Abstract

This paper presents experimental results for an all-optical free-space optical (FSO) relay-assisted system by employing an all-optical regenerate and forward (AORF) scheme in order to increase the transmission link span. The ultra-short pulse (i.e., 2 ps) regeneration technique based on Mamyshev method is adopted. We have developed a dedicated experimental test-bed composed of optical fiber components and FSO links to demonstrate the proposed scheme and evaluate its performance in terms of the Q-factor and bit error rate (BER) under turbulence regimes for both single and dual-hop network architectures. We show that, using the AORF a hundred times improvement in the BER performance is achieved compared to the amplify-and-forward scheme for a fixed signal-to-noise ratio under turbulence conditions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bit detect and forward relaying for FSO links using equal gain combining over gamma-gamma atmospheric turbulence channels with pointing errors

Antonio García-Zambrana, Carmen Castillo-Vázquez, Beatriz Castillo-Vázquez, and Rubén Boluda-Ruiz
Opt. Express 20(15) 16394-16409 (2012)

Experimental verification of an all-optical dual-hop 10  Gbit/s free-space optics link under turbulence regimes

Jiri Libich, Matej Komanec, Stanislav Zvanovec, Petr Pesek, Wasiu O. Popoola, and Zabih Ghassemlooy
Opt. Lett. 40(3) 391-394 (2015)

Amplify-and-Forward Strategy Using MRC Reception Over FSO Channels with Pointing Errors

Rubén Boluda-Ruiz, Antonio García-Zambrana, Carmen Castillo-Vázquez, Beatriz Castillo-Vázquez, and Steve Hranilovic
J. Opt. Commun. Netw. 10(5) 545-552 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: System and channel modelling with MATLAB (CRC Press Taylor and Francis Group, 2013), I ed.
  2. M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE Commun. Surveys Tut. 16, 2231–2258 (2014).
    [Crossref]
  3. A. Paraskevopoulos, J. Vučić, S. Voß, R. Swoboda, and K. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mechatronics 15, 541–547 (2010).
    [Crossref]
  4. M. Z. Chowdhury, M. T. Hossan, A. Islam, and Y. M. Jang, “A comparative survey of optical wireless technologies: Architectures and applications,” IEEE Access 6, 9819–9840 (2018).
    [Crossref]
  5. M. Uysal, C. Capsoni, Z. Ghassemlooy, A. Boucouvalas, and E. Udvary, Optical wireless communications: An emerging technology (Springer, 2016).
    [Crossref]
  6. G. Parca, A. Shahpari, V. Carrozzo, G. M. T. Beleffi, and A. L. J. Teixeira, “Optical wireless transmission at 1.6-Tbit/s (16x100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Eng. 52, 1–6 (2013).
    [Crossref]
  7. S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, “Understanding the performance of free-space optics [Invited],” J. Opt. Netw. 2, 178–200 (2003).
  8. L. C. Andrews and R. L. Phillips, Laser beam propagation through random media (SPIE Press, 2005), II ed.
    [Crossref]
  9. L. Li, T. Geng, Y. Wang, X. Li, J. Wu, Y. Li, S. Ma, S. Gao, and Z. Wu, “Free-space optical communication using coherent detection and double adaptive detection thresholds,” IEEE Photon. J. 11, 1–17 (2019).
    [Crossref]
  10. S. Anees and M. R. Bhatnagar, “Performance of an amplify-and-forward dual-hop asymmetric RF-FSO communication system,” IEEE/OSA J. Opt. Commun. Netw. 7, 124–135 (2015).
    [Crossref]
  11. M. Uysal and M. M. Faree, “Cooperative diversity systems for wireless communication,” in Sel. Topics in Inf. and Cod. Theo., (2010), pp. 623–662.
  12. M. Safari and M. Uysal, “Relay-assisted free-space optical communication,” IEEE Trans. Wireless Commun. 7, 5441–5449 (2008).
    [Crossref]
  13. M. Karimi and M. Nasiri-Kenari, “BER analysis of cooperative systems in free-space optical networks,” J. Lightw. Technol. 27, 5639–5647 (2009).
    [Crossref]
  14. C. K. Datsikas, K. P. Peppas, N. C. Sagias, and G. S. Tombras, “Serial free-space optical relaying communications over Gamma-Gamma atmospheric turbulence channels,” IEEE/OSA J. Opt. Commun. Netw. 2, 576–586 (2010).
    [Crossref]
  15. M. R. Bhatnagar, “Performance analysis of decode-and-forward relaying in Gamma-Gamma fading channels,” IEEE Photon. Technol. Lett. 24, 545–547 (2012).
    [Crossref]
  16. M. R. Bhatnagar, “Average BER analysis of differential modulation in DF cooperative communication system over Gamma-Gamma fading FSO links,” IEEE Commun. Lett. 16, 1228–1231 (2012).
    [Crossref]
  17. M. Karimi and M. Nasiri-Kenari, “Free space optical communications via optical amplify-and-forward relaying,” J. Lightw. Technol. 29, 242–248 (2011).
    [Crossref]
  18. S. Kazemlou, S. Hranilovic, and S. Kumar, “All-optical multihop free-space optical communication systems,” J. Lightw. Technol. 29, 2663–2669 (2011).
    [Crossref]
  19. E. Bayaki, D. S. Michalopoulos, and R. Schober, “EDFA-based all-optical relaying in free-space optical systems,” IEEE Trans. Commun 60, 3797–3807 (2012).
    [Crossref]
  20. M. A. Kashani, M. M. Rad, M. Safari, and M. Uysal, “All-optical amplify-and-forward relaying system for atmospheric channels,” IEEE Commun. Lett 16, 1684–1687 (2012).
    [Crossref]
  21. P. V. Trinh, A. T. Pham, H. T. T. Pham, and N. T. Dang, “BER analysis of all-optical af dual-hop FSO systems over Gamma-Gamma channels,” in 2013 IEEE 4th International Conference on Photonics (ICP), (2013), pp. 175–177.
  22. J. Libich, M. Komanec, S. Zvanovec, P. Pesek, W. O. Popoola, and Z. Ghassemlooy, “Experimental verification of an all-optical dual-hop 10 Gbit/s free-space optics link under turbulence regimes,” Opt. Lett. 40, 391–394 (2015).
    [Crossref] [PubMed]
  23. N. A. M. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. R. Bhatnagar, and M. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightw. Technol. 35, 45–53 (2017).
    [Crossref]
  24. N. A. M. Nor, J. Bohata, Z. Ghassemlooy, S. Zvanovec, P. Pesek, M. Komanec, J. Libich, and M. Khalighi, “10 Gbps all-optical relay-assisted fso system over a turbulence channel,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW), (2015), pp. 69–72.
  25. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conference on Optical Communication. ECOC ’98 (IEEE Cat. No.98TH8398), vol. 1 (1998), pp. 475–476 vol. 1.
  26. P. P. Baveja, D. N. Maywar, and G. P. Agrawal, “Optimization of all-optical 2R regenerators operating at 40 Gb/s: Role of dispersion,” J. Lightw. Technol. 27, 3831–3836 (2009).
    [Crossref]

2019 (1)

L. Li, T. Geng, Y. Wang, X. Li, J. Wu, Y. Li, S. Ma, S. Gao, and Z. Wu, “Free-space optical communication using coherent detection and double adaptive detection thresholds,” IEEE Photon. J. 11, 1–17 (2019).
[Crossref]

2018 (1)

M. Z. Chowdhury, M. T. Hossan, A. Islam, and Y. M. Jang, “A comparative survey of optical wireless technologies: Architectures and applications,” IEEE Access 6, 9819–9840 (2018).
[Crossref]

2017 (1)

N. A. M. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. R. Bhatnagar, and M. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightw. Technol. 35, 45–53 (2017).
[Crossref]

2015 (2)

S. Anees and M. R. Bhatnagar, “Performance of an amplify-and-forward dual-hop asymmetric RF-FSO communication system,” IEEE/OSA J. Opt. Commun. Netw. 7, 124–135 (2015).
[Crossref]

J. Libich, M. Komanec, S. Zvanovec, P. Pesek, W. O. Popoola, and Z. Ghassemlooy, “Experimental verification of an all-optical dual-hop 10 Gbit/s free-space optics link under turbulence regimes,” Opt. Lett. 40, 391–394 (2015).
[Crossref] [PubMed]

2014 (1)

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE Commun. Surveys Tut. 16, 2231–2258 (2014).
[Crossref]

2013 (1)

G. Parca, A. Shahpari, V. Carrozzo, G. M. T. Beleffi, and A. L. J. Teixeira, “Optical wireless transmission at 1.6-Tbit/s (16x100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Eng. 52, 1–6 (2013).
[Crossref]

2012 (4)

E. Bayaki, D. S. Michalopoulos, and R. Schober, “EDFA-based all-optical relaying in free-space optical systems,” IEEE Trans. Commun 60, 3797–3807 (2012).
[Crossref]

M. A. Kashani, M. M. Rad, M. Safari, and M. Uysal, “All-optical amplify-and-forward relaying system for atmospheric channels,” IEEE Commun. Lett 16, 1684–1687 (2012).
[Crossref]

M. R. Bhatnagar, “Performance analysis of decode-and-forward relaying in Gamma-Gamma fading channels,” IEEE Photon. Technol. Lett. 24, 545–547 (2012).
[Crossref]

M. R. Bhatnagar, “Average BER analysis of differential modulation in DF cooperative communication system over Gamma-Gamma fading FSO links,” IEEE Commun. Lett. 16, 1228–1231 (2012).
[Crossref]

2011 (2)

M. Karimi and M. Nasiri-Kenari, “Free space optical communications via optical amplify-and-forward relaying,” J. Lightw. Technol. 29, 242–248 (2011).
[Crossref]

S. Kazemlou, S. Hranilovic, and S. Kumar, “All-optical multihop free-space optical communication systems,” J. Lightw. Technol. 29, 2663–2669 (2011).
[Crossref]

2010 (2)

A. Paraskevopoulos, J. Vučić, S. Voß, R. Swoboda, and K. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mechatronics 15, 541–547 (2010).
[Crossref]

C. K. Datsikas, K. P. Peppas, N. C. Sagias, and G. S. Tombras, “Serial free-space optical relaying communications over Gamma-Gamma atmospheric turbulence channels,” IEEE/OSA J. Opt. Commun. Netw. 2, 576–586 (2010).
[Crossref]

2009 (2)

M. Karimi and M. Nasiri-Kenari, “BER analysis of cooperative systems in free-space optical networks,” J. Lightw. Technol. 27, 5639–5647 (2009).
[Crossref]

P. P. Baveja, D. N. Maywar, and G. P. Agrawal, “Optimization of all-optical 2R regenerators operating at 40 Gb/s: Role of dispersion,” J. Lightw. Technol. 27, 3831–3836 (2009).
[Crossref]

2008 (1)

M. Safari and M. Uysal, “Relay-assisted free-space optical communication,” IEEE Trans. Wireless Commun. 7, 5441–5449 (2008).
[Crossref]

2003 (1)

Agrawal, G. P.

P. P. Baveja, D. N. Maywar, and G. P. Agrawal, “Optimization of all-optical 2R regenerators operating at 40 Gb/s: Role of dispersion,” J. Lightw. Technol. 27, 3831–3836 (2009).
[Crossref]

Andrews, L. C.

L. C. Andrews and R. L. Phillips, Laser beam propagation through random media (SPIE Press, 2005), II ed.
[Crossref]

Anees, S.

S. Anees and M. R. Bhatnagar, “Performance of an amplify-and-forward dual-hop asymmetric RF-FSO communication system,” IEEE/OSA J. Opt. Commun. Netw. 7, 124–135 (2015).
[Crossref]

Baveja, P. P.

P. P. Baveja, D. N. Maywar, and G. P. Agrawal, “Optimization of all-optical 2R regenerators operating at 40 Gb/s: Role of dispersion,” J. Lightw. Technol. 27, 3831–3836 (2009).
[Crossref]

Bayaki, E.

E. Bayaki, D. S. Michalopoulos, and R. Schober, “EDFA-based all-optical relaying in free-space optical systems,” IEEE Trans. Commun 60, 3797–3807 (2012).
[Crossref]

Beleffi, G. M. T.

G. Parca, A. Shahpari, V. Carrozzo, G. M. T. Beleffi, and A. L. J. Teixeira, “Optical wireless transmission at 1.6-Tbit/s (16x100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Eng. 52, 1–6 (2013).
[Crossref]

Bhatnagar, M. R.

N. A. M. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. R. Bhatnagar, and M. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightw. Technol. 35, 45–53 (2017).
[Crossref]

S. Anees and M. R. Bhatnagar, “Performance of an amplify-and-forward dual-hop asymmetric RF-FSO communication system,” IEEE/OSA J. Opt. Commun. Netw. 7, 124–135 (2015).
[Crossref]

M. R. Bhatnagar, “Performance analysis of decode-and-forward relaying in Gamma-Gamma fading channels,” IEEE Photon. Technol. Lett. 24, 545–547 (2012).
[Crossref]

M. R. Bhatnagar, “Average BER analysis of differential modulation in DF cooperative communication system over Gamma-Gamma fading FSO links,” IEEE Commun. Lett. 16, 1228–1231 (2012).
[Crossref]

Bloom, S.

Bohata, J.

N. A. M. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. R. Bhatnagar, and M. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightw. Technol. 35, 45–53 (2017).
[Crossref]

N. A. M. Nor, J. Bohata, Z. Ghassemlooy, S. Zvanovec, P. Pesek, M. Komanec, J. Libich, and M. Khalighi, “10 Gbps all-optical relay-assisted fso system over a turbulence channel,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW), (2015), pp. 69–72.

Boucouvalas, A.

M. Uysal, C. Capsoni, Z. Ghassemlooy, A. Boucouvalas, and E. Udvary, Optical wireless communications: An emerging technology (Springer, 2016).
[Crossref]

Capsoni, C.

M. Uysal, C. Capsoni, Z. Ghassemlooy, A. Boucouvalas, and E. Udvary, Optical wireless communications: An emerging technology (Springer, 2016).
[Crossref]

Carrozzo, V.

G. Parca, A. Shahpari, V. Carrozzo, G. M. T. Beleffi, and A. L. J. Teixeira, “Optical wireless transmission at 1.6-Tbit/s (16x100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Eng. 52, 1–6 (2013).
[Crossref]

Chowdhury, M. Z.

M. Z. Chowdhury, M. T. Hossan, A. Islam, and Y. M. Jang, “A comparative survey of optical wireless technologies: Architectures and applications,” IEEE Access 6, 9819–9840 (2018).
[Crossref]

Dang, N. T.

P. V. Trinh, A. T. Pham, H. T. T. Pham, and N. T. Dang, “BER analysis of all-optical af dual-hop FSO systems over Gamma-Gamma channels,” in 2013 IEEE 4th International Conference on Photonics (ICP), (2013), pp. 175–177.

Datsikas, C. K.

C. K. Datsikas, K. P. Peppas, N. C. Sagias, and G. S. Tombras, “Serial free-space optical relaying communications over Gamma-Gamma atmospheric turbulence channels,” IEEE/OSA J. Opt. Commun. Netw. 2, 576–586 (2010).
[Crossref]

Faree, M. M.

M. Uysal and M. M. Faree, “Cooperative diversity systems for wireless communication,” in Sel. Topics in Inf. and Cod. Theo., (2010), pp. 623–662.

Gao, S.

L. Li, T. Geng, Y. Wang, X. Li, J. Wu, Y. Li, S. Ma, S. Gao, and Z. Wu, “Free-space optical communication using coherent detection and double adaptive detection thresholds,” IEEE Photon. J. 11, 1–17 (2019).
[Crossref]

Geng, T.

L. Li, T. Geng, Y. Wang, X. Li, J. Wu, Y. Li, S. Ma, S. Gao, and Z. Wu, “Free-space optical communication using coherent detection and double adaptive detection thresholds,” IEEE Photon. J. 11, 1–17 (2019).
[Crossref]

Ghassemlooy, Z.

N. A. M. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. R. Bhatnagar, and M. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightw. Technol. 35, 45–53 (2017).
[Crossref]

J. Libich, M. Komanec, S. Zvanovec, P. Pesek, W. O. Popoola, and Z. Ghassemlooy, “Experimental verification of an all-optical dual-hop 10 Gbit/s free-space optics link under turbulence regimes,” Opt. Lett. 40, 391–394 (2015).
[Crossref] [PubMed]

N. A. M. Nor, J. Bohata, Z. Ghassemlooy, S. Zvanovec, P. Pesek, M. Komanec, J. Libich, and M. Khalighi, “10 Gbps all-optical relay-assisted fso system over a turbulence channel,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW), (2015), pp. 69–72.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: System and channel modelling with MATLAB (CRC Press Taylor and Francis Group, 2013), I ed.

M. Uysal, C. Capsoni, Z. Ghassemlooy, A. Boucouvalas, and E. Udvary, Optical wireless communications: An emerging technology (Springer, 2016).
[Crossref]

Hossan, M. T.

M. Z. Chowdhury, M. T. Hossan, A. Islam, and Y. M. Jang, “A comparative survey of optical wireless technologies: Architectures and applications,” IEEE Access 6, 9819–9840 (2018).
[Crossref]

Hranilovic, S.

S. Kazemlou, S. Hranilovic, and S. Kumar, “All-optical multihop free-space optical communication systems,” J. Lightw. Technol. 29, 2663–2669 (2011).
[Crossref]

Islam, A.

M. Z. Chowdhury, M. T. Hossan, A. Islam, and Y. M. Jang, “A comparative survey of optical wireless technologies: Architectures and applications,” IEEE Access 6, 9819–9840 (2018).
[Crossref]

Jang, Y. M.

M. Z. Chowdhury, M. T. Hossan, A. Islam, and Y. M. Jang, “A comparative survey of optical wireless technologies: Architectures and applications,” IEEE Access 6, 9819–9840 (2018).
[Crossref]

Karimi, M.

M. Karimi and M. Nasiri-Kenari, “Free space optical communications via optical amplify-and-forward relaying,” J. Lightw. Technol. 29, 242–248 (2011).
[Crossref]

M. Karimi and M. Nasiri-Kenari, “BER analysis of cooperative systems in free-space optical networks,” J. Lightw. Technol. 27, 5639–5647 (2009).
[Crossref]

Kashani, M. A.

M. A. Kashani, M. M. Rad, M. Safari, and M. Uysal, “All-optical amplify-and-forward relaying system for atmospheric channels,” IEEE Commun. Lett 16, 1684–1687 (2012).
[Crossref]

Kazemlou, S.

S. Kazemlou, S. Hranilovic, and S. Kumar, “All-optical multihop free-space optical communication systems,” J. Lightw. Technol. 29, 2663–2669 (2011).
[Crossref]

Khalighi, M.

N. A. M. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. R. Bhatnagar, and M. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightw. Technol. 35, 45–53 (2017).
[Crossref]

N. A. M. Nor, J. Bohata, Z. Ghassemlooy, S. Zvanovec, P. Pesek, M. Komanec, J. Libich, and M. Khalighi, “10 Gbps all-optical relay-assisted fso system over a turbulence channel,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW), (2015), pp. 69–72.

Khalighi, M. A.

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE Commun. Surveys Tut. 16, 2231–2258 (2014).
[Crossref]

Komanec, M.

N. A. M. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. R. Bhatnagar, and M. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightw. Technol. 35, 45–53 (2017).
[Crossref]

J. Libich, M. Komanec, S. Zvanovec, P. Pesek, W. O. Popoola, and Z. Ghassemlooy, “Experimental verification of an all-optical dual-hop 10 Gbit/s free-space optics link under turbulence regimes,” Opt. Lett. 40, 391–394 (2015).
[Crossref] [PubMed]

N. A. M. Nor, J. Bohata, Z. Ghassemlooy, S. Zvanovec, P. Pesek, M. Komanec, J. Libich, and M. Khalighi, “10 Gbps all-optical relay-assisted fso system over a turbulence channel,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW), (2015), pp. 69–72.

Korevaar, E.

Kumar, S.

S. Kazemlou, S. Hranilovic, and S. Kumar, “All-optical multihop free-space optical communication systems,” J. Lightw. Technol. 29, 2663–2669 (2011).
[Crossref]

Langer, K.

A. Paraskevopoulos, J. Vučić, S. Voß, R. Swoboda, and K. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mechatronics 15, 541–547 (2010).
[Crossref]

Li, L.

L. Li, T. Geng, Y. Wang, X. Li, J. Wu, Y. Li, S. Ma, S. Gao, and Z. Wu, “Free-space optical communication using coherent detection and double adaptive detection thresholds,” IEEE Photon. J. 11, 1–17 (2019).
[Crossref]

Li, X.

L. Li, T. Geng, Y. Wang, X. Li, J. Wu, Y. Li, S. Ma, S. Gao, and Z. Wu, “Free-space optical communication using coherent detection and double adaptive detection thresholds,” IEEE Photon. J. 11, 1–17 (2019).
[Crossref]

Li, Y.

L. Li, T. Geng, Y. Wang, X. Li, J. Wu, Y. Li, S. Ma, S. Gao, and Z. Wu, “Free-space optical communication using coherent detection and double adaptive detection thresholds,” IEEE Photon. J. 11, 1–17 (2019).
[Crossref]

Libich, J.

J. Libich, M. Komanec, S. Zvanovec, P. Pesek, W. O. Popoola, and Z. Ghassemlooy, “Experimental verification of an all-optical dual-hop 10 Gbit/s free-space optics link under turbulence regimes,” Opt. Lett. 40, 391–394 (2015).
[Crossref] [PubMed]

N. A. M. Nor, J. Bohata, Z. Ghassemlooy, S. Zvanovec, P. Pesek, M. Komanec, J. Libich, and M. Khalighi, “10 Gbps all-optical relay-assisted fso system over a turbulence channel,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW), (2015), pp. 69–72.

Ma, S.

L. Li, T. Geng, Y. Wang, X. Li, J. Wu, Y. Li, S. Ma, S. Gao, and Z. Wu, “Free-space optical communication using coherent detection and double adaptive detection thresholds,” IEEE Photon. J. 11, 1–17 (2019).
[Crossref]

Mamyshev, P. V.

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conference on Optical Communication. ECOC ’98 (IEEE Cat. No.98TH8398), vol. 1 (1998), pp. 475–476 vol. 1.

Maywar, D. N.

P. P. Baveja, D. N. Maywar, and G. P. Agrawal, “Optimization of all-optical 2R regenerators operating at 40 Gb/s: Role of dispersion,” J. Lightw. Technol. 27, 3831–3836 (2009).
[Crossref]

Michalopoulos, D. S.

E. Bayaki, D. S. Michalopoulos, and R. Schober, “EDFA-based all-optical relaying in free-space optical systems,” IEEE Trans. Commun 60, 3797–3807 (2012).
[Crossref]

Nasiri-Kenari, M.

M. Karimi and M. Nasiri-Kenari, “Free space optical communications via optical amplify-and-forward relaying,” J. Lightw. Technol. 29, 242–248 (2011).
[Crossref]

M. Karimi and M. Nasiri-Kenari, “BER analysis of cooperative systems in free-space optical networks,” J. Lightw. Technol. 27, 5639–5647 (2009).
[Crossref]

Nor, N. A. M.

N. A. M. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. R. Bhatnagar, and M. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightw. Technol. 35, 45–53 (2017).
[Crossref]

N. A. M. Nor, J. Bohata, Z. Ghassemlooy, S. Zvanovec, P. Pesek, M. Komanec, J. Libich, and M. Khalighi, “10 Gbps all-optical relay-assisted fso system over a turbulence channel,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW), (2015), pp. 69–72.

Paraskevopoulos, A.

A. Paraskevopoulos, J. Vučić, S. Voß, R. Swoboda, and K. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mechatronics 15, 541–547 (2010).
[Crossref]

Parca, G.

G. Parca, A. Shahpari, V. Carrozzo, G. M. T. Beleffi, and A. L. J. Teixeira, “Optical wireless transmission at 1.6-Tbit/s (16x100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Eng. 52, 1–6 (2013).
[Crossref]

Peppas, K. P.

C. K. Datsikas, K. P. Peppas, N. C. Sagias, and G. S. Tombras, “Serial free-space optical relaying communications over Gamma-Gamma atmospheric turbulence channels,” IEEE/OSA J. Opt. Commun. Netw. 2, 576–586 (2010).
[Crossref]

Pesek, P.

J. Libich, M. Komanec, S. Zvanovec, P. Pesek, W. O. Popoola, and Z. Ghassemlooy, “Experimental verification of an all-optical dual-hop 10 Gbit/s free-space optics link under turbulence regimes,” Opt. Lett. 40, 391–394 (2015).
[Crossref] [PubMed]

N. A. M. Nor, J. Bohata, Z. Ghassemlooy, S. Zvanovec, P. Pesek, M. Komanec, J. Libich, and M. Khalighi, “10 Gbps all-optical relay-assisted fso system over a turbulence channel,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW), (2015), pp. 69–72.

Pham, A. T.

P. V. Trinh, A. T. Pham, H. T. T. Pham, and N. T. Dang, “BER analysis of all-optical af dual-hop FSO systems over Gamma-Gamma channels,” in 2013 IEEE 4th International Conference on Photonics (ICP), (2013), pp. 175–177.

Pham, H. T. T.

P. V. Trinh, A. T. Pham, H. T. T. Pham, and N. T. Dang, “BER analysis of all-optical af dual-hop FSO systems over Gamma-Gamma channels,” in 2013 IEEE 4th International Conference on Photonics (ICP), (2013), pp. 175–177.

Phillips, R. L.

L. C. Andrews and R. L. Phillips, Laser beam propagation through random media (SPIE Press, 2005), II ed.
[Crossref]

Popoola, W.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: System and channel modelling with MATLAB (CRC Press Taylor and Francis Group, 2013), I ed.

Popoola, W. O.

Rad, M. M.

M. A. Kashani, M. M. Rad, M. Safari, and M. Uysal, “All-optical amplify-and-forward relaying system for atmospheric channels,” IEEE Commun. Lett 16, 1684–1687 (2012).
[Crossref]

Rajbhandari, S.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: System and channel modelling with MATLAB (CRC Press Taylor and Francis Group, 2013), I ed.

Safari, M.

M. A. Kashani, M. M. Rad, M. Safari, and M. Uysal, “All-optical amplify-and-forward relaying system for atmospheric channels,” IEEE Commun. Lett 16, 1684–1687 (2012).
[Crossref]

M. Safari and M. Uysal, “Relay-assisted free-space optical communication,” IEEE Trans. Wireless Commun. 7, 5441–5449 (2008).
[Crossref]

Sagias, N. C.

C. K. Datsikas, K. P. Peppas, N. C. Sagias, and G. S. Tombras, “Serial free-space optical relaying communications over Gamma-Gamma atmospheric turbulence channels,” IEEE/OSA J. Opt. Commun. Netw. 2, 576–586 (2010).
[Crossref]

Saxena, P.

N. A. M. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. R. Bhatnagar, and M. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightw. Technol. 35, 45–53 (2017).
[Crossref]

Schober, R.

E. Bayaki, D. S. Michalopoulos, and R. Schober, “EDFA-based all-optical relaying in free-space optical systems,” IEEE Trans. Commun 60, 3797–3807 (2012).
[Crossref]

Schuster, J.

Shahpari, A.

G. Parca, A. Shahpari, V. Carrozzo, G. M. T. Beleffi, and A. L. J. Teixeira, “Optical wireless transmission at 1.6-Tbit/s (16x100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Eng. 52, 1–6 (2013).
[Crossref]

Swoboda, R.

A. Paraskevopoulos, J. Vučić, S. Voß, R. Swoboda, and K. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mechatronics 15, 541–547 (2010).
[Crossref]

Teixeira, A. L. J.

G. Parca, A. Shahpari, V. Carrozzo, G. M. T. Beleffi, and A. L. J. Teixeira, “Optical wireless transmission at 1.6-Tbit/s (16x100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Eng. 52, 1–6 (2013).
[Crossref]

Tombras, G. S.

C. K. Datsikas, K. P. Peppas, N. C. Sagias, and G. S. Tombras, “Serial free-space optical relaying communications over Gamma-Gamma atmospheric turbulence channels,” IEEE/OSA J. Opt. Commun. Netw. 2, 576–586 (2010).
[Crossref]

Trinh, P. V.

P. V. Trinh, A. T. Pham, H. T. T. Pham, and N. T. Dang, “BER analysis of all-optical af dual-hop FSO systems over Gamma-Gamma channels,” in 2013 IEEE 4th International Conference on Photonics (ICP), (2013), pp. 175–177.

Udvary, E.

M. Uysal, C. Capsoni, Z. Ghassemlooy, A. Boucouvalas, and E. Udvary, Optical wireless communications: An emerging technology (Springer, 2016).
[Crossref]

Uysal, M.

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE Commun. Surveys Tut. 16, 2231–2258 (2014).
[Crossref]

M. A. Kashani, M. M. Rad, M. Safari, and M. Uysal, “All-optical amplify-and-forward relaying system for atmospheric channels,” IEEE Commun. Lett 16, 1684–1687 (2012).
[Crossref]

M. Safari and M. Uysal, “Relay-assisted free-space optical communication,” IEEE Trans. Wireless Commun. 7, 5441–5449 (2008).
[Crossref]

M. Uysal and M. M. Faree, “Cooperative diversity systems for wireless communication,” in Sel. Topics in Inf. and Cod. Theo., (2010), pp. 623–662.

M. Uysal, C. Capsoni, Z. Ghassemlooy, A. Boucouvalas, and E. Udvary, Optical wireless communications: An emerging technology (Springer, 2016).
[Crossref]

Voß, S.

A. Paraskevopoulos, J. Vučić, S. Voß, R. Swoboda, and K. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mechatronics 15, 541–547 (2010).
[Crossref]

Vucic, J.

A. Paraskevopoulos, J. Vučić, S. Voß, R. Swoboda, and K. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mechatronics 15, 541–547 (2010).
[Crossref]

Wang, Y.

L. Li, T. Geng, Y. Wang, X. Li, J. Wu, Y. Li, S. Ma, S. Gao, and Z. Wu, “Free-space optical communication using coherent detection and double adaptive detection thresholds,” IEEE Photon. J. 11, 1–17 (2019).
[Crossref]

Willebrand, H.

Wu, J.

L. Li, T. Geng, Y. Wang, X. Li, J. Wu, Y. Li, S. Ma, S. Gao, and Z. Wu, “Free-space optical communication using coherent detection and double adaptive detection thresholds,” IEEE Photon. J. 11, 1–17 (2019).
[Crossref]

Wu, Z.

L. Li, T. Geng, Y. Wang, X. Li, J. Wu, Y. Li, S. Ma, S. Gao, and Z. Wu, “Free-space optical communication using coherent detection and double adaptive detection thresholds,” IEEE Photon. J. 11, 1–17 (2019).
[Crossref]

Zvanovec, S.

N. A. M. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. R. Bhatnagar, and M. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightw. Technol. 35, 45–53 (2017).
[Crossref]

J. Libich, M. Komanec, S. Zvanovec, P. Pesek, W. O. Popoola, and Z. Ghassemlooy, “Experimental verification of an all-optical dual-hop 10 Gbit/s free-space optics link under turbulence regimes,” Opt. Lett. 40, 391–394 (2015).
[Crossref] [PubMed]

N. A. M. Nor, J. Bohata, Z. Ghassemlooy, S. Zvanovec, P. Pesek, M. Komanec, J. Libich, and M. Khalighi, “10 Gbps all-optical relay-assisted fso system over a turbulence channel,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW), (2015), pp. 69–72.

IEEE Access (1)

M. Z. Chowdhury, M. T. Hossan, A. Islam, and Y. M. Jang, “A comparative survey of optical wireless technologies: Architectures and applications,” IEEE Access 6, 9819–9840 (2018).
[Crossref]

IEEE Commun. Lett (1)

M. A. Kashani, M. M. Rad, M. Safari, and M. Uysal, “All-optical amplify-and-forward relaying system for atmospheric channels,” IEEE Commun. Lett 16, 1684–1687 (2012).
[Crossref]

IEEE Commun. Lett. (1)

M. R. Bhatnagar, “Average BER analysis of differential modulation in DF cooperative communication system over Gamma-Gamma fading FSO links,” IEEE Commun. Lett. 16, 1228–1231 (2012).
[Crossref]

IEEE Commun. Surveys Tut. (1)

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE Commun. Surveys Tut. 16, 2231–2258 (2014).
[Crossref]

IEEE Photon. J. (1)

L. Li, T. Geng, Y. Wang, X. Li, J. Wu, Y. Li, S. Ma, S. Gao, and Z. Wu, “Free-space optical communication using coherent detection and double adaptive detection thresholds,” IEEE Photon. J. 11, 1–17 (2019).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. R. Bhatnagar, “Performance analysis of decode-and-forward relaying in Gamma-Gamma fading channels,” IEEE Photon. Technol. Lett. 24, 545–547 (2012).
[Crossref]

IEEE Trans. Commun (1)

E. Bayaki, D. S. Michalopoulos, and R. Schober, “EDFA-based all-optical relaying in free-space optical systems,” IEEE Trans. Commun 60, 3797–3807 (2012).
[Crossref]

IEEE Trans. Wireless Commun. (1)

M. Safari and M. Uysal, “Relay-assisted free-space optical communication,” IEEE Trans. Wireless Commun. 7, 5441–5449 (2008).
[Crossref]

IEEE/ASME Trans. Mechatronics (1)

A. Paraskevopoulos, J. Vučić, S. Voß, R. Swoboda, and K. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mechatronics 15, 541–547 (2010).
[Crossref]

IEEE/OSA J. Opt. Commun. Netw. (2)

S. Anees and M. R. Bhatnagar, “Performance of an amplify-and-forward dual-hop asymmetric RF-FSO communication system,” IEEE/OSA J. Opt. Commun. Netw. 7, 124–135 (2015).
[Crossref]

C. K. Datsikas, K. P. Peppas, N. C. Sagias, and G. S. Tombras, “Serial free-space optical relaying communications over Gamma-Gamma atmospheric turbulence channels,” IEEE/OSA J. Opt. Commun. Netw. 2, 576–586 (2010).
[Crossref]

J. Lightw. Technol. (5)

M. Karimi and M. Nasiri-Kenari, “Free space optical communications via optical amplify-and-forward relaying,” J. Lightw. Technol. 29, 242–248 (2011).
[Crossref]

S. Kazemlou, S. Hranilovic, and S. Kumar, “All-optical multihop free-space optical communication systems,” J. Lightw. Technol. 29, 2663–2669 (2011).
[Crossref]

M. Karimi and M. Nasiri-Kenari, “BER analysis of cooperative systems in free-space optical networks,” J. Lightw. Technol. 27, 5639–5647 (2009).
[Crossref]

N. A. M. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. R. Bhatnagar, and M. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightw. Technol. 35, 45–53 (2017).
[Crossref]

P. P. Baveja, D. N. Maywar, and G. P. Agrawal, “Optimization of all-optical 2R regenerators operating at 40 Gb/s: Role of dispersion,” J. Lightw. Technol. 27, 3831–3836 (2009).
[Crossref]

J. Opt. Netw. (1)

Opt. Eng. (1)

G. Parca, A. Shahpari, V. Carrozzo, G. M. T. Beleffi, and A. L. J. Teixeira, “Optical wireless transmission at 1.6-Tbit/s (16x100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Eng. 52, 1–6 (2013).
[Crossref]

Opt. Lett. (1)

Other (7)

P. V. Trinh, A. T. Pham, H. T. T. Pham, and N. T. Dang, “BER analysis of all-optical af dual-hop FSO systems over Gamma-Gamma channels,” in 2013 IEEE 4th International Conference on Photonics (ICP), (2013), pp. 175–177.

N. A. M. Nor, J. Bohata, Z. Ghassemlooy, S. Zvanovec, P. Pesek, M. Komanec, J. Libich, and M. Khalighi, “10 Gbps all-optical relay-assisted fso system over a turbulence channel,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW), (2015), pp. 69–72.

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conference on Optical Communication. ECOC ’98 (IEEE Cat. No.98TH8398), vol. 1 (1998), pp. 475–476 vol. 1.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: System and channel modelling with MATLAB (CRC Press Taylor and Francis Group, 2013), I ed.

L. C. Andrews and R. L. Phillips, Laser beam propagation through random media (SPIE Press, 2005), II ed.
[Crossref]

M. Uysal, C. Capsoni, Z. Ghassemlooy, A. Boucouvalas, and E. Udvary, Optical wireless communications: An emerging technology (Springer, 2016).
[Crossref]

M. Uysal and M. M. Faree, “Cooperative diversity systems for wireless communication,” in Sel. Topics in Inf. and Cod. Theo., (2010), pp. 623–662.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Block diagram of the proposed system.
Fig. 2
Fig. 2 Experimental test-bed for the triple-hop FSO system.
Fig. 3
Fig. 3 MLL pulsed output at 1547 nm amplified to 9 dBm by EDFA 1.
Fig. 4
Fig. 4 AORF HNLF output spectrum for a range of EDFA output power for: (a) simulation, and (b) measured.
Fig. 5
Fig. 5 Original MLL spectrum, SPM-broadened spectrum for EDFA at 16 dBm and the BPF central λ of 1551 nm.
Fig. 6
Fig. 6 Measured pulse from autocorrelator at the output of: (a) FSO 1, and (b) AORF Mamyshev regeneration.
Fig. 7
Fig. 7 BER vs. the optical SNR for the FSO dual-hop with AF relaying based system for a range of turbulence regimes.
Fig. 8
Fig. 8 BER vs. the optical SNR for the FSO dual-hop with AORF for a range of turbulence regimes.
Fig. 9
Fig. 9 BER vs. the optical SNR for the FSO dual-hop link with AORF and AF for a range of turbulence regimes.
Fig. 10
Fig. 10 BER against the SNR for AORF and AF based dual-hop FSO link with turbulence.
Fig. 11
Fig. 11 Measured eye-diagrams for dual-hop FSO link with AF and AORF with and without turbulence.

Tables (1)

Tables Icon

Table 1 Main Parameters Used in Experiment.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ω S P M = ω 0 ( 2 π / λ ) n 2 I p L ,
I o u t = { 0 i f I p < I c r I c i f I p > I c r
I c r = 2 ω s h i f t ω 0 ( 2 π / λ ) n 2 L .
y 0 = s h e q + n e q ,
C n 2 = ( 86 10 16 P T 2 ) 2 C T 2 ,
σ R 2 = 1.23 C n 2 k 7 / 6 L D 11 / 6

Metrics