Abstract

A new method (FTIR continuous dn / dT method, n is refractive index and T temperature) for measuring the continuous thermo-optic coefficients of thin transparent films in the mid-infrared (MIR) spectral region is introduced. The technique is based on Fourier transform infrared (FTIR) transmission spectra measured at different temperatures. It is shown that this method can successfully determine the thermo-optic coefficient of chalcogenide glass thin films (of batch compositions Ge20Sb10Se70 at. % (atomic %) and Ge16As24Se15.5Te44.5 at. %) over the wavelength range from 2 to 25 µm. The measurement precision error is less than ± 11.5 ppm / °C over the wavelength range from 6 to 20 µm. The precision is much better than that provided by the prism minimum deviation method or an improved Swanepoel method.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Determining small refractive index contrast in chalcogenide-glass pairs at mid-infrared wavelengths

Y. Fang, D. Furniss, D. Jayasuriya, H. Parnell, R. Crane, Z. Q. Tang, E. Barney, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, I. Vurgaftman, J. R. Meyer, A. B. Seddon, and T. M. Benson
Opt. Mater. Express 9(5) 2022-2036 (2019)

High purity Ge-Sb-Se/S step index optical fibers

H. Parnell, D. Furniss, Z. Tang, Y. Fang, T. M. Benson, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, I. Vurgaftman, J. R. Meyer, and A. B. Seddon
Opt. Mater. Express 9(9) 3616-3626 (2019)

Simultaneous measurement of thermo-optic and stress-optic coefficients of polymer thin films using prism coupler technique

Md. Faruque Hossain, Hau Ping Chan, and Mohammad Afsar Uddin
Appl. Opt. 49(3) 403-408 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257(2), 6–16 (1999).
    [Crossref]
  2. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
    [Crossref]
  3. A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184(1), 44–50 (1995).
    [Crossref]
  4. B. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
    [Crossref]
  5. D. Lezal, “Chalcogenide glasses-survey and progress,” J. Optoelectron. Adv. Mater. 5(1), 23–34 (2003).
  6. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
    [Crossref]
  7. A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. McBrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
    [Crossref]
  8. N. S. Abdel-Moneim, C. J. Mellor, T. M. Benson, D. Furniss, and A. B. Seddon, “Fabrication of stable, low loss optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip,” Opt. Quantum Electron. 47(2), 351–361 (2015).
    [Crossref]
  9. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. B. Seddon, and O. Band, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  10. J. Hu, C. R. Menyuk, C. Wei, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Highly efficient cascaded amplification using Pr3+- doped mid-infrared chalcogenide fiber amplifiers,” Opt. Lett. 40(16), 3687–3690 (2015).
    [Crossref]
  11. M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, J. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR Emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
    [Crossref]
  12. M. Shen, D. Furniss, Z. Tang, E. Barny, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Modeling of resonantly pumped mid-infrared Pr 3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express 26(18), 23641–23660 (2018).
    [Crossref]
  13. X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519–523 (2003).
    [Crossref]
  14. D. Cha, H. Kim, Y. Hwang, J. Jeong, and J. Kim, “Fabrication of molded chalcogenide-glass lens for thermal imaging applications,” Appl. Opt. 51(23), 5649–5656 (2012).
    [Crossref]
  15. B. Gleason, K. Richardson, L. Sisken, and C. Smith, “Refractive index and thermo-optic coefficients of Ge-As-Se chalcogenide glasses,” Int. J. Appl. Glass Sci. 7(3), 374–383 (2016).
    [Crossref]
  16. Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
    [Crossref]
  17. J. D. Musgraves, S. Danto, and K. Richardson, “Thermal properties of chalcogenide glasses,” In Chalcogenide Glasses, 82–112 (2014).
  18. Amorphous Materials Inc, “AMTIR-2 Information” (consulted December 2018).
  19. Schott Glass Inc, “Schott infrared chalcogenide glasses – IRG 6” (2013).
  20. D. Poelman and P. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D: Appl. Phys. 36(15), 1850–1857 (2003).
    [Crossref]
  21. Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
    [Crossref]
  22. R. Swanepoel, “Determining refractive index and thickness of thin films from wavelength measurements only,” J. Opt. Soc. Am. A 2(8), 1339–1343 (1985).
    [Crossref]
  23. M. D. O’Donnell, D. Furniss, V. K. Tikhomirov, and A. B. Seddon, “Low loss infrared fluorotellurite optical fibre,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B 47(2), 121–126 (2006).
  24. H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
    [Crossref]
  25. V. Q. Nguyen, J. S. Sanghera, F. H. Kung, P. C. Pureza, and I. D. Aggarwal, “Very large temperature-induced absorptive loss in high Te-containing chalcogenide fibers,” J. Lightwave Technol. 18(10), 1395–1401 (2000).
    [Crossref]
  26. M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15(5), 855–858 (1974).
    [Crossref]

2018 (1)

2017 (3)

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, J. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR Emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

2016 (1)

B. Gleason, K. Richardson, L. Sisken, and C. Smith, “Refractive index and thermo-optic coefficients of Ge-As-Se chalcogenide glasses,” Int. J. Appl. Glass Sci. 7(3), 374–383 (2016).
[Crossref]

2015 (2)

J. Hu, C. R. Menyuk, C. Wei, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Highly efficient cascaded amplification using Pr3+- doped mid-infrared chalcogenide fiber amplifiers,” Opt. Lett. 40(16), 3687–3690 (2015).
[Crossref]

N. S. Abdel-Moneim, C. J. Mellor, T. M. Benson, D. Furniss, and A. B. Seddon, “Fabrication of stable, low loss optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip,” Opt. Quantum Electron. 47(2), 351–361 (2015).
[Crossref]

2014 (2)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. B. Seddon, and O. Band, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

2012 (1)

2011 (1)

B. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

2009 (1)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

2006 (2)

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. McBrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

M. D. O’Donnell, D. Furniss, V. K. Tikhomirov, and A. B. Seddon, “Low loss infrared fluorotellurite optical fibre,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B 47(2), 121–126 (2006).

2003 (4)

D. Lezal, “Chalcogenide glasses-survey and progress,” J. Optoelectron. Adv. Mater. 5(1), 23–34 (2003).

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

D. Poelman and P. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D: Appl. Phys. 36(15), 1850–1857 (2003).
[Crossref]

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519–523 (2003).
[Crossref]

2000 (1)

1999 (1)

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257(2), 6–16 (1999).
[Crossref]

1995 (1)

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184(1), 44–50 (1995).
[Crossref]

1985 (1)

1974 (1)

M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15(5), 855–858 (1974).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. B. Seddon, and O. Band, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

Abdel-Moneim, N. S.

N. S. Abdel-Moneim, C. J. Mellor, T. M. Benson, D. Furniss, and A. B. Seddon, “Fabrication of stable, low loss optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip,” Opt. Quantum Electron. 47(2), 351–361 (2015).
[Crossref]

Adam, J.

Aggarwal, I. D.

J. Hu, C. R. Menyuk, C. Wei, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Highly efficient cascaded amplification using Pr3+- doped mid-infrared chalcogenide fiber amplifiers,” Opt. Lett. 40(16), 3687–3690 (2015).
[Crossref]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

V. Q. Nguyen, J. S. Sanghera, F. H. Kung, P. C. Pureza, and I. D. Aggarwal, “Very large temperature-induced absorptive loss in high Te-containing chalcogenide fibers,” J. Lightwave Technol. 18(10), 1395–1401 (2000).
[Crossref]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257(2), 6–16 (1999).
[Crossref]

Band, O.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. B. Seddon, and O. Band, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Bang, O.

Barny, E.

Bellec, Y.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519–523 (2003).
[Crossref]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. B. Seddon, and O. Band, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Benson, T. M.

M. Shen, D. Furniss, Z. Tang, E. Barny, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Modeling of resonantly pumped mid-infrared Pr 3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express 26(18), 23641–23660 (2018).
[Crossref]

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

N. S. Abdel-Moneim, C. J. Mellor, T. M. Benson, D. Furniss, and A. B. Seddon, “Fabrication of stable, low loss optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip,” Opt. Quantum Electron. 47(2), 351–361 (2015).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. McBrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

Cha, D.

Dantanarayana, H. G.

Danto, S.

J. D. Musgraves, S. Danto, and K. Richardson, “Thermal properties of chalcogenide glasses,” In Chalcogenide Glasses, 82–112 (2014).

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. B. Seddon, and O. Band, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Eggleton, B.

B. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

Falconi, M. C.

Fang, Y.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

Ferrari, M.

Furniss, D.

M. Shen, D. Furniss, Z. Tang, E. Barny, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Modeling of resonantly pumped mid-infrared Pr 3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express 26(18), 23641–23660 (2018).
[Crossref]

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

N. S. Abdel-Moneim, C. J. Mellor, T. M. Benson, D. Furniss, and A. B. Seddon, “Fabrication of stable, low loss optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip,” Opt. Quantum Electron. 47(2), 351–361 (2015).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. B. Seddon, and O. Band, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

M. D. O’Donnell, D. Furniss, V. K. Tikhomirov, and A. B. Seddon, “Low loss infrared fluorotellurite optical fibre,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B 47(2), 121–126 (2006).

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. McBrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

Gleason, B.

B. Gleason, K. Richardson, L. Sisken, and C. Smith, “Refractive index and thermo-optic coefficients of Ge-As-Se chalcogenide glasses,” Int. J. Appl. Glass Sci. 7(3), 374–383 (2016).
[Crossref]

Guimond, Y.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519–523 (2003).
[Crossref]

Howard, R. E.

M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15(5), 855–858 (1974).
[Crossref]

Hu, J.

Hwang, Y.

Jayasuriya, D.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

Jeong, J.

Kim, H.

Kim, J.

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. B. Seddon, and O. Band, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

Kung, F. H.

Lezal, D.

D. Lezal, “Chalcogenide glasses-survey and progress,” J. Optoelectron. Adv. Mater. 5(1), 23–34 (2003).

Loni, A.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. McBrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

Lucas, P.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

Luther-Davies, B.

B. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Macedo, P. B.

M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15(5), 855–858 (1974).
[Crossref]

Maklad, M. S.

M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15(5), 855–858 (1974).
[Crossref]

Markos, C.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

McBrearty, E. M.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. McBrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

Mellor, C. J.

N. S. Abdel-Moneim, C. J. Mellor, T. M. Benson, D. Furniss, and A. B. Seddon, “Fabrication of stable, low loss optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip,” Opt. Quantum Electron. 47(2), 351–361 (2015).
[Crossref]

Menyuk, C. R.

Miller, C. A.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. McBrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

Mohr, R. K.

M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15(5), 855–858 (1974).
[Crossref]

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. B. Seddon, and O. Band, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Moynihan, C. T.

M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15(5), 855–858 (1974).
[Crossref]

Musgraves, J. D.

J. D. Musgraves, S. Danto, and K. Richardson, “Thermal properties of chalcogenide glasses,” In Chalcogenide Glasses, 82–112 (2014).

Nazabal, V.

Nguyen, V. Q.

O’Donnell, M. D.

M. D. O’Donnell, D. Furniss, V. K. Tikhomirov, and A. B. Seddon, “Low loss infrared fluorotellurite optical fibre,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B 47(2), 121–126 (2006).

Palma, G.

Pan, W. J.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. McBrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. B. Seddon, and O. Band, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Poelman, D.

D. Poelman and P. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D: Appl. Phys. 36(15), 1850–1857 (2003).
[Crossref]

Prudenzano, F.

Pureza, P. C.

Qi, S.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. B. Seddon, and O. Band, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Richardson, K.

B. Gleason, K. Richardson, L. Sisken, and C. Smith, “Refractive index and thermo-optic coefficients of Ge-As-Se chalcogenide glasses,” Int. J. Appl. Glass Sci. 7(3), 374–383 (2016).
[Crossref]

B. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

J. D. Musgraves, S. Danto, and K. Richardson, “Thermal properties of chalcogenide glasses,” In Chalcogenide Glasses, 82–112 (2014).

Rowe, H.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. McBrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

Sanghera, J. S.

J. Hu, C. R. Menyuk, C. Wei, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Highly efficient cascaded amplification using Pr3+- doped mid-infrared chalcogenide fiber amplifiers,” Opt. Lett. 40(16), 3687–3690 (2015).
[Crossref]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

V. Q. Nguyen, J. S. Sanghera, F. H. Kung, P. C. Pureza, and I. D. Aggarwal, “Very large temperature-induced absorptive loss in high Te-containing chalcogenide fibers,” J. Lightwave Technol. 18(10), 1395–1401 (2000).
[Crossref]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257(2), 6–16 (1999).
[Crossref]

Seddon, A. B.

M. Shen, D. Furniss, Z. Tang, E. Barny, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Modeling of resonantly pumped mid-infrared Pr 3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express 26(18), 23641–23660 (2018).
[Crossref]

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

N. S. Abdel-Moneim, C. J. Mellor, T. M. Benson, D. Furniss, and A. B. Seddon, “Fabrication of stable, low loss optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip,” Opt. Quantum Electron. 47(2), 351–361 (2015).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. B. Seddon, and O. Band, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

M. D. O’Donnell, D. Furniss, V. K. Tikhomirov, and A. B. Seddon, “Low loss infrared fluorotellurite optical fibre,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B 47(2), 121–126 (2006).

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. McBrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184(1), 44–50 (1995).
[Crossref]

Sewell, P.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. McBrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

Shaw, L. B.

J. Hu, C. R. Menyuk, C. Wei, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Highly efficient cascaded amplification using Pr3+- doped mid-infrared chalcogenide fiber amplifiers,” Opt. Lett. 40(16), 3687–3690 (2015).
[Crossref]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

Shen, M.

Sisken, L.

B. Gleason, K. Richardson, L. Sisken, and C. Smith, “Refractive index and thermo-optic coefficients of Ge-As-Se chalcogenide glasses,” Int. J. Appl. Glass Sci. 7(3), 374–383 (2016).
[Crossref]

Smet, P.

D. Poelman and P. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D: Appl. Phys. 36(15), 1850–1857 (2003).
[Crossref]

Smith, C.

B. Gleason, K. Richardson, L. Sisken, and C. Smith, “Refractive index and thermo-optic coefficients of Ge-As-Se chalcogenide glasses,” Int. J. Appl. Glass Sci. 7(3), 374–383 (2016).
[Crossref]

Sojka, L.

Starecki, F.

Sujecki, S.

M. Shen, D. Furniss, Z. Tang, E. Barny, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Modeling of resonantly pumped mid-infrared Pr 3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express 26(18), 23641–23660 (2018).
[Crossref]

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. B. Seddon, and O. Band, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Swanepoel, R.

Taccheo, S.

Tang, Z.

Tang, Z. Q.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

Tikhomirov, V. K.

M. D. O’Donnell, D. Furniss, V. K. Tikhomirov, and A. B. Seddon, “Low loss infrared fluorotellurite optical fibre,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B 47(2), 121–126 (2006).

Troles, J.

Wang, R.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

Wang, Y.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

Wei, C.

Yang, A.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

Yang, Z.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

Zhang, D. M.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. McBrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

Zhang, X. H.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519–523 (2003).
[Crossref]

Zhang, Y.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. McBrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. B. Seddon, and O. Band, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

Int. J. Appl. Glass Sci. (1)

B. Gleason, K. Richardson, L. Sisken, and C. Smith, “Refractive index and thermo-optic coefficients of Ge-As-Se chalcogenide glasses,” Int. J. Appl. Glass Sci. 7(3), 374–383 (2016).
[Crossref]

J. Lightwave Technol. (2)

J. Non-Cryst. Solids (6)

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184(1), 44–50 (1995).
[Crossref]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257(2), 6–16 (1999).
[Crossref]

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. McBrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519–523 (2003).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Optoelectron. Adv. Mater. (1)

D. Lezal, “Chalcogenide glasses-survey and progress,” J. Optoelectron. Adv. Mater. 5(1), 23–34 (2003).

J. Phys. D: Appl. Phys. (1)

D. Poelman and P. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D: Appl. Phys. 36(15), 1850–1857 (2003).
[Crossref]

Nat. Photonics (2)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. B. Seddon, and O. Band, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

B. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (1)

Opt. Quantum Electron. (2)

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

N. S. Abdel-Moneim, C. J. Mellor, T. M. Benson, D. Furniss, and A. B. Seddon, “Fabrication of stable, low loss optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip,” Opt. Quantum Electron. 47(2), 351–361 (2015).
[Crossref]

Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B (1)

M. D. O’Donnell, D. Furniss, V. K. Tikhomirov, and A. B. Seddon, “Low loss infrared fluorotellurite optical fibre,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B 47(2), 121–126 (2006).

Solid State Commun. (1)

M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun. 15(5), 855–858 (1974).
[Crossref]

Other (3)

J. D. Musgraves, S. Danto, and K. Richardson, “Thermal properties of chalcogenide glasses,” In Chalcogenide Glasses, 82–112 (2014).

Amorphous Materials Inc, “AMTIR-2 Information” (consulted December 2018).

Schott Glass Inc, “Schott infrared chalcogenide glasses – IRG 6” (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. The thermal expansion coefficient (TEC) curves over the temperature range from 40 to 100 °C for (a) Ge16As24Se15.5Te44.5 at. % (Ge-As-Se-Te) and (b) Ge20Sb10Se70 at. % (Ge-Sb-Se). Linear fits (R2 =1) were performed to obtain the values of the TEC for both glasses.
Fig. 2.
Fig. 2. The transmission spectra were obtained by means of FTIR spectroscopy at normal incidence of: (a) the Ge20Sb10Se70 at. % (Ge-Sb-Se) and (b) Ge16As24Se15.5Te44.5 at. % (Ge-As-Se-Te) chalcogenide glass thin films, each measured at both temperatures of 21.6 °C and 74.6 °C.
Fig. 3.
Fig. 3. The refractive indices at different temperatures obtained using the method proposed in this paper for: (a) Ge20Sb10Se70 at. % (Ge-Sb-Se) and (b) Ge16As24Se15.5Te44.5 at. % (Ge-As-Se-Te), together with the best Sellmeier fits whose coefficients are shown in Table 1.
Fig. 4.
Fig. 4. The thermo-optic coefficient of: (a) Ge20Sb10Se70 at. % (Ge-Sb-Se), compared with the results from prism minimum deviation measurements, and (b) Ge16As24Se15.5Te44.5 at. % (Ge-As-Se-Te) compared with the results from prism measurement. The thermo-optic coefficients of Ge-Sb-Se and Ge-As-Se-Te obtained directly from the improved Swanepoel method [21] are also displayed as the dashed curves. The measurement precision error of the results obtained from the improved Swanepoel method is ± 75.5 ppm/ °C and is too large to present on the Figures.
Fig. 5.
Fig. 5. The thermo-optic coefficients of (a) Ge20Sb10Se70 at. % and (b) Ge16As24Se15.5Te44.5 at. % obtained using five sets of different Sellmeier fits (shown in Table 2) to the refractive index data points. The envelope of the dotted line shows the maximum variation over the wavelength range from 2 µm to 20 µm.
Fig. 6.
Fig. 6. The FTIR absorbance spectra of (a) a bulk ∼ 3 mm optical path-length Ge20Sb10Se70 at. % (Ge-Sb-Se) and (b) a bulk ∼ 1.5 mm optical path-length Ge16As24Se15.5Te44.5 at. % (Ge-As-Se-Te) at temperatures of 21.8 ± 0.2 °C (blue), 37.8 ± 0.2 °C (red), 55.9 ± 0.3 °C (green) and 74.0 ± 0.3 °C (purple) over the wavelength from 1 to 25 µm. Inset to Fig. 6(a) shows the red-shift of the multiphonon absorption at ∼ 17.7 µm for Ge-Sb-Se as temperature increased. Inset (i) to Fig. 6(b) shows the red-shift of the optical bandgap for Ge-As-Se-Te as temperature increased and inset (ii) to Fig. 6(b) shows the red-shift of the multiphonon absorption shoulder as temperature increased.

Tables (3)

Tables Icon

Table 1. Sellmeier coefficients for Ge20Sb10Se70 at. % (Ge-Sb-Se) and Ge16As24Se15.5Te44.5 at. % (Ge-As-Se-Te) thin films from the FTIR continuous dn / dT method described in this paper, and directly using the improved Swanepoel method [21].

Tables Icon

Table 2. The different sets of Sellmeier coefficients to the refractive index data points of Ge20Sb10Se70 at. % (Ge-Sb-Se) and Ge16As24Se15.5Te44.5 at. % (Ge-As-Se-Te).

Tables Icon

Table 3. Different sources of errors and the total errors in determining the dn/dT of Ge20Sb10Se70 at. % (Ge-Sb-Se) and Ge16As24Se15.5Te44.5 at. % (Ge-As-Se-Te) over the wavelength range from 2 to 20 µm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

2 n d = m λ
n l = m λ l 2 d l
d h = d l ( 1 + T E C × ( T h T l ) )
n h = m λ h 2 d h
n 2 = A + B 1 λ 2 λ 2 C 1 2 + B 2 λ 2 λ 2 C 2 2
d n ( λ ) d T = S e l l m e i e r f i t ( n h ( λ ) S e l l m e i e r f i t ( n l ( λ ) T h T l

Metrics