wavelength–encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
    [Crossref] [PubMed]
  12. J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4, 91–98 (2016).
    [Crossref]
  13. K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10, 19154–19161 (2018).
    [Crossref] [PubMed]
  14. B. Lu, J. Deng, Q. Li, S. Zhang, J. Zhou, L. Zhou, and Y. Chen, “Reconstructing a plasmonic metasurface for a broadband high–efficiency optical vortex in the visible frequency,” Nanoscale 10, 12378–12385 (2018).
    [Crossref] [PubMed]
  15. Q. Guo, C. Schlickriede, D. Wang, H. Liu, Y. Xiang, T. Zentgraf, and S. Zhang, “Manipulation of vector beam polarization with geometric metasurfaces,” Opt. Express 25, 14300–14307 (2017).
    [Crossref] [PubMed]
  16. W. Luo, S. Xiao, Q. He, S. Sun, and Z. Lei, “Photonic spin hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3, 1102–1108 (2015).
    [Crossref]
  17. X. Jiang, Q. Wang, J. Guo, S. Chen, X. Dai, and Y. Xiang, “Enhanced photonic spin hall effect with a bimetallic film surface plasmon resonance,” Plasmonics 13, 1467–1473 (2018).
    [Crossref]
  18. K. Y. Bliokh, F. J. Rodriguezfortuno, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
    [Crossref]
  19. Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near–perfect extinction,” ACS Photonics 3, 2096–2101 (2016).
    [Crossref]
  20. T. Guo and C. Argyropoulos, “Broadband polarizers based on graphene metasurfaces,” Opt. Lett. 41, 5592–5595 (2016).
    [Crossref] [PubMed]
  21. X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light. Sci. Appl. 4, e290 (2015).
    [Crossref]
  22. B. Lu, J. Deng, Q. Li, S. Zhang, J. Zhou, L. Zhou, and Y. Chen, “Reconstructing a plasmonic metasurface for a broadband high–efficiency optical vortex in the visible frequency,” Nanoscale 10, 12378–12385 (2018).
    [Crossref] [PubMed]
  23. D. Wang, L. C. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Reports 5, 15020 (2015).
    [Crossref]
  24. Y. Chen, T. S. Kao, B. Ng, X. Li, X. Luo, B. S. Lukyanchuk, S. A. Maier, and M. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21, 13691–13698 (2013).
    [Crossref] [PubMed]
  25. A. Nemati, Q. Wang, M. Hong, and J. Teng, “Tunable and reconfigurable metasurfaces and metadevices,” Opto–Electronic Adv. 01, 180009 (2018).
    [Crossref]
  26. J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65, 553–617 (2016).
    [Crossref]
  27. L. Tang, J. Du, C. Du, P. Zhu, and H. Shi, “Scaling phenomenon of graphene surface plasmon modes in grating-spacer-graphene hybrid systems,” Opt. Express 22, 20214–20222 (2014).
    [Crossref] [PubMed]
  28. H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion–gel top gate with low control voltage,” Nanoscale 7, 19493–19500 (2015).
    [Crossref] [PubMed]
  29. H. Zhang, E. Bekyarova, J. Huang, Z. Zhao, W. Bao, F. Wang, R. C. Haddon, and C. N. Lau, “Aryl functionalization as a route to band gap engineering in single layer graphene devices,” Nano Lett. 11, 4047–4051 (2011).
    [Crossref] [PubMed]
  30. J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26, 1633–1644 (2018).
    [Crossref] [PubMed]
  31. H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
    [Crossref]
  32. C. Wang, W. Liu, Z. Li, H. Cheng, Z. Li, S. Chen, and J. Tian, “Dynamically tunable deep subwavelength high-order anomalous reflection using graphene metasurfaces,” Adv. Opt. Mater. 6, 1701047 (2018).
    [Crossref]
  33. F. Pardo, P. Bouchon, R. Haidar, and J. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107, 093902 (2011).
    [Crossref] [PubMed]
  34. L. Tang, W. Wei, X. Wei, J. Nong, C. Du, and H. Shi, “Mechanism of propagating graphene plasmons excitation for tunable infrared photonic devices,” Opt. Express 26, 3709–3722 (2018).
    [Crossref] [PubMed]
  35. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
    [Crossref] [PubMed]
  36. J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1, 347–353 (2014).
    [Crossref]
  37. Y. Xiang, X. Jiang, Q. You, J. Guo, and X. Dai, “Enhanced spin hall effect of reflected light with guided-wave surface plasmon resonance,” Photonics Res. 5, 467–472 (2017).
    [Crossref]
  38. M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light. Sci. & Appl. 8, 16 (2019).
    [Crossref]
  39. X. Bai, L. Tang, W. Lu, X. Wei, S. Liu, Y. Liu, X. Sun, H. Shi, and Y. Lu, “Tunable spin hall effect of light with graphene at a telecommunication wavelength,” Opt. Lett. 42, 4087–4090 (2017).
    [Crossref] [PubMed]
  40. J. Liu, Q. Li, Y. Zou, Q. Qian, Y. Jin, G. Li, K. Jiang, and S. Fan, “The dependence of graphene raman d-band on carrier density,” Nano Lett. 13, 6170–6175 (2013).
    [Crossref] [PubMed]

2019 (1)

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light. Sci. & Appl. 8, 16 (2019).
[Crossref]

2018 (12)

C. Wang, W. Liu, Z. Li, H. Cheng, Z. Li, S. Chen, and J. Tian, “Dynamically tunable deep subwavelength high-order anomalous reflection using graphene metasurfaces,” Adv. Opt. Mater. 6, 1701047 (2018).
[Crossref]

A. Nemati, Q. Wang, M. Hong, and J. Teng, “Tunable and reconfigurable metasurfaces and metadevices,” Opto–Electronic Adv. 01, 180009 (2018).
[Crossref]

B. Lu, J. Deng, Q. Li, S. Zhang, J. Zhou, L. Zhou, and Y. Chen, “Reconstructing a plasmonic metasurface for a broadband high–efficiency optical vortex in the visible frequency,” Nanoscale 10, 12378–12385 (2018).
[Crossref] [PubMed]

W. Yao, L. Tang, J. Wang, C. Ji, X. Wei, and Y. Jiang, “Spectrally and spatially tunable terahertz metasurface lens based on graphene surface plasmons,” IEEE Photonics J. 10, 1–8 (2018).

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10, 19154–19161 (2018).
[Crossref] [PubMed]

B. Lu, J. Deng, Q. Li, S. Zhang, J. Zhou, L. Zhou, and Y. Chen, “Reconstructing a plasmonic metasurface for a broadband high–efficiency optical vortex in the visible frequency,” Nanoscale 10, 12378–12385 (2018).
[Crossref] [PubMed]

L. Jin, Z. Dong, S. Mei, Y. F. Yu, Z. Wei, Z. Pan, S. D. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C.-W. Qiu, “Noninterleaved metasurface for (2(6)−1) spin– and wavelength–encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref] [PubMed]

S. Chen, Z. Li, Y. Zhang, H. Cheng, and J. Tian, “Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics,” Adv. Opt. Mater. 6, 1800104 (2018).
[Crossref]

X. Jiang, Q. Wang, J. Guo, S. Chen, X. Dai, and Y. Xiang, “Enhanced photonic spin hall effect with a bimetallic film surface plasmon resonance,” Plasmonics 13, 1467–1473 (2018).
[Crossref]

J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26, 1633–1644 (2018).
[Crossref] [PubMed]

L. Tang, W. Wei, X. Wei, J. Nong, C. Du, and H. Shi, “Mechanism of propagating graphene plasmons excitation for tunable infrared photonic devices,” Opt. Express 26, 3709–3722 (2018).
[Crossref] [PubMed]

L. Tang, J. Nong, W. Wei, S. Zhang, Y. Zhu, Z. Shang, J. Yi, and W. Wang, “Mode energy of graphene plasmons and its role in determining the local field magnitudes,” Opt. Express 26, 6214–6221 (2018).
[Crossref] [PubMed]

2017 (3)

2016 (5)

T. Guo and C. Argyropoulos, “Broadband polarizers based on graphene metasurfaces,” Opt. Lett. 41, 5592–5595 (2016).
[Crossref] [PubMed]

H. Ren, X. Li, Q. Zhang, and M. Gu, “On–chip noninterference angular momentum multiplexing of broadband light,” Science 352, 805–809 (2016).
[Crossref] [PubMed]

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65, 553–617 (2016).
[Crossref]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near–perfect extinction,” ACS Photonics 3, 2096–2101 (2016).
[Crossref]

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4, 91–98 (2016).
[Crossref]

2015 (10)

W. Luo, S. Xiao, Q. He, S. Sun, and Z. Lei, “Photonic spin hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3, 1102–1108 (2015).
[Crossref]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light. Sci. Appl. 4, e290 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodriguezfortuno, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Y. Fan, N. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta–surface with graphene cut–wires,” ACS Photonics 2, 151–156 (2015).
[Crossref]

Y. Wang, Y. Liu, C. Liu, B. Sun, X. Sun, F. Li, and Y. Lu, “New design for transmitted phase of reflectionless metasurfaces with 2 π coverage,” IEEE Photonics J. 7, 1–8 (2015).
[Crossref]

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref] [PubMed]

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion–gel top gate with low control voltage,” Nanoscale 7, 19493–19500 (2015).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
[Crossref]

D. Wang, L. C. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Reports 5, 15020 (2015).
[Crossref]

2014 (3)

L. Tang, J. Du, C. Du, P. Zhu, and H. Shi, “Scaling phenomenon of graphene surface plasmon modes in grating-spacer-graphene hybrid systems,” Opt. Express 22, 20214–20222 (2014).
[Crossref] [PubMed]

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1, 347–353 (2014).
[Crossref]

F. Lu, B. Liu, and S. Shen, “Infrared wavefront control based on graphene metasurfaces,” Adv. Opt. Mater. 2, 794–799 (2014).
[Crossref]

2013 (2)

J. Liu, Q. Li, Y. Zou, Q. Qian, Y. Jin, G. Li, K. Jiang, and S. Fan, “The dependence of graphene raman d-band on carrier density,” Nano Lett. 13, 6170–6175 (2013).
[Crossref] [PubMed]

Y. Chen, T. S. Kao, B. Ng, X. Li, X. Luo, B. S. Lukyanchuk, S. A. Maier, and M. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21, 13691–13698 (2013).
[Crossref] [PubMed]

2011 (3)

F. Pardo, P. Bouchon, R. Haidar, and J. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107, 093902 (2011).
[Crossref] [PubMed]

H. Zhang, E. Bekyarova, J. Huang, Z. Zhao, W. Bao, F. Wang, R. C. Haddon, and C. N. Lau, “Aryl functionalization as a route to band gap engineering in single layer graphene devices,” Nano Lett. 11, 4047–4051 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref] [PubMed]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Akinoglu, E. M.

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65, 553–617 (2016).
[Crossref]

Argyropoulos, C.

Bai, B.

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion–gel top gate with low control voltage,” Nanoscale 7, 19493–19500 (2015).
[Crossref] [PubMed]

Bai, X.

Bao, W.

H. Zhang, E. Bekyarova, J. Huang, Z. Zhao, W. Bao, F. Wang, R. C. Haddon, and C. N. Lau, “Aryl functionalization as a route to band gap engineering in single layer graphene devices,” Nano Lett. 11, 4047–4051 (2011).
[Crossref] [PubMed]

Bekyarova, E.

H. Zhang, E. Bekyarova, J. Huang, Z. Zhao, W. Bao, F. Wang, R. C. Haddon, and C. N. Lau, “Aryl functionalization as a route to band gap engineering in single layer graphene devices,” Nano Lett. 11, 4047–4051 (2011).
[Crossref] [PubMed]

Bliokh, K. Y.

K. Y. Bliokh, F. J. Rodriguezfortuno, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Bouchon, P.

F. Pardo, P. Bouchon, R. Haidar, and J. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107, 093902 (2011).
[Crossref] [PubMed]

Cai, W.

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near–perfect extinction,” ACS Photonics 3, 2096–2101 (2016).
[Crossref]

Cao, G.

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10, 19154–19161 (2018).
[Crossref] [PubMed]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Chen, H.

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near–perfect extinction,” ACS Photonics 3, 2096–2101 (2016).
[Crossref]

Chen, J.

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10, 19154–19161 (2018).
[Crossref] [PubMed]

Chen, S.

X. Jiang, Q. Wang, J. Guo, S. Chen, X. Dai, and Y. Xiang, “Enhanced photonic spin hall effect with a bimetallic film surface plasmon resonance,” Plasmonics 13, 1467–1473 (2018).
[Crossref]

S. Chen, Z. Li, Y. Zhang, H. Cheng, and J. Tian, “Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics,” Adv. Opt. Mater. 6, 1800104 (2018).
[Crossref]

C. Wang, W. Liu, Z. Li, H. Cheng, Z. Li, S. Chen, and J. Tian, “Dynamically tunable deep subwavelength high-order anomalous reflection using graphene metasurfaces,” Adv. Opt. Mater. 6, 1701047 (2018).
[Crossref]

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4, 91–98 (2016).
[Crossref]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light. Sci. Appl. 4, e290 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
[Crossref]

Chen, X.

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10, 19154–19161 (2018).
[Crossref] [PubMed]

Chen, Y.

B. Lu, J. Deng, Q. Li, S. Zhang, J. Zhou, L. Zhou, and Y. Chen, “Reconstructing a plasmonic metasurface for a broadband high–efficiency optical vortex in the visible frequency,” Nanoscale 10, 12378–12385 (2018).
[Crossref] [PubMed]

B. Lu, J. Deng, Q. Li, S. Zhang, J. Zhou, L. Zhou, and Y. Chen, “Reconstructing a plasmonic metasurface for a broadband high–efficiency optical vortex in the visible frequency,” Nanoscale 10, 12378–12385 (2018).
[Crossref] [PubMed]

Y. Chen, T. S. Kao, B. Ng, X. Li, X. Luo, B. S. Lukyanchuk, S. A. Maier, and M. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21, 13691–13698 (2013).
[Crossref] [PubMed]

Cheng, H.

C. Wang, W. Liu, Z. Li, H. Cheng, Z. Li, S. Chen, and J. Tian, “Dynamically tunable deep subwavelength high-order anomalous reflection using graphene metasurfaces,” Adv. Opt. Mater. 6, 1701047 (2018).
[Crossref]

S. Chen, Z. Li, Y. Zhang, H. Cheng, and J. Tian, “Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics,” Adv. Opt. Mater. 6, 1800104 (2018).
[Crossref]

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4, 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
[Crossref]

Dai, Q.

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion–gel top gate with low control voltage,” Nanoscale 7, 19493–19500 (2015).
[Crossref] [PubMed]

Dai, X.

X. Jiang, Q. Wang, J. Guo, S. Chen, X. Dai, and Y. Xiang, “Enhanced photonic spin hall effect with a bimetallic film surface plasmon resonance,” Plasmonics 13, 1467–1473 (2018).
[Crossref]

Y. Xiang, X. Jiang, Q. You, J. Guo, and X. Dai, “Enhanced spin hall effect of reflected light with guided-wave surface plasmon resonance,” Photonics Res. 5, 467–472 (2017).
[Crossref]

Deng, J.

B. Lu, J. Deng, Q. Li, S. Zhang, J. Zhou, L. Zhou, and Y. Chen, “Reconstructing a plasmonic metasurface for a broadband high–efficiency optical vortex in the visible frequency,” Nanoscale 10, 12378–12385 (2018).
[Crossref] [PubMed]

B. Lu, J. Deng, Q. Li, S. Zhang, J. Zhou, L. Zhou, and Y. Chen, “Reconstructing a plasmonic metasurface for a broadband high–efficiency optical vortex in the visible frequency,” Nanoscale 10, 12378–12385 (2018).
[Crossref] [PubMed]

Dong, Z.

L. Jin, Z. Dong, S. Mei, Y. F. Yu, Z. Wei, Z. Pan, S. D. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C.-W. Qiu, “Noninterleaved metasurface for (2(6)−1) spin– and wavelength–encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref] [PubMed]

Du, C.

Du, J.

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref] [PubMed]

Fan, D.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light. Sci. Appl. 4, e290 (2015).
[Crossref]

Fan, R.

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Fan, S.

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1, 347–353 (2014).
[Crossref]

J. Liu, Q. Li, Y. Zou, Q. Qian, Y. Jin, G. Li, K. Jiang, and S. Fan, “The dependence of graphene raman d-band on carrier density,” Nano Lett. 13, 6170–6175 (2013).
[Crossref] [PubMed]

Fan, Y.

Y. Fan, N. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta–surface with graphene cut–wires,” ACS Photonics 2, 151–156 (2015).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref] [PubMed]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Gao, J.

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65, 553–617 (2016).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Giersig, M.

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65, 553–617 (2016).
[Crossref]

Gong, Y.

D. Wang, L. C. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Reports 5, 15020 (2015).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref] [PubMed]

Gu, M.

H. Ren, X. Li, Q. Zhang, and M. Gu, “On–chip noninterference angular momentum multiplexing of broadband light,” Science 352, 805–809 (2016).
[Crossref] [PubMed]

Gu, Y.

D. Wang, L. C. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Reports 5, 15020 (2015).
[Crossref]

Guo, J.

X. Jiang, Q. Wang, J. Guo, S. Chen, X. Dai, and Y. Xiang, “Enhanced photonic spin hall effect with a bimetallic film surface plasmon resonance,” Plasmonics 13, 1467–1473 (2018).
[Crossref]

Y. Xiang, X. Jiang, Q. You, J. Guo, and X. Dai, “Enhanced spin hall effect of reflected light with guided-wave surface plasmon resonance,” Photonics Res. 5, 467–472 (2017).
[Crossref]

Guo, Q.

Guo, T.

Haddon, R. C.

H. Zhang, E. Bekyarova, J. Huang, Z. Zhao, W. Bao, F. Wang, R. C. Haddon, and C. N. Lau, “Aryl functionalization as a route to band gap engineering in single layer graphene devices,” Nano Lett. 11, 4047–4051 (2011).
[Crossref] [PubMed]

Haidar, R.

F. Pardo, P. Bouchon, R. Haidar, and J. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107, 093902 (2011).
[Crossref] [PubMed]

Han, B.

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65, 553–617 (2016).
[Crossref]

He, Q.

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light. Sci. & Appl. 8, 16 (2019).
[Crossref]

W. Luo, S. Xiao, Q. He, S. Sun, and Z. Lei, “Photonic spin hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3, 1102–1108 (2015).
[Crossref]

Hong, M.

A. Nemati, Q. Wang, M. Hong, and J. Teng, “Tunable and reconfigurable metasurfaces and metadevices,” Opto–Electronic Adv. 01, 180009 (2018).
[Crossref]

D. Wang, L. C. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Reports 5, 15020 (2015).
[Crossref]

Y. Chen, T. S. Kao, B. Ng, X. Li, X. Luo, B. S. Lukyanchuk, S. A. Maier, and M. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21, 13691–13698 (2013).
[Crossref] [PubMed]

Hu, D.

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion–gel top gate with low control voltage,” Nanoscale 7, 19493–19500 (2015).
[Crossref] [PubMed]

Hu, H.

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion–gel top gate with low control voltage,” Nanoscale 7, 19493–19500 (2015).
[Crossref] [PubMed]

Huang, J.

H. Zhang, E. Bekyarova, J. Huang, Z. Zhao, W. Bao, F. Wang, R. C. Haddon, and C. N. Lau, “Aryl functionalization as a route to band gap engineering in single layer graphene devices,” Nano Lett. 11, 4047–4051 (2011).
[Crossref] [PubMed]

Huang, X.

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Ji, C.

W. Yao, L. Tang, J. Wang, C. Ji, X. Wei, and Y. Jiang, “Spectrally and spatially tunable terahertz metasurface lens based on graphene surface plasmons,” IEEE Photonics J. 10, 1–8 (2018).

Jia, H.

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near–perfect extinction,” ACS Photonics 3, 2096–2101 (2016).
[Crossref]

Jia, M.

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light. Sci. & Appl. 8, 16 (2019).
[Crossref]

Jian, L.

D. Wang, L. C. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Reports 5, 15020 (2015).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref] [PubMed]

Jiang, K.

J. Liu, Q. Li, Y. Zou, Q. Qian, Y. Jin, G. Li, K. Jiang, and S. Fan, “The dependence of graphene raman d-band on carrier density,” Nano Lett. 13, 6170–6175 (2013).
[Crossref] [PubMed]

Jiang, S.

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Jiang, X.

X. Jiang, Q. Wang, J. Guo, S. Chen, X. Dai, and Y. Xiang, “Enhanced photonic spin hall effect with a bimetallic film surface plasmon resonance,” Plasmonics 13, 1467–1473 (2018).
[Crossref]

Y. Xiang, X. Jiang, Q. You, J. Guo, and X. Dai, “Enhanced spin hall effect of reflected light with guided-wave surface plasmon resonance,” Photonics Res. 5, 467–472 (2017).
[Crossref]

Jiang, Y.

W. Yao, L. Tang, J. Wang, C. Ji, X. Wei, and Y. Jiang, “Spectrally and spatially tunable terahertz metasurface lens based on graphene surface plasmons,” IEEE Photonics J. 10, 1–8 (2018).

Jin, L.

L. Jin, Z. Dong, S. Mei, Y. F. Yu, Z. Wei, Z. Pan, S. D. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C.-W. Qiu, “Noninterleaved metasurface for (2(6)−1) spin– and wavelength–encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref] [PubMed]

Jin, Y.

J. Liu, Q. Li, Y. Zou, Q. Qian, Y. Jin, G. Li, K. Jiang, and S. Fan, “The dependence of graphene raman d-band on carrier density,” Nano Lett. 13, 6170–6175 (2013).
[Crossref] [PubMed]

Kao, T. S.

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Kempa, K.

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65, 553–617 (2016).
[Crossref]

Kenney, M.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref] [PubMed]

Kivshar, Y. S.

L. Jin, Z. Dong, S. Mei, Y. F. Yu, Z. Wei, Z. Pan, S. D. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C.-W. Qiu, “Noninterleaved metasurface for (2(6)−1) spin– and wavelength–encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref] [PubMed]

Koschny, T.

Y. Fan, N. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta–surface with graphene cut–wires,” ACS Photonics 2, 151–156 (2015).
[Crossref]

Kuznetsov, A. I.

L. Jin, Z. Dong, S. Mei, Y. F. Yu, Z. Wei, Z. Pan, S. D. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C.-W. Qiu, “Noninterleaved metasurface for (2(6)−1) spin– and wavelength–encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref] [PubMed]

Lan, G.

Lau, C. N.

H. Zhang, E. Bekyarova, J. Huang, Z. Zhao, W. Bao, F. Wang, R. C. Haddon, and C. N. Lau, “Aryl functionalization as a route to band gap engineering in single layer graphene devices,” Nano Lett. 11, 4047–4051 (2011).
[Crossref] [PubMed]

Lei, Z.

W. Luo, S. Xiao, Q. He, S. Sun, and Z. Lei, “Photonic spin hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3, 1102–1108 (2015).
[Crossref]

Li, F.

Y. Wang, Y. Liu, C. Liu, B. Sun, X. Sun, F. Li, and Y. Lu, “New design for transmitted phase of reflectionless metasurfaces with 2 π coverage,” IEEE Photonics J. 7, 1–8 (2015).
[Crossref]

Li, G.

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10, 19154–19161 (2018).
[Crossref] [PubMed]

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref] [PubMed]

J. Liu, Q. Li, Y. Zou, Q. Qian, Y. Jin, G. Li, K. Jiang, and S. Fan, “The dependence of graphene raman d-band on carrier density,” Nano Lett. 13, 6170–6175 (2013).
[Crossref] [PubMed]

Li, H.

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light. Sci. & Appl. 8, 16 (2019).
[Crossref]

Li, J.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4, 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
[Crossref]

Li, Q.

B. Lu, J. Deng, Q. Li, S. Zhang, J. Zhou, L. Zhou, and Y. Chen, “Reconstructing a plasmonic metasurface for a broadband high–efficiency optical vortex in the visible frequency,” Nanoscale 10, 12378–12385 (2018).
[Crossref] [PubMed]

B. Lu, J. Deng, Q. Li, S. Zhang, J. Zhou, L. Zhou, and Y. Chen, “Reconstructing a plasmonic metasurface for a broadband high–efficiency optical vortex in the visible frequency,” Nanoscale 10, 12378–12385 (2018).
[Crossref] [PubMed]

J. Liu, Q. Li, Y. Zou, Q. Qian, Y. Jin, G. Li, K. Jiang, and S. Fan, “The dependence of graphene raman d-band on carrier density,” Nano Lett. 13, 6170–6175 (2013).
[Crossref] [PubMed]

Li, R.

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65, 553–617 (2016).
[Crossref]

Li, T.

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10, 19154–19161 (2018).
[Crossref] [PubMed]

Li, X.

L. Jin, Z. Dong, S. Mei, Y. F. Yu, Z. Wei, Z. Pan, S. D. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C.-W. Qiu, “Noninterleaved metasurface for (2(6)−1) spin– and wavelength–encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref] [PubMed]

H. Ren, X. Li, Q. Zhang, and M. Gu, “On–chip noninterference angular momentum multiplexing of broadband light,” Science 352, 805–809 (2016).
[Crossref] [PubMed]

Y. Chen, T. S. Kao, B. Ng, X. Li, X. Luo, B. S. Lukyanchuk, S. A. Maier, and M. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21, 13691–13698 (2013).
[Crossref] [PubMed]

Li, Z.

C. Wang, W. Liu, Z. Li, H. Cheng, Z. Li, S. Chen, and J. Tian, “Dynamically tunable deep subwavelength high-order anomalous reflection using graphene metasurfaces,” Adv. Opt. Mater. 6, 1701047 (2018).
[Crossref]

C. Wang, W. Liu, Z. Li, H. Cheng, Z. Li, S. Chen, and J. Tian, “Dynamically tunable deep subwavelength high-order anomalous reflection using graphene metasurfaces,” Adv. Opt. Mater. 6, 1701047 (2018).
[Crossref]

S. Chen, Z. Li, Y. Zhang, H. Cheng, and J. Tian, “Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics,” Adv. Opt. Mater. 6, 1800104 (2018).
[Crossref]

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4, 91–98 (2016).
[Crossref]

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion–gel top gate with low control voltage,” Nanoscale 7, 19493–19500 (2015).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
[Crossref]

Ling, X.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light. Sci. Appl. 4, e290 (2015).
[Crossref]

Liu, B.

F. Lu, B. Liu, and S. Shen, “Infrared wavefront control based on graphene metasurfaces,” Adv. Opt. Mater. 2, 794–799 (2014).
[Crossref]

Liu, C.

Y. Wang, Y. Liu, C. Liu, B. Sun, X. Sun, F. Li, and Y. Lu, “New design for transmitted phase of reflectionless metasurfaces with 2 π coverage,” IEEE Photonics J. 7, 1–8 (2015).
[Crossref]

Liu, H.

Liu, J.

J. Liu, Q. Li, Y. Zou, Q. Qian, Y. Jin, G. Li, K. Jiang, and S. Fan, “The dependence of graphene raman d-band on carrier density,” Nano Lett. 13, 6170–6175 (2013).
[Crossref] [PubMed]

Liu, S.

Liu, W.

C. Wang, W. Liu, Z. Li, H. Cheng, Z. Li, S. Chen, and J. Tian, “Dynamically tunable deep subwavelength high-order anomalous reflection using graphene metasurfaces,” Adv. Opt. Mater. 6, 1701047 (2018).
[Crossref]

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4, 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
[Crossref]

Liu, Y.

X. Bai, L. Tang, W. Lu, X. Wei, S. Liu, Y. Liu, X. Sun, H. Shi, and Y. Lu, “Tunable spin hall effect of light with graphene at a telecommunication wavelength,” Opt. Lett. 42, 4087–4090 (2017).
[Crossref] [PubMed]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near–perfect extinction,” ACS Photonics 3, 2096–2101 (2016).
[Crossref]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light. Sci. Appl. 4, e290 (2015).
[Crossref]

Y. Wang, Y. Liu, C. Liu, B. Sun, X. Sun, F. Li, and Y. Lu, “New design for transmitted phase of reflectionless metasurfaces with 2 π coverage,” IEEE Photonics J. 7, 1–8 (2015).
[Crossref]

Lu, B.

B. Lu, J. Deng, Q. Li, S. Zhang, J. Zhou, L. Zhou, and Y. Chen, “Reconstructing a plasmonic metasurface for a broadband high–efficiency optical vortex in the visible frequency,” Nanoscale 10, 12378–12385 (2018).
[Crossref] [PubMed]

B. Lu, J. Deng, Q. Li, S. Zhang, J. Zhou, L. Zhou, and Y. Chen, “Reconstructing a plasmonic metasurface for a broadband high–efficiency optical vortex in the visible frequency,” Nanoscale 10, 12378–12385 (2018).
[Crossref] [PubMed]

Lu, F.

F. Lu, B. Liu, and S. Shen, “Infrared wavefront control based on graphene metasurfaces,” Adv. Opt. Mater. 2, 794–799 (2014).
[Crossref]

Lu, W.

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10, 19154–19161 (2018).
[Crossref] [PubMed]

X. Bai, L. Tang, W. Lu, X. Wei, S. Liu, Y. Liu, X. Sun, H. Shi, and Y. Lu, “Tunable spin hall effect of light with graphene at a telecommunication wavelength,” Opt. Lett. 42, 4087–4090 (2017).
[Crossref] [PubMed]

Lu, Y.

X. Bai, L. Tang, W. Lu, X. Wei, S. Liu, Y. Liu, X. Sun, H. Shi, and Y. Lu, “Tunable spin hall effect of light with graphene at a telecommunication wavelength,” Opt. Lett. 42, 4087–4090 (2017).
[Crossref] [PubMed]

Y. Wang, Y. Liu, C. Liu, B. Sun, X. Sun, F. Li, and Y. Lu, “New design for transmitted phase of reflectionless metasurfaces with 2 π coverage,” IEEE Photonics J. 7, 1–8 (2015).
[Crossref]

Lukyanchuk, B. S.

Luo, H.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light. Sci. Appl. 4, e290 (2015).
[Crossref]

Luo, W.

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light. Sci. & Appl. 8, 16 (2019).
[Crossref]

W. Luo, S. Xiao, Q. He, S. Sun, and Z. Lei, “Photonic spin hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3, 1102–1108 (2015).
[Crossref]

Luo, X.

Maier, S. A.

Mehmood, M. Q.

D. Wang, L. C. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Reports 5, 15020 (2015).
[Crossref]

Mei, S.

L. Jin, Z. Dong, S. Mei, Y. F. Yu, Z. Wei, Z. Pan, S. D. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C.-W. Qiu, “Noninterleaved metasurface for (2(6)−1) spin– and wavelength–encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref] [PubMed]

Muhlenbernd, H.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref] [PubMed]

Nemati, A.

A. Nemati, Q. Wang, M. Hong, and J. Teng, “Tunable and reconfigurable metasurfaces and metadevices,” Opto–Electronic Adv. 01, 180009 (2018).
[Crossref]

Ng, B.

Nong, J.

Nori, F.

K. Y. Bliokh, F. J. Rodriguezfortuno, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref] [PubMed]

Ou, K.

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10, 19154–19161 (2018).
[Crossref] [PubMed]

Pan, Z.

L. Jin, Z. Dong, S. Mei, Y. F. Yu, Z. Wei, Z. Pan, S. D. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C.-W. Qiu, “Noninterleaved metasurface for (2(6)−1) spin– and wavelength–encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref] [PubMed]

Pardo, F.

F. Pardo, P. Bouchon, R. Haidar, and J. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107, 093902 (2011).
[Crossref] [PubMed]

Pelouard, J.

F. Pardo, P. Bouchon, R. Haidar, and J. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107, 093902 (2011).
[Crossref] [PubMed]

Peng, R.

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Piper, J. R.

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1, 347–353 (2014).
[Crossref]

Qian, Q.

J. Liu, Q. Li, Y. Zou, Q. Qian, Y. Jin, G. Li, K. Jiang, and S. Fan, “The dependence of graphene raman d-band on carrier density,” Nano Lett. 13, 6170–6175 (2013).
[Crossref] [PubMed]

Qiu, C.

D. Wang, L. C. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Reports 5, 15020 (2015).
[Crossref]

Qiu, C.-W.

L. Jin, Z. Dong, S. Mei, Y. F. Yu, Z. Wei, Z. Pan, S. D. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C.-W. Qiu, “Noninterleaved metasurface for (2(6)−1) spin– and wavelength–encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref] [PubMed]

Ren, H.

H. Ren, X. Li, Q. Zhang, and M. Gu, “On–chip noninterference angular momentum multiplexing of broadband light,” Science 352, 805–809 (2016).
[Crossref] [PubMed]

Ren, X.

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Rezaei, S. D.

L. Jin, Z. Dong, S. Mei, Y. F. Yu, Z. Wei, Z. Pan, S. D. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C.-W. Qiu, “Noninterleaved metasurface for (2(6)−1) spin– and wavelength–encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref] [PubMed]

Rodriguezfortuno, F. J.

K. Y. Bliokh, F. J. Rodriguezfortuno, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Schlickriede, C.

Shang, Z.

Shen, N.

Y. Fan, N. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta–surface with graphene cut–wires,” ACS Photonics 2, 151–156 (2015).
[Crossref]

Shen, S.

F. Lu, B. Liu, and S. Shen, “Infrared wavefront control based on graphene metasurfaces,” Adv. Opt. Mater. 2, 794–799 (2014).
[Crossref]

Shi, H.

Shu, W.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light. Sci. Appl. 4, e290 (2015).
[Crossref]

Soukoulis, C. M.

Y. Fan, N. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta–surface with graphene cut–wires,” ACS Photonics 2, 151–156 (2015).
[Crossref]

Srivastava, A.

D. Wang, L. C. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Reports 5, 15020 (2015).
[Crossref]

Sun, B.

Y. Wang, Y. Liu, C. Liu, B. Sun, X. Sun, F. Li, and Y. Lu, “New design for transmitted phase of reflectionless metasurfaces with 2 π coverage,” IEEE Photonics J. 7, 1–8 (2015).
[Crossref]

Sun, S.

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light. Sci. & Appl. 8, 16 (2019).
[Crossref]

W. Luo, S. Xiao, Q. He, S. Sun, and Z. Lei, “Photonic spin hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3, 1102–1108 (2015).
[Crossref]

Sun, X.

X. Bai, L. Tang, W. Lu, X. Wei, S. Liu, Y. Liu, X. Sun, H. Shi, and Y. Lu, “Tunable spin hall effect of light with graphene at a telecommunication wavelength,” Opt. Lett. 42, 4087–4090 (2017).
[Crossref] [PubMed]

Y. Wang, Y. Liu, C. Liu, B. Sun, X. Sun, F. Li, and Y. Lu, “New design for transmitted phase of reflectionless metasurfaces with 2 π coverage,” IEEE Photonics J. 7, 1–8 (2015).
[Crossref]

Tang, L.

Teng, J.

A. Nemati, Q. Wang, M. Hong, and J. Teng, “Tunable and reconfigurable metasurfaces and metadevices,” Opto–Electronic Adv. 01, 180009 (2018).
[Crossref]

Tetienne, J.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Tian, J.

S. Chen, Z. Li, Y. Zhang, H. Cheng, and J. Tian, “Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics,” Adv. Opt. Mater. 6, 1800104 (2018).
[Crossref]

C. Wang, W. Liu, Z. Li, H. Cheng, Z. Li, S. Chen, and J. Tian, “Dynamically tunable deep subwavelength high-order anomalous reflection using graphene metasurfaces,” Adv. Opt. Mater. 6, 1701047 (2018).
[Crossref]

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4, 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
[Crossref]

Venkatesan, T.

D. Wang, L. C. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Reports 5, 15020 (2015).
[Crossref]

Wang, C.

C. Wang, W. Liu, Z. Li, H. Cheng, Z. Li, S. Chen, and J. Tian, “Dynamically tunable deep subwavelength high-order anomalous reflection using graphene metasurfaces,” Adv. Opt. Mater. 6, 1701047 (2018).
[Crossref]

Wang, D.

Q. Guo, C. Schlickriede, D. Wang, H. Liu, Y. Xiang, T. Zentgraf, and S. Zhang, “Manipulation of vector beam polarization with geometric metasurfaces,” Opt. Express 25, 14300–14307 (2017).
[Crossref] [PubMed]

D. Wang, L. C. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Reports 5, 15020 (2015).
[Crossref]

Wang, F.

H. Zhang, E. Bekyarova, J. Huang, Z. Zhao, W. Bao, F. Wang, R. C. Haddon, and C. N. Lau, “Aryl functionalization as a route to band gap engineering in single layer graphene devices,” Nano Lett. 11, 4047–4051 (2011).
[Crossref] [PubMed]

Wang, J.

W. Yao, L. Tang, J. Wang, C. Ji, X. Wei, and Y. Jiang, “Spectrally and spatially tunable terahertz metasurface lens based on graphene surface plasmons,” IEEE Photonics J. 10, 1–8 (2018).

Wang, M.

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Wang, Q.

X. Jiang, Q. Wang, J. Guo, S. Chen, X. Dai, and Y. Xiang, “Enhanced photonic spin hall effect with a bimetallic film surface plasmon resonance,” Plasmonics 13, 1467–1473 (2018).
[Crossref]

A. Nemati, Q. Wang, M. Hong, and J. Teng, “Tunable and reconfigurable metasurfaces and metadevices,” Opto–Electronic Adv. 01, 180009 (2018).
[Crossref]

Wang, W.

Wang, X.

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light. Sci. & Appl. 8, 16 (2019).
[Crossref]

Wang, Y.

Y. Wang, Y. Liu, C. Liu, B. Sun, X. Sun, F. Li, and Y. Lu, “New design for transmitted phase of reflectionless metasurfaces with 2 π coverage,” IEEE Photonics J. 7, 1–8 (2015).
[Crossref]

Wang, Z.

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light. Sci. & Appl. 8, 16 (2019).
[Crossref]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near–perfect extinction,” ACS Photonics 3, 2096–2101 (2016).
[Crossref]

Wei, W.

Wei, X.

Wei, Z.

L. Jin, Z. Dong, S. Mei, Y. F. Yu, Z. Wei, Z. Pan, S. D. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C.-W. Qiu, “Noninterleaved metasurface for (2(6)−1) spin– and wavelength–encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref] [PubMed]

Wen, S.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light. Sci. Appl. 4, e290 (2015).
[Crossref]

Xiang, Y.

X. Jiang, Q. Wang, J. Guo, S. Chen, X. Dai, and Y. Xiang, “Enhanced photonic spin hall effect with a bimetallic film surface plasmon resonance,” Plasmonics 13, 1467–1473 (2018).
[Crossref]

Q. Guo, C. Schlickriede, D. Wang, H. Liu, Y. Xiang, T. Zentgraf, and S. Zhang, “Manipulation of vector beam polarization with geometric metasurfaces,” Opt. Express 25, 14300–14307 (2017).
[Crossref] [PubMed]

Y. Xiang, X. Jiang, Q. You, J. Guo, and X. Dai, “Enhanced spin hall effect of reflected light with guided-wave surface plasmon resonance,” Photonics Res. 5, 467–472 (2017).
[Crossref]

Xiao, S.

W. Luo, S. Xiao, Q. He, S. Sun, and Z. Lei, “Photonic spin hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3, 1102–1108 (2015).
[Crossref]

Xie, B.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4, 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
[Crossref]

Xiong, X.

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Xu, D.

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Yang, H.

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10, 19154–19161 (2018).
[Crossref] [PubMed]

Yang, J. K. W.

L. Jin, Z. Dong, S. Mei, Y. F. Yu, Z. Wei, Z. Pan, S. D. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C.-W. Qiu, “Noninterleaved metasurface for (2(6)−1) spin– and wavelength–encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref] [PubMed]

Yang, X.

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion–gel top gate with low control voltage,” Nanoscale 7, 19493–19500 (2015).
[Crossref] [PubMed]

Yao, K.

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near–perfect extinction,” ACS Photonics 3, 2096–2101 (2016).
[Crossref]

Yao, W.

W. Yao, L. Tang, J. Wang, C. Ji, X. Wei, and Y. Jiang, “Spectrally and spatially tunable terahertz metasurface lens based on graphene surface plasmons,” IEEE Photonics J. 10, 1–8 (2018).

Yi, J.

Yi, X.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light. Sci. Appl. 4, e290 (2015).
[Crossref]

You, Q.

Y. Xiang, X. Jiang, Q. You, J. Guo, and X. Dai, “Enhanced spin hall effect of reflected light with guided-wave surface plasmon resonance,” Photonics Res. 5, 467–472 (2017).
[Crossref]

Yu, F.

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10, 19154–19161 (2018).
[Crossref] [PubMed]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Yu, P.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4, 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
[Crossref]

Yu, Y. F.

L. Jin, Z. Dong, S. Mei, Y. F. Yu, Z. Wei, Z. Pan, S. D. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C.-W. Qiu, “Noninterleaved metasurface for (2(6)−1) spin– and wavelength–encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref] [PubMed]

Zayats, A. V.

K. Y. Bliokh, F. J. Rodriguezfortuno, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Zentgraf, T.

Q. Guo, C. Schlickriede, D. Wang, H. Liu, Y. Xiang, T. Zentgraf, and S. Zhang, “Manipulation of vector beam polarization with geometric metasurfaces,” Opt. Express 25, 14300–14307 (2017).
[Crossref] [PubMed]

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref] [PubMed]

Zhai, F.

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion–gel top gate with low control voltage,” Nanoscale 7, 19493–19500 (2015).
[Crossref] [PubMed]

Zhang, H.

H. Zhang, E. Bekyarova, J. Huang, Z. Zhao, W. Bao, F. Wang, R. C. Haddon, and C. N. Lau, “Aryl functionalization as a route to band gap engineering in single layer graphene devices,” Nano Lett. 11, 4047–4051 (2011).
[Crossref] [PubMed]

Zhang, L. C.

D. Wang, L. C. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Reports 5, 15020 (2015).
[Crossref]

Zhang, Q.

H. Ren, X. Li, Q. Zhang, and M. Gu, “On–chip noninterference angular momentum multiplexing of broadband light,” Science 352, 805–809 (2016).
[Crossref] [PubMed]

Zhang, S.

B. Lu, J. Deng, Q. Li, S. Zhang, J. Zhou, L. Zhou, and Y. Chen, “Reconstructing a plasmonic metasurface for a broadband high–efficiency optical vortex in the visible frequency,” Nanoscale 10, 12378–12385 (2018).
[Crossref] [PubMed]

B. Lu, J. Deng, Q. Li, S. Zhang, J. Zhou, L. Zhou, and Y. Chen, “Reconstructing a plasmonic metasurface for a broadband high–efficiency optical vortex in the visible frequency,” Nanoscale 10, 12378–12385 (2018).
[Crossref] [PubMed]

L. Tang, J. Nong, W. Wei, S. Zhang, Y. Zhu, Z. Shang, J. Yi, and W. Wang, “Mode energy of graphene plasmons and its role in determining the local field magnitudes,” Opt. Express 26, 6214–6221 (2018).
[Crossref] [PubMed]

Q. Guo, C. Schlickriede, D. Wang, H. Liu, Y. Xiang, T. Zentgraf, and S. Zhang, “Manipulation of vector beam polarization with geometric metasurfaces,” Opt. Express 25, 14300–14307 (2017).
[Crossref] [PubMed]

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref] [PubMed]

Zhang, Y.

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light. Sci. & Appl. 8, 16 (2019).
[Crossref]

S. Chen, Z. Li, Y. Zhang, H. Cheng, and J. Tian, “Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics,” Adv. Opt. Mater. 6, 1800104 (2018).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref] [PubMed]

Zhao, Z.

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10, 19154–19161 (2018).
[Crossref] [PubMed]

H. Zhang, E. Bekyarova, J. Huang, Z. Zhao, W. Bao, F. Wang, R. C. Haddon, and C. N. Lau, “Aryl functionalization as a route to band gap engineering in single layer graphene devices,” Nano Lett. 11, 4047–4051 (2011).
[Crossref] [PubMed]

Zheng, G.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref] [PubMed]

Zhou, J.

B. Lu, J. Deng, Q. Li, S. Zhang, J. Zhou, L. Zhou, and Y. Chen, “Reconstructing a plasmonic metasurface for a broadband high–efficiency optical vortex in the visible frequency,” Nanoscale 10, 12378–12385 (2018).
[Crossref] [PubMed]

B. Lu, J. Deng, Q. Li, S. Zhang, J. Zhou, L. Zhou, and Y. Chen, “Reconstructing a plasmonic metasurface for a broadband high–efficiency optical vortex in the visible frequency,” Nanoscale 10, 12378–12385 (2018).
[Crossref] [PubMed]

Zhou, L.

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light. Sci. & Appl. 8, 16 (2019).
[Crossref]

B. Lu, J. Deng, Q. Li, S. Zhang, J. Zhou, L. Zhou, and Y. Chen, “Reconstructing a plasmonic metasurface for a broadband high–efficiency optical vortex in the visible frequency,” Nanoscale 10, 12378–12385 (2018).
[Crossref] [PubMed]

B. Lu, J. Deng, Q. Li, S. Zhang, J. Zhou, L. Zhou, and Y. Chen, “Reconstructing a plasmonic metasurface for a broadband high–efficiency optical vortex in the visible frequency,” Nanoscale 10, 12378–12385 (2018).
[Crossref] [PubMed]

Zhou, X.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light. Sci. Appl. 4, e290 (2015).
[Crossref]

Zhou, Y.

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Zhu, P.

Zhu, Y.

Zou, Y.

J. Liu, Q. Li, Y. Zou, Q. Qian, Y. Jin, G. Li, K. Jiang, and S. Fan, “The dependence of graphene raman d-band on carrier density,” Nano Lett. 13, 6170–6175 (2013).
[Crossref] [PubMed]

ACS Photonics (3)

Y. Fan, N. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta–surface with graphene cut–wires,” ACS Photonics 2, 151–156 (2015).
[Crossref]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near–perfect extinction,” ACS Photonics 3, 2096–2101 (2016).
[Crossref]

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1, 347–353 (2014).
[Crossref]

Adv. Mater. (1)

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Adv. Opt. Mater. (6)

S. Chen, Z. Li, Y. Zhang, H. Cheng, and J. Tian, “Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics,” Adv. Opt. Mater. 6, 1800104 (2018).
[Crossref]

F. Lu, B. Liu, and S. Shen, “Infrared wavefront control based on graphene metasurfaces,” Adv. Opt. Mater. 2, 794–799 (2014).
[Crossref]

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4, 91–98 (2016).
[Crossref]

W. Luo, S. Xiao, Q. He, S. Sun, and Z. Lei, “Photonic spin hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3, 1102–1108 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3, 1744–1749 (2015).
[Crossref]

C. Wang, W. Liu, Z. Li, H. Cheng, Z. Li, S. Chen, and J. Tian, “Dynamically tunable deep subwavelength high-order anomalous reflection using graphene metasurfaces,” Adv. Opt. Mater. 6, 1701047 (2018).
[Crossref]

Adv. Phys. (1)

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65, 553–617 (2016).
[Crossref]

IEEE Photonics J. (2)

Y. Wang, Y. Liu, C. Liu, B. Sun, X. Sun, F. Li, and Y. Lu, “New design for transmitted phase of reflectionless metasurfaces with 2 π coverage,” IEEE Photonics J. 7, 1–8 (2015).
[Crossref]

W. Yao, L. Tang, J. Wang, C. Ji, X. Wei, and Y. Jiang, “Spectrally and spatially tunable terahertz metasurface lens based on graphene surface plasmons,” IEEE Photonics J. 10, 1–8 (2018).

Light. Sci. & Appl. (1)

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light. Sci. & Appl. 8, 16 (2019).
[Crossref]

Light. Sci. Appl. (1)

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light. Sci. Appl. 4, e290 (2015).
[Crossref]

Nano Lett. (3)

H. Zhang, E. Bekyarova, J. Huang, Z. Zhao, W. Bao, F. Wang, R. C. Haddon, and C. N. Lau, “Aryl functionalization as a route to band gap engineering in single layer graphene devices,” Nano Lett. 11, 4047–4051 (2011).
[Crossref] [PubMed]

L. Jin, Z. Dong, S. Mei, Y. F. Yu, Z. Wei, Z. Pan, S. D. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C.-W. Qiu, “Noninterleaved metasurface for (2(6)−1) spin– and wavelength–encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref] [PubMed]

J. Liu, Q. Li, Y. Zou, Q. Qian, Y. Jin, G. Li, K. Jiang, and S. Fan, “The dependence of graphene raman d-band on carrier density,” Nano Lett. 13, 6170–6175 (2013).
[Crossref] [PubMed]

Nanoscale (4)

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion–gel top gate with low control voltage,” Nanoscale 7, 19493–19500 (2015).
[Crossref] [PubMed]

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10, 19154–19161 (2018).
[Crossref] [PubMed]

B. Lu, J. Deng, Q. Li, S. Zhang, J. Zhou, L. Zhou, and Y. Chen, “Reconstructing a plasmonic metasurface for a broadband high–efficiency optical vortex in the visible frequency,” Nanoscale 10, 12378–12385 (2018).
[Crossref] [PubMed]

B. Lu, J. Deng, Q. Li, S. Zhang, J. Zhou, L. Zhou, and Y. Chen, “Reconstructing a plasmonic metasurface for a broadband high–efficiency optical vortex in the visible frequency,” Nanoscale 10, 12378–12385 (2018).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

K. Y. Bliokh, F. J. Rodriguezfortuno, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Opto–Electronic Adv. (1)

A. Nemati, Q. Wang, M. Hong, and J. Teng, “Tunable and reconfigurable metasurfaces and metadevices,” Opto–Electronic Adv. 01, 180009 (2018).
[Crossref]

Photonics Res. (1)

Y. Xiang, X. Jiang, Q. You, J. Guo, and X. Dai, “Enhanced spin hall effect of reflected light with guided-wave surface plasmon resonance,” Photonics Res. 5, 467–472 (2017).
[Crossref]

Phys. Rev. Lett. (1)

F. Pardo, P. Bouchon, R. Haidar, and J. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107, 093902 (2011).
[Crossref] [PubMed]

Plasmonics (1)

X. Jiang, Q. Wang, J. Guo, S. Chen, X. Dai, and Y. Xiang, “Enhanced photonic spin hall effect with a bimetallic film surface plasmon resonance,” Plasmonics 13, 1467–1473 (2018).
[Crossref]

Sci. Reports (1)

D. Wang, L. C. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Reports 5, 15020 (2015).
[Crossref]

Science (3)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref] [PubMed]

H. Ren, X. Li, Q. Zhang, and M. Gu, “On–chip noninterference angular momentum multiplexing of broadband light,” Science 352, 805–809 (2016).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The proposed single element: H1 = 4.5 μm, H2 = 0.8 μm, W1 = 1.6 μm, W2 = 1 μm, W3 = 0.3 μm and the separation distance L = 4 μm in both the x and y directions; (b) Simulation results of the polarization reflection coefficient and the circular polarization reflection coefficient versus the incident wave frequency; (c) Simulation results of phase difference for the x- and y- polarized incident waves versus the incident wave frequency; (d) The phase difference between the incident and reflected light 10 μm above the metasurface and the circular cross-polarization coefficients versus the rotated angle of the proposed element at 10 THz.
Fig. 2
Fig. 2 (a) Schematic of the proposed PSHE metasurface; (b) Phase shift profile of the reflected light and rotated angle distribution with 18 elements for one period; (c) Reflected angle versus period length; Electric field maps for the LCP (left) and RCP (right) components with (d) 18 elements, (e) 9 elements and (f) 27 elements for one period at 10 THz.
Fig. 3
Fig. 3 (a) Schematic of the flat lens metasurface; (b) reflected phase shift profile and rotation angle distribution of the proposed metasurface; electric field maps for the (c) RCP and (d) LCP components; (e) Electric field intensity map of the reflected LCP component; (f) Normalized intensity along x direction through focal point at z=47 μm.
Fig. 4
Fig. 4 (a) Reflected phase shift profile and rotation angle distribution of the proposed metasurface; (b) Electric field map for the RCP component; (c) Electric field map for the LCP component; (d) Intensity map of the reflected LCP light.
Fig. 5
Fig. 5 (a) Circular cross-polarization reflection coefficient as a function of the Fermi energy and the incident wave frequency; (b) PSHE metasurface electric field maps for the LCP (left) and RCP (right) components with 18 elements at 11 THz; (c) Flat lens metasurface electric field map for the LCP component; (d) Flat lens metasurface electric field map for the RCP component.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

σ total ( ω , E f ) = e 2 E f π 2 i ω + i τ 1 ,
R ( θ ) = r 1 ( θ ) R r ( θ ) ,
E ref RCP = R cir ( θ ) RCP = 1 2 ( r x x + r y y ) RCP + 1 2 ( r x x r y y ) LCP e i 2 θ ,
E ref LCP = R cir ( θ ) LCP = 1 2 ( r x x + r y y ) LCP + 1 2 ( r x x r y y ) RCP e i 2 θ .
sin θ r = λ 2 π d ϕ d x = { + λ NL , LCP λ NL , RCP ,
Δ ϕ ( x ) = k ( f f 2 + ( x x 0 ) 2 ) ,
θ ( x ) = Δ ϕ ( x ) / 2 .

Metrics