Abstract

A 75-cm-long circular-core polymer waveguide compatible with standard 50-μm-core multimode fibers (MMFs) is designed and fabricated by using a direct inscribing method for high-speed and high-density optical interconnects. The fabricated waveguide has low loss (<0.044 dB/cm at 850 nm) and low crosstalk (<−34 dB with a core pitch of 62.5 μm) with a negligible coupling loss with the MMFs. It also exhibits a low bending loss (<0.08 dB/mm with a bending radius of 4 mm), which agrees well with calculated results. Error-free NRZ data transmission over the 75-cm-long waveguide at 25 Gb/s is demonstrated, and 4 × 25 Gb/s short wavelength division multiplexing (SWDM) is realized on a straight waveguide. Moreover, a two-layer waveguide and a 3-dimensional (3D) Y-splitter/combiner are also fabricated for 3D integration.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm

Xiao Xu, Lin Ma, Shoulin Jiang, and Zuyuan He
Opt. Express 25(21) 25689-25696 (2017)

Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the Mosquito method

Ryota Kinoshita, Daisuke Suganuma, and Takaaki Ishigure
Opt. Express 22(7) 8426-8437 (2014)

Polymer waveguide with 4-channel graded-index circular cores for parallel optical interconnects

Takaaki Ishigure and Yusuke Takeyoshi
Opt. Express 15(9) 5843-5850 (2007)

References

  • View by:
  • |
  • |
  • |

  1. E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, “Realistic end-to-end simulation of the optoelectronic links and comparison with the electrical interconnections for system-on-chip applications,” J. Lightw. Technol. 19, 1532 (2001).
    [Crossref]
  2. R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23, 4736–4750 (2015).
    [Crossref] [PubMed]
  3. R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, and D. R. Selviah, “Firstlight: Pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” J. Lightw. Technol. 30, 3316–3329 (2012).
    [Crossref]
  4. F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using cmos-based transceivers,” IEEE Trans. Adv. Packag. 32, 345–359 (2009).
    [Crossref]
  5. S. Gross and M. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4, 332–352 (2015).
    [Crossref]
  6. N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19, 17758–17765 (2011).
    [Crossref] [PubMed]
  7. N. Bamiedakis, J. Chen, P. Westbergh, J. S. Gustavsson, A. Larsson, R. V. Penty, and I. H. White, “40 Gb/s data transmission over a 1-m-long multimode polymer spiral waveguide for board-level optical interconnects,” J. Lightw. Technol. 33, 882–888 (2014).
    [Crossref]
  8. N. Bamiedakis, J. Wei, J. Chen, P. Westbergh, A. Larsson, R. V. Penty, and I. H. White, “56 Gb/s PAM-4 data transmission over a 1 m long multimode polymer interconnect,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp. 1–2.
  9. K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19, 3600310 (2013).
    [Crossref]
  10. H. Zhang, X. Yang, L. Ma, and Z. He, “Polymer waveguide jumper with 3D over-crossing structure for high-density on-board optical interconnects application,” in Asia Communications and Photonics Conference, (Optical Society of America, 2017), pp. Su4D–2.
    [Crossref]
  11. X. Yang, L. Ma, M. Immonen, L. Zhu, X. Shi, and Z. He, “Large-size directly inscribed polymer waveguide device for card-to-card optical interconnect application,” in Optical Interconnects XIX, (International Society for Optics and Photonics, 2019), pp. 1092405.
  12. R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the mosquito method,” Opt. Express 22, 8426–8437 (2014).
    [Crossref] [PubMed]
  13. K. Yasuhara, F. Yu, and T. Ishigure, “Circular core single-mode polymer optical waveguide fabricated using the mosquito method with low loss at 1310/1550 nm,” Opt. Express 25, 8524–8533 (2017).
    [Crossref] [PubMed]
  14. X. Xu, L. Ma, S. Jiang, and Z. He, “Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm,” Opt. Express 25, 25689–25696 (2017).
    [Crossref] [PubMed]
  15. X. Xu, L. Ma, and Z. He, “Single-mode polymer waveguide with circular core operating at 1550 nm for high-density and highspeed optical interconnect applications,” in 2017 IEEE CPMT Symposium Japan (ICSJ), (IEEE, 2017), pp. 177–180.
    [Crossref]
  16. X. Xu, L. Ma, and Z. He, “3D polymer directional coupler for on-board optical interconnects at 1550 nm,” Opt. Express 26, 16344–16351 (2018).
    [Crossref] [PubMed]
  17. X. Xu, L. Ma, C. Marushima, T. Ishigure, and Z. He, “Design and fabrication of broadband polymer mode (de) multiplexer using a direct inscribing method,” IEEE Photonics J. 10, 1–8 (2018).
  18. K. Date, K. Fukagata, and T. Ishigure, “Core position alignment in polymer optical waveguides fabricated using the mosquito method,” Opt. Express 26, 15632–15641 (2018).
    [Crossref] [PubMed]

2018 (3)

2017 (2)

2015 (2)

2014 (2)

N. Bamiedakis, J. Chen, P. Westbergh, J. S. Gustavsson, A. Larsson, R. V. Penty, and I. H. White, “40 Gb/s data transmission over a 1-m-long multimode polymer spiral waveguide for board-level optical interconnects,” J. Lightw. Technol. 33, 882–888 (2014).
[Crossref]

R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the mosquito method,” Opt. Express 22, 8426–8437 (2014).
[Crossref] [PubMed]

2013 (1)

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19, 3600310 (2013).
[Crossref]

2012 (1)

R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, and D. R. Selviah, “Firstlight: Pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” J. Lightw. Technol. 30, 3316–3329 (2012).
[Crossref]

2011 (1)

2009 (1)

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using cmos-based transceivers,” IEEE Trans. Adv. Packag. 32, 345–359 (2009).
[Crossref]

2001 (1)

E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, “Realistic end-to-end simulation of the optoelectronic links and comparison with the electrical interconnections for system-on-chip applications,” J. Lightw. Technol. 19, 1532 (2001).
[Crossref]

Baghsiahi, H.

R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, and D. R. Selviah, “Firstlight: Pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” J. Lightw. Technol. 30, 3316–3329 (2012).
[Crossref]

Baks, C. W.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using cmos-based transceivers,” IEEE Trans. Adv. Packag. 32, 345–359 (2009).
[Crossref]

Bamiedakis, N.

N. Bamiedakis, J. Chen, P. Westbergh, J. S. Gustavsson, A. Larsson, R. V. Penty, and I. H. White, “40 Gb/s data transmission over a 1-m-long multimode polymer spiral waveguide for board-level optical interconnects,” J. Lightw. Technol. 33, 882–888 (2014).
[Crossref]

N. Bamiedakis, J. Wei, J. Chen, P. Westbergh, A. Larsson, R. V. Penty, and I. H. White, “56 Gb/s PAM-4 data transmission over a 1 m long multimode polymer interconnect,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp. 1–2.

Budd, R.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using cmos-based transceivers,” IEEE Trans. Adv. Packag. 32, 345–359 (2009).
[Crossref]

Chen, J.

N. Bamiedakis, J. Chen, P. Westbergh, J. S. Gustavsson, A. Larsson, R. V. Penty, and I. H. White, “40 Gb/s data transmission over a 1-m-long multimode polymer spiral waveguide for board-level optical interconnects,” J. Lightw. Technol. 33, 882–888 (2014).
[Crossref]

N. Bamiedakis, J. Wei, J. Chen, P. Westbergh, A. Larsson, R. V. Penty, and I. H. White, “56 Gb/s PAM-4 data transmission over a 1 m long multimode polymer interconnect,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp. 1–2.

Dangel, R.

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23, 4736–4750 (2015).
[Crossref] [PubMed]

R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, and D. R. Selviah, “Firstlight: Pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” J. Lightw. Technol. 30, 3316–3329 (2012).
[Crossref]

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using cmos-based transceivers,” IEEE Trans. Adv. Packag. 32, 345–359 (2009).
[Crossref]

Date, K.

Doany, F. E.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using cmos-based transceivers,” IEEE Trans. Adv. Packag. 32, 345–359 (2009).
[Crossref]

Fukagata, K.

Georgakilas, A.

E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, “Realistic end-to-end simulation of the optoelectronic links and comparison with the electrical interconnections for system-on-chip applications,” J. Lightw. Technol. 19, 1532 (2001).
[Crossref]

Graham-Jones, J.

R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, and D. R. Selviah, “Firstlight: Pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” J. Lightw. Technol. 30, 3316–3329 (2012).
[Crossref]

Gross, S.

S. Gross and M. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4, 332–352 (2015).
[Crossref]

Gustavsson, J. S.

N. Bamiedakis, J. Chen, P. Westbergh, J. S. Gustavsson, A. Larsson, R. V. Penty, and I. H. White, “40 Gb/s data transmission over a 1-m-long multimode polymer spiral waveguide for board-level optical interconnects,” J. Lightw. Technol. 33, 882–888 (2014).
[Crossref]

Halkias, G.

E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, “Realistic end-to-end simulation of the optoelectronic links and comparison with the electrical interconnections for system-on-chip applications,” J. Lightw. Technol. 19, 1532 (2001).
[Crossref]

Haralabidis, N.

E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, “Realistic end-to-end simulation of the optoelectronic links and comparison with the electrical interconnections for system-on-chip applications,” J. Lightw. Technol. 19, 1532 (2001).
[Crossref]

He, Z.

X. Xu, L. Ma, and Z. He, “3D polymer directional coupler for on-board optical interconnects at 1550 nm,” Opt. Express 26, 16344–16351 (2018).
[Crossref] [PubMed]

X. Xu, L. Ma, C. Marushima, T. Ishigure, and Z. He, “Design and fabrication of broadband polymer mode (de) multiplexer using a direct inscribing method,” IEEE Photonics J. 10, 1–8 (2018).

X. Xu, L. Ma, S. Jiang, and Z. He, “Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm,” Opt. Express 25, 25689–25696 (2017).
[Crossref] [PubMed]

X. Yang, L. Ma, M. Immonen, L. Zhu, X. Shi, and Z. He, “Large-size directly inscribed polymer waveguide device for card-to-card optical interconnect application,” in Optical Interconnects XIX, (International Society for Optics and Photonics, 2019), pp. 1092405.

X. Xu, L. Ma, and Z. He, “Single-mode polymer waveguide with circular core operating at 1550 nm for high-density and highspeed optical interconnect applications,” in 2017 IEEE CPMT Symposium Japan (ICSJ), (IEEE, 2017), pp. 177–180.
[Crossref]

H. Zhang, X. Yang, L. Ma, and Z. He, “Polymer waveguide jumper with 3D over-crossing structure for high-density on-board optical interconnects application,” in Asia Communications and Photonics Conference, (Optical Society of America, 2017), pp. Su4D–2.
[Crossref]

Hofrichter, J.

Horst, F.

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23, 4736–4750 (2015).
[Crossref] [PubMed]

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using cmos-based transceivers,” IEEE Trans. Adv. Packag. 32, 345–359 (2009).
[Crossref]

Immonen, M.

X. Yang, L. Ma, M. Immonen, L. Zhu, X. Shi, and Z. He, “Large-size directly inscribed polymer waveguide device for card-to-card optical interconnect application,” in Optical Interconnects XIX, (International Society for Optics and Photonics, 2019), pp. 1092405.

Ishigure, T.

Jiang, S.

Jubin, D.

Kash, J. A.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using cmos-based transceivers,” IEEE Trans. Adv. Packag. 32, 345–359 (2009).
[Crossref]

Kinoshita, R.

Kuchta, D. M.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using cmos-based transceivers,” IEEE Trans. Adv. Packag. 32, 345–359 (2009).
[Crossref]

Kyriakis-Bitzaros, E. D.

E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, “Realistic end-to-end simulation of the optoelectronic links and comparison with the electrical interconnections for system-on-chip applications,” J. Lightw. Technol. 19, 1532 (2001).
[Crossref]

Lagadas, M.

E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, “Realistic end-to-end simulation of the optoelectronic links and comparison with the electrical interconnections for system-on-chip applications,” J. Lightw. Technol. 19, 1532 (2001).
[Crossref]

Larsson, A.

N. Bamiedakis, J. Chen, P. Westbergh, J. S. Gustavsson, A. Larsson, R. V. Penty, and I. H. White, “40 Gb/s data transmission over a 1-m-long multimode polymer spiral waveguide for board-level optical interconnects,” J. Lightw. Technol. 33, 882–888 (2014).
[Crossref]

N. Bamiedakis, J. Wei, J. Chen, P. Westbergh, A. Larsson, R. V. Penty, and I. H. White, “56 Gb/s PAM-4 data transmission over a 1 m long multimode polymer interconnect,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp. 1–2.

Libsch, F.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using cmos-based transceivers,” IEEE Trans. Adv. Packag. 32, 345–359 (2009).
[Crossref]

Lipson, M.

Ma, L.

X. Xu, L. Ma, and Z. He, “3D polymer directional coupler for on-board optical interconnects at 1550 nm,” Opt. Express 26, 16344–16351 (2018).
[Crossref] [PubMed]

X. Xu, L. Ma, C. Marushima, T. Ishigure, and Z. He, “Design and fabrication of broadband polymer mode (de) multiplexer using a direct inscribing method,” IEEE Photonics J. 10, 1–8 (2018).

X. Xu, L. Ma, S. Jiang, and Z. He, “Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm,” Opt. Express 25, 25689–25696 (2017).
[Crossref] [PubMed]

X. Yang, L. Ma, M. Immonen, L. Zhu, X. Shi, and Z. He, “Large-size directly inscribed polymer waveguide device for card-to-card optical interconnect application,” in Optical Interconnects XIX, (International Society for Optics and Photonics, 2019), pp. 1092405.

X. Xu, L. Ma, and Z. He, “Single-mode polymer waveguide with circular core operating at 1550 nm for high-density and highspeed optical interconnect applications,” in 2017 IEEE CPMT Symposium Japan (ICSJ), (IEEE, 2017), pp. 177–180.
[Crossref]

H. Zhang, X. Yang, L. Ma, and Z. He, “Polymer waveguide jumper with 3D over-crossing structure for high-density on-board optical interconnects application,” in Asia Communications and Photonics Conference, (Optical Society of America, 2017), pp. Su4D–2.
[Crossref]

Marushima, C.

X. Xu, L. Ma, C. Marushima, T. Ishigure, and Z. He, “Design and fabrication of broadband polymer mode (de) multiplexer using a direct inscribing method,” IEEE Photonics J. 10, 1–8 (2018).

Meier, N.

Milward, D.

R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, and D. R. Selviah, “Firstlight: Pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” J. Lightw. Technol. 30, 3316–3329 (2012).
[Crossref]

Moisiadis, Y.

E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, “Realistic end-to-end simulation of the optoelectronic links and comparison with the electrical interconnections for system-on-chip applications,” J. Lightw. Technol. 19, 1532 (2001).
[Crossref]

Offrein, B. J.

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23, 4736–4750 (2015).
[Crossref] [PubMed]

R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, and D. R. Selviah, “Firstlight: Pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” J. Lightw. Technol. 30, 3316–3329 (2012).
[Crossref]

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using cmos-based transceivers,” IEEE Trans. Adv. Packag. 32, 345–359 (2009).
[Crossref]

Papakonstantinou, I.

R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, and D. R. Selviah, “Firstlight: Pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” J. Lightw. Technol. 30, 3316–3329 (2012).
[Crossref]

Penty, R. V.

N. Bamiedakis, J. Chen, P. Westbergh, J. S. Gustavsson, A. Larsson, R. V. Penty, and I. H. White, “40 Gb/s data transmission over a 1-m-long multimode polymer spiral waveguide for board-level optical interconnects,” J. Lightw. Technol. 33, 882–888 (2014).
[Crossref]

N. Bamiedakis, J. Wei, J. Chen, P. Westbergh, A. Larsson, R. V. Penty, and I. H. White, “56 Gb/s PAM-4 data transmission over a 1 m long multimode polymer interconnect,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp. 1–2.

Pepeljugoski, P.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using cmos-based transceivers,” IEEE Trans. Adv. Packag. 32, 345–359 (2009).
[Crossref]

Pitwon, R. C. A.

R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, and D. R. Selviah, “Firstlight: Pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” J. Lightw. Technol. 30, 3316–3329 (2012).
[Crossref]

Porta, A. La

Schares, L.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using cmos-based transceivers,” IEEE Trans. Adv. Packag. 32, 345–359 (2009).
[Crossref]

Schow, C. L.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using cmos-based transceivers,” IEEE Trans. Adv. Packag. 32, 345–359 (2009).
[Crossref]

Selviah, D. R.

R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, and D. R. Selviah, “Firstlight: Pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” J. Lightw. Technol. 30, 3316–3329 (2012).
[Crossref]

Sherwood-Droz, N.

Shi, X.

X. Yang, L. Ma, M. Immonen, L. Zhu, X. Shi, and Z. He, “Large-size directly inscribed polymer waveguide device for card-to-card optical interconnect application,” in Optical Interconnects XIX, (International Society for Optics and Photonics, 2019), pp. 1092405.

Soganci, I. M.

Soma, K.

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19, 3600310 (2013).
[Crossref]

Suganuma, D.

Wang, K.

R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, and D. R. Selviah, “Firstlight: Pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” J. Lightw. Technol. 30, 3316–3329 (2012).
[Crossref]

Wei, J.

N. Bamiedakis, J. Wei, J. Chen, P. Westbergh, A. Larsson, R. V. Penty, and I. H. White, “56 Gb/s PAM-4 data transmission over a 1 m long multimode polymer interconnect,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp. 1–2.

Weiss, J.

Westbergh, P.

N. Bamiedakis, J. Chen, P. Westbergh, J. S. Gustavsson, A. Larsson, R. V. Penty, and I. H. White, “40 Gb/s data transmission over a 1-m-long multimode polymer spiral waveguide for board-level optical interconnects,” J. Lightw. Technol. 33, 882–888 (2014).
[Crossref]

N. Bamiedakis, J. Wei, J. Chen, P. Westbergh, A. Larsson, R. V. Penty, and I. H. White, “56 Gb/s PAM-4 data transmission over a 1 m long multimode polymer interconnect,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp. 1–2.

White, I. H.

N. Bamiedakis, J. Chen, P. Westbergh, J. S. Gustavsson, A. Larsson, R. V. Penty, and I. H. White, “40 Gb/s data transmission over a 1-m-long multimode polymer spiral waveguide for board-level optical interconnects,” J. Lightw. Technol. 33, 882–888 (2014).
[Crossref]

N. Bamiedakis, J. Wei, J. Chen, P. Westbergh, A. Larsson, R. V. Penty, and I. H. White, “56 Gb/s PAM-4 data transmission over a 1 m long multimode polymer interconnect,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp. 1–2.

Withford, M.

S. Gross and M. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4, 332–352 (2015).
[Crossref]

Xu, X.

X. Xu, L. Ma, and Z. He, “3D polymer directional coupler for on-board optical interconnects at 1550 nm,” Opt. Express 26, 16344–16351 (2018).
[Crossref] [PubMed]

X. Xu, L. Ma, C. Marushima, T. Ishigure, and Z. He, “Design and fabrication of broadband polymer mode (de) multiplexer using a direct inscribing method,” IEEE Photonics J. 10, 1–8 (2018).

X. Xu, L. Ma, S. Jiang, and Z. He, “Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm,” Opt. Express 25, 25689–25696 (2017).
[Crossref] [PubMed]

X. Xu, L. Ma, and Z. He, “Single-mode polymer waveguide with circular core operating at 1550 nm for high-density and highspeed optical interconnect applications,” in 2017 IEEE CPMT Symposium Japan (ICSJ), (IEEE, 2017), pp. 177–180.
[Crossref]

Yang, X.

H. Zhang, X. Yang, L. Ma, and Z. He, “Polymer waveguide jumper with 3D over-crossing structure for high-density on-board optical interconnects application,” in Asia Communications and Photonics Conference, (Optical Society of America, 2017), pp. Su4D–2.
[Crossref]

X. Yang, L. Ma, M. Immonen, L. Zhu, X. Shi, and Z. He, “Large-size directly inscribed polymer waveguide device for card-to-card optical interconnect application,” in Optical Interconnects XIX, (International Society for Optics and Photonics, 2019), pp. 1092405.

Yasuhara, K.

Yu, F.

Zhang, H.

H. Zhang, X. Yang, L. Ma, and Z. He, “Polymer waveguide jumper with 3D over-crossing structure for high-density on-board optical interconnects application,” in Asia Communications and Photonics Conference, (Optical Society of America, 2017), pp. Su4D–2.
[Crossref]

Zhu, L.

X. Yang, L. Ma, M. Immonen, L. Zhu, X. Shi, and Z. He, “Large-size directly inscribed polymer waveguide device for card-to-card optical interconnect application,” in Optical Interconnects XIX, (International Society for Optics and Photonics, 2019), pp. 1092405.

IEEE J. Sel. Top. Quantum Electron. (1)

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19, 3600310 (2013).
[Crossref]

IEEE Photonics J. (1)

X. Xu, L. Ma, C. Marushima, T. Ishigure, and Z. He, “Design and fabrication of broadband polymer mode (de) multiplexer using a direct inscribing method,” IEEE Photonics J. 10, 1–8 (2018).

IEEE Trans. Adv. Packag. (1)

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using cmos-based transceivers,” IEEE Trans. Adv. Packag. 32, 345–359 (2009).
[Crossref]

J. Lightw. Technol. (3)

E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, “Realistic end-to-end simulation of the optoelectronic links and comparison with the electrical interconnections for system-on-chip applications,” J. Lightw. Technol. 19, 1532 (2001).
[Crossref]

N. Bamiedakis, J. Chen, P. Westbergh, J. S. Gustavsson, A. Larsson, R. V. Penty, and I. H. White, “40 Gb/s data transmission over a 1-m-long multimode polymer spiral waveguide for board-level optical interconnects,” J. Lightw. Technol. 33, 882–888 (2014).
[Crossref]

R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, and D. R. Selviah, “Firstlight: Pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” J. Lightw. Technol. 30, 3316–3329 (2012).
[Crossref]

Nanophotonics (1)

S. Gross and M. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4, 332–352 (2015).
[Crossref]

Opt. Express (7)

Other (4)

X. Xu, L. Ma, and Z. He, “Single-mode polymer waveguide with circular core operating at 1550 nm for high-density and highspeed optical interconnect applications,” in 2017 IEEE CPMT Symposium Japan (ICSJ), (IEEE, 2017), pp. 177–180.
[Crossref]

N. Bamiedakis, J. Wei, J. Chen, P. Westbergh, A. Larsson, R. V. Penty, and I. H. White, “56 Gb/s PAM-4 data transmission over a 1 m long multimode polymer interconnect,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp. 1–2.

H. Zhang, X. Yang, L. Ma, and Z. He, “Polymer waveguide jumper with 3D over-crossing structure for high-density on-board optical interconnects application,” in Asia Communications and Photonics Conference, (Optical Society of America, 2017), pp. Su4D–2.
[Crossref]

X. Yang, L. Ma, M. Immonen, L. Zhu, X. Shi, and Z. He, “Large-size directly inscribed polymer waveguide device for card-to-card optical interconnect application,” in Optical Interconnects XIX, (International Society for Optics and Photonics, 2019), pp. 1092405.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 A micrograph of the fabricated multimode waveguide.
Fig. 2
Fig. 2 Experimental setup for loss measurement.
Fig. 3
Fig. 3 Cross-sectional micrographs of waveguides with core pitch of (a) 62.5 μm ; (b) 100 μm ; (c) 125 μm ; (d) 200 μm and (e) 250 μm.
Fig. 4
Fig. 4 (a) Normalized received optical power as a function of the horizontal offset of the output fiber and (b) crosstalk of waveguides with different core pitches.
Fig. 5
Fig. 5 Calculated and measured bending loss of waveguides with different bending radii.
Fig. 6
Fig. 6 A photograph of the 75-cm-long multimode waveguide in spiral design.
Fig. 7
Fig. 7 Experimental setup of (a) back-to-back link and (b) waveguide link for high-speed data transmission.
Fig. 8
Fig. 8 BER curves of back-to-back and 75-cm-long waveguide link at 10 and 25 Gb/s.
Fig. 9
Fig. 9 Eye-diagrams of back-to-back and 75-cm-long waveguide link at (a) 10 Gb/s and (b) 25 Gb/s.
Fig. 10
Fig. 10 BER curves at 25 Gb/s of back-to-back and waveguide link at (a) 850 nm, (b) 880 nm, (c) 910 nm and (d) 940 nm, respectively.
Fig. 11
Fig. 11 Eye-diagrams at 25 Gb/s of back-to-back and waveguide link at (a) 850 nm, (b) 880 nm, (c) 910 nm and (d) 940 nm, respectively.
Fig. 12
Fig. 12 A cross-sectional micrograph of the two-layer waveguide.
Fig. 13
Fig. 13 (a) The relative position of each core and (b) the measured insertion loss of all channels in the two-layer waveguide.
Fig. 14
Fig. 14 Schematic and cross-sectional micrographs of the fabricated 3D 1 × 4 splitter/combiner.
Fig. 15
Fig. 15 Measured insertion loss of the fabricated device working as (a) a 1 × 4 splitter and (b) a 4 × 1 combiner.

Tables (2)

Tables Icon

Table 1 Parameters in Fabricating Multimode Polymer Waveguide With the Mosquito Method

Tables Icon

Table 2 Measurement Results of Losses

Metrics