Abstract

We present our design, fabrication, and experimental results for very high-performance isotropic microring resonators with small radii (∼ 30 µm) based on single-mode strip waveguides and transverse magnetic (TM) polarization in a fully etched lithium niobate (Z-cut) thin-film on insulator. The loss of the devices is predicted to be < 10 dB/cm, and is measured to be ∼ 7 dB/cm. The measured optical responses of microring resonators exhibit an extinction of ∼ 25 dB (close to critical coupling), a 3 dB optical bandwidth of 49 pm (∼ 6 GHz) for all-pass structures, an extinction of ∼ 10 dB for add-drop structures, and a free spectral range of ∼ 5.26 nm, all of which are in excellent agreement with the design. This work is the first step towards ultra-compact and fully isotropic optical modulators in thin-film lithium niobate on insulator.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-performance racetrack resonator in silicon nitride - thin film lithium niobate hybrid platform

Abu Naim R. Ahmed, Shouyuan Shi, Andrew J. Mercante, and Dennis W. Prather
Opt. Express 27(21) 30741-30751 (2019)

Realization of alignment-tolerant grating couplers for z-cut thin-film lithium niobate

Arunita Kar, Meisam Bahadori, Songbin Gong, and Lynford L. Goddard
Opt. Express 27(11) 15856-15867 (2019)

Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon

Ashutosh Rao, Aniket Patil, Jeff Chiles, Marcin Malinowski, Spencer Novak, Kathleen Richardson, Payam Rabiei, and Sasan Fathpour
Opt. Express 23(17) 22746-22752 (2015)

References

  • View by:
  • |
  • |
  • |

  1. X. Song, R. Li, G. Mi, J. Suo, Z. Zhang, and Y. Li, “Optoelectronic integrated circuits for growing datacenters: challenge, strategy, and evolution,” in Smart Photonic and Optoelectronic Integrated Circuits XXI, E.-H. Lee and S. He, eds. (SPIE, 2019), p. 11.
  2. Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: a review,” Optica 5(11), 1354–1370 (2018).
    [Crossref]
  3. D. Kuchta, A. Rylyakov, C. Schow, J. Proesel, F. Doany, C. W. Baks, B. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1Gb/s NRZ modulated 850 nm VCSEL-based optical link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OW1B.5.
  4. D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
    [Crossref]
  5. Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters [Invited],” Opt. Express 26(12), 16022–16043 (2018).
    [Crossref]
  6. S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun, K. Wen, A. Rodrigues, and K. Bergman, “Optical interconnects for extreme scale computing systems,” Parallel Comput. 64, 65–80 (2017).
    [Crossref]
  7. S. Rumley, D. Nikolova, R. Hendry, Q. Li, D. Calhoun, and K. Bergman, “Silicon photonics for exascale systems,” J. Lightwave Technol. 33(3), 547–562 (2015).
    [Crossref]
  8. Y. Shen, X. Meng, Q. Cheng, S. Rumley, N. Abrams, A. Gazman, E. Manzhosov, M. Glick, and K. Bergman, “Silicon photonics for extreme scale systems,” J. Lightwave Technol. 37(2), 245–259 (2019).
    [Crossref]
  9. A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
    [Crossref]
  10. W. J. Westerveld, S. M. Leinders, K. W. A. van Dongen, H. P. Urbach, and M. Yousefi, “Extension of Marcatili’s analytical approach for rectangular silicon optical waveguides,” J. Lightwave Technol. 30(14), 2388–2401 (2012).
    [Crossref]
  11. W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
    [Crossref]
  12. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
    [Crossref]
  13. Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23(3), 3795–3808 (2015).
    [Crossref]
  14. Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
    [Crossref]
  15. D. J. Thomson, Y. Hu, G. T. Reed, and J.-M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
    [Crossref]
  16. M. Bahadori, M. Nikdast, S. Rumley, L. Y. Dai, N. Janosik, T. V. Vaerenbergh, A. Gazman, Q. Cheng, R. Polster, and K. Bergman, “Design space exploration of microring resonators in silicon photonic interconnects: impact of the ring curvature,” J. Lightwave Technol. 36(13), 2767–2782 (2018).
    [Crossref]
  17. A. H. K. Park, H. Shoman, M. Ma, S. Shekhar, and L. Chrostowski, “Ring resonator based polarization diversity WDM receiver,” Opt. Express 27(5), 6147–6157 (2019).
    [Crossref]
  18. R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
    [Crossref]
  19. K. Ogawa, K. Goi, Y. T. Tan, T.-Y. Liow, X. Tu, Q. Fang, G.-Q. Lo, and D.-L. Kwong, “Silicon Mach-Zehnder modulator of extinction ratio beyond 10 dB at 10.0-12.5 Gbps,” Opt. Express 19(26), B26–B31 (2011).
    [Crossref]
  20. X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photonics Technol. Lett. 24(19), 1712–1714 (2012).
    [Crossref]
  21. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [Crossref]
  22. M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanovic, and M. A. Popovic, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in 2015 IEEE Optical Interconnects Conference (OI) (IEEE, 2015), pp. 46–47.
  23. Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7(3), 1–10 (2015).
    [Crossref]
  24. D. Vermeulen and C. V. Poulton, “Optical interfaces for silicon photonic circuits,” Proc. IEEE 106(12), 2270–2280 (2018).
    [Crossref]
  25. A. Rao and S. Fathpour, “Second-harmonic generation in integrated photonics on silicon,” Phys. Status Solidi A 215(4), 1700684 (2018).
    [Crossref]
  26. A. H. K. Park, A. S. Ramani, L. Chrostowski, and S. Shekhar, “Comparison of DAC-less PAM4 modulation in segmented ring resonator and dual cascaded ring resonator,” in 2017 IEEE Optical Interconnects Conference (OI) (IEEE, 2017), pp. 7–8.
  27. S. Palermo, K. Yu, A. Roshan-Zamir, B. Wang, C. Li, M. A. Seyedi, M. Fiorentino, and R. Beausoleil, “PAM4 silicon photonic microring resonator-based transceiver circuits,” in H. Schröder and R. T. Chen, eds. (2017), p. 101090F.
  28. A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
    [Crossref]
  29. A. Rao and S. Fathpour, “Heterogeneous thin-film lithium niobate integrated photonics for electrooptics and nonlinear optics,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–12 (2018).
    [Crossref]
  30. L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1(2), 112–118 (2014).
    [Crossref]
  31. P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Hybrid silicon photonic-lithium niobate electro-optic Mach-Zehnder modulator beyond 100 GHz bandwidth,” ArXiv180310365 Phys. (2018).
  32. M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond,” ArXiv180710362 Phys. (2018).
  33. A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41(24), 5700–5703 (2016).
    [Crossref]
  34. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
    [Crossref]
  35. M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vpi,” in2018 Optical Fiber Communications Conference and Exposition (OFC) (2018), pp. 1–3.
  36. I. Krasnokutska, J.-L. J. Tambasco, and A. Peruzzo, “Large free spectral range microring resonators in lithium niobate on insulator,” ArXiv180706531 Phys. 6 (2018).
  37. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
    [Crossref]
  38. I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26(2), 897–904 (2018).
    [Crossref]
  39. I. of E. Engineers, Properties of Lithium Niobate (IET, 2002).
  40. L. Cai, A. Mahmoud, and G. Piazza, “Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications,” Opt. Express 27(7), 9794 (2019).
    [Crossref]
  41. M. Mahmoud, S. Ghosh, and G. Piazza, “Lithium niobate on insulator (LNOI) grating couplers,” in CLEO: 2015 (2015), Paper SW4I.7 (Optical Society of America, 2015), p. SW4I.7.
  42. M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform,” IEEE Photonics J. 10(1), 1–10 (2018).
    [Crossref]
  43. L. Cai and G. Piazza, “Low-loss chirped grating for vertical light coupling in lithium niobate on insulator,” J. Opt. 21(6), 065801 (2019).
    [Crossref]
  44. J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, and S. Yu, “High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides,” Opt. Express 26(23), 29651–29658 (2018).
    [Crossref]
  45. M. Bahadori, A. Kar, Y. Yang, A. Lavasani, L. Goddard, and S. Gong, “High-performance integrated photonics in thin film lithium niobate platform,” in Conference on Lasers and Electro-Optics (2019).
  46. A. Kar, M. Bahadori, S. Gong, and L. L. Goddard, “Realization of alignment-tolerant grating couplers for z-cut thin-film lithium niobate,” Opt. Express 27(11), 15856–15867 (2019).
    [Crossref]
  47. Z. Hu and Y. Y. Lu, “Computing optimal waveguide bends with constant width,” J. Lightwave Technol. 25(10), 3161–3167 (2007).
    [Crossref]
  48. H. Shen, M. Hkan, S. Xiao, and M. Qi, “Reducing mode-transition loss in silicon-on-insulator strip waveguide bends,” in 2008 Conference on Lasers and Electro-Optics (IEEE, 2008), pp. 1–2.
  49. M. Bahadori, M. Nikdast, Q. Cheng, and K. Bergman, “Universal design of waveguide bends in silicon-on-insulator photonics platform,” J. Lightwave Technol. 37(13), 3044–3054 (2019).
    [Crossref]
  50. O. Reshef, M. G. Moebius, and E. Mazur, “Extracting losses from asymmetric resonances in micro-ring resonators,” J. Opt. 19(6), 065804 (2017).
    [Crossref]
  51. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]

2019 (6)

2018 (12)

J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, and S. Yu, “High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides,” Opt. Express 26(23), 29651–29658 (2018).
[Crossref]

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

D. Vermeulen and C. V. Poulton, “Optical interfaces for silicon photonic circuits,” Proc. IEEE 106(12), 2270–2280 (2018).
[Crossref]

A. Rao and S. Fathpour, “Second-harmonic generation in integrated photonics on silicon,” Phys. Status Solidi A 215(4), 1700684 (2018).
[Crossref]

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

A. Rao and S. Fathpour, “Heterogeneous thin-film lithium niobate integrated photonics for electrooptics and nonlinear optics,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–12 (2018).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26(2), 897–904 (2018).
[Crossref]

M. Bahadori, M. Nikdast, S. Rumley, L. Y. Dai, N. Janosik, T. V. Vaerenbergh, A. Gazman, Q. Cheng, R. Polster, and K. Bergman, “Design space exploration of microring resonators in silicon photonic interconnects: impact of the ring curvature,” J. Lightwave Technol. 36(13), 2767–2782 (2018).
[Crossref]

W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
[Crossref]

Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: a review,” Optica 5(11), 1354–1370 (2018).
[Crossref]

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters [Invited],” Opt. Express 26(12), 16022–16043 (2018).
[Crossref]

2017 (2)

S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun, K. Wen, A. Rodrigues, and K. Bergman, “Optical interconnects for extreme scale computing systems,” Parallel Comput. 64, 65–80 (2017).
[Crossref]

O. Reshef, M. G. Moebius, and E. Mazur, “Extracting losses from asymmetric resonances in micro-ring resonators,” J. Opt. 19(6), 065804 (2017).
[Crossref]

2016 (1)

2015 (4)

S. Rumley, D. Nikolova, R. Hendry, Q. Li, D. Calhoun, and K. Bergman, “Silicon photonics for exascale systems,” J. Lightwave Technol. 33(3), 547–562 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23(3), 3795–3808 (2015).
[Crossref]

2014 (3)

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1(2), 112–118 (2014).
[Crossref]

2013 (2)

2012 (3)

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photonics Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

W. J. Westerveld, S. M. Leinders, K. W. A. van Dongen, H. P. Urbach, and M. Yousefi, “Extension of Marcatili’s analytical approach for rectangular silicon optical waveguides,” J. Lightwave Technol. 30(14), 2388–2401 (2012).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

2011 (1)

2010 (1)

D. J. Thomson, Y. Hu, G. T. Reed, and J.-M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

2007 (2)

2001 (1)

Abrams, N.

Al-Rubaye, H.

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Hybrid silicon photonic-lithium niobate electro-optic Mach-Zehnder modulator beyond 100 GHz bandwidth,” ArXiv180310365 Phys. (2018).

Atabaki, A.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanovic, and M. A. Popovic, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in 2015 IEEE Optical Interconnects Conference (OI) (IEEE, 2015), pp. 46–47.

Baehr-Jones, T.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bahadori, M.

Baks, C. W.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

D. Kuchta, A. Rylyakov, C. Schow, J. Proesel, F. Doany, C. W. Baks, B. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1Gb/s NRZ modulated 850 nm VCSEL-based optical link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OW1B.5.

Beausoleil, R.

S. Palermo, K. Yu, A. Roshan-Zamir, B. Wang, C. Li, M. A. Seyedi, M. Fiorentino, and R. Beausoleil, “PAM4 silicon photonic microring resonator-based transceiver circuits,” in H. Schröder and R. T. Chen, eds. (2017), p. 101090F.

Bergman, K.

Y. Shen, X. Meng, Q. Cheng, S. Rumley, N. Abrams, A. Gazman, E. Manzhosov, M. Glick, and K. Bergman, “Silicon photonics for extreme scale systems,” J. Lightwave Technol. 37(2), 245–259 (2019).
[Crossref]

M. Bahadori, M. Nikdast, Q. Cheng, and K. Bergman, “Universal design of waveguide bends in silicon-on-insulator photonics platform,” J. Lightwave Technol. 37(13), 3044–3054 (2019).
[Crossref]

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters [Invited],” Opt. Express 26(12), 16022–16043 (2018).
[Crossref]

Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: a review,” Optica 5(11), 1354–1370 (2018).
[Crossref]

M. Bahadori, M. Nikdast, S. Rumley, L. Y. Dai, N. Janosik, T. V. Vaerenbergh, A. Gazman, Q. Cheng, R. Polster, and K. Bergman, “Design space exploration of microring resonators in silicon photonic interconnects: impact of the ring curvature,” J. Lightwave Technol. 36(13), 2767–2782 (2018).
[Crossref]

S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun, K. Wen, A. Rodrigues, and K. Bergman, “Optical interconnects for extreme scale computing systems,” Parallel Comput. 64, 65–80 (2017).
[Crossref]

S. Rumley, D. Nikolova, R. Hendry, Q. Li, D. Calhoun, and K. Bergman, “Silicon photonics for exascale systems,” J. Lightwave Technol. 33(3), 547–562 (2015).
[Crossref]

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Bertrand, M.

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vpi,” in2018 Optical Fiber Communications Conference and Exposition (OFC) (2018), pp. 1–3.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Boes, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Bogaerts, W.

W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bojko, R.

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Bottenfield, C.

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Bowers, J.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Cai, L.

L. Cai and G. Piazza, “Low-loss chirped grating for vertical light coupling in lithium niobate on insulator,” J. Opt. 21(6), 065801 (2019).
[Crossref]

L. Cai, A. Mahmoud, and G. Piazza, “Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications,” Opt. Express 27(7), 9794 (2019).
[Crossref]

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Cai, X.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond,” ArXiv180710362 Phys. (2018).

Calhoun, D.

Calhoun, D. M.

S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun, K. Wen, A. Rodrigues, and K. Bergman, “Optical interconnects for extreme scale computing systems,” Parallel Comput. 64, 65–80 (2017).
[Crossref]

Caverley, M.

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Cerrina, F.

Chandrasekhar, S.

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vpi,” in2018 Optical Fiber Communications Conference and Exposition (OFC) (2018), pp. 1–3.

Chang, L.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Chen, H.

J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, and S. Yu, “High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides,” Opt. Express 26(23), 29651–29658 (2018).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond,” ArXiv180710362 Phys. (2018).

Chen, K. K.

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Chen, L.

Chen, X.

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vpi,” in2018 Optical Fiber Communications Conference and Exposition (OFC) (2018), pp. 1–3.

Chen, Z.

Cheng, Q.

Chiles, J.

Chrostowski, L.

A. H. K. Park, H. Shoman, M. Ma, S. Shekhar, and L. Chrostowski, “Ring resonator based polarization diversity WDM receiver,” Opt. Express 27(5), 6147–6157 (2019).
[Crossref]

W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
[Crossref]

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23(3), 3795–3808 (2015).
[Crossref]

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

A. H. K. Park, A. S. Ramani, L. Chrostowski, and S. Shekhar, “Comparison of DAC-less PAM4 modulation in segmented ring resonator and dual cascaded ring resonator,” in 2017 IEEE Optical Interconnects Conference (OI) (IEEE, 2017), pp. 7–8.

Chu, T.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photonics Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Corcoran, B.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Dai, L. Y.

Dallo, C.

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Hybrid silicon photonic-lithium niobate electro-optic Mach-Zehnder modulator beyond 100 GHz bandwidth,” ArXiv180310365 Phys. (2018).

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

DeRose, C. T.

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Hybrid silicon photonic-lithium niobate electro-optic Mach-Zehnder modulator beyond 100 GHz bandwidth,” ArXiv180310365 Phys. (2018).

DeSalvo, R.

Ding, R.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Doany, F.

D. Kuchta, A. Rylyakov, C. Schow, J. Proesel, F. Doany, C. W. Baks, B. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1Gb/s NRZ modulated 850 nm VCSEL-based optical link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OW1B.5.

Doany, F. E.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Duan, N.

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Fang, K.

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Hybrid silicon photonic-lithium niobate electro-optic Mach-Zehnder modulator beyond 100 GHz bandwidth,” ArXiv180310365 Phys. (2018).

Fang, Q.

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

K. Ogawa, K. Goi, Y. T. Tan, T.-Y. Liow, X. Tu, Q. Fang, G.-Q. Lo, and D.-L. Kwong, “Silicon Mach-Zehnder modulator of extinction ratio beyond 10 dB at 10.0-12.5 Gbps,” Opt. Express 19(26), B26–B31 (2011).
[Crossref]

Fathpour, S.

A. Rao and S. Fathpour, “Heterogeneous thin-film lithium niobate integrated photonics for electrooptics and nonlinear optics,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–12 (2018).
[Crossref]

A. Rao and S. Fathpour, “Second-harmonic generation in integrated photonics on silicon,” Phys. Status Solidi A 215(4), 1700684 (2018).
[Crossref]

A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41(24), 5700–5703 (2016).
[Crossref]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
[Crossref]

Fedeli, J.-M.

D. J. Thomson, Y. Hu, G. T. Reed, and J.-M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

Fiorentino, M.

S. Palermo, K. Yu, A. Roshan-Zamir, B. Wang, C. Li, M. A. Seyedi, M. Fiorentino, and R. Beausoleil, “PAM4 silicon photonic microring resonator-based transceiver circuits,” in H. Schröder and R. T. Chen, eds. (2017), p. 101090F.

Flueckiger, J.

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Galland, C.

Gao, S.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond,” ArXiv180710362 Phys. (2018).

Gazman, A.

Gentry, C. M.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanovic, and M. A. Popovic, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in 2015 IEEE Optical Interconnects Conference (OI) (IEEE, 2015), pp. 46–47.

Ghosh, S.

M. Mahmoud, S. Ghosh, and G. Piazza, “Lithium niobate on insulator (LNOI) grating couplers,” in CLEO: 2015 (2015), Paper SW4I.7 (Optical Society of America, 2015), p. SW4I.7.

Glick, M.

Goddard, L.

M. Bahadori, A. Kar, Y. Yang, A. Lavasani, L. Goddard, and S. Gong, “High-performance integrated photonics in thin film lithium niobate platform,” in Conference on Lasers and Electro-Optics (2019).

Goddard, L. L.

Goi, K.

Gong, S.

A. Kar, M. Bahadori, S. Gong, and L. L. Goddard, “Realization of alignment-tolerant grating couplers for z-cut thin-film lithium niobate,” Opt. Express 27(11), 15856–15867 (2019).
[Crossref]

M. Bahadori, A. Kar, Y. Yang, A. Lavasani, L. Goddard, and S. Gong, “High-performance integrated photonics in thin film lithium niobate platform,” in Conference on Lasers and Electro-Optics (2019).

Graham, L.

D. Kuchta, A. Rylyakov, C. Schow, J. Proesel, F. Doany, C. W. Baks, B. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1Gb/s NRZ modulated 850 nm VCSEL-based optical link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OW1B.5.

Guo, C.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond,” ArXiv180710362 Phys. (2018).

Gustavsson, J. S.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Hamel-Bissell, B.

D. Kuchta, A. Rylyakov, C. Schow, J. Proesel, F. Doany, C. W. Baks, B. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1Gb/s NRZ modulated 850 nm VCSEL-based optical link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OW1B.5.

Hammond, S. D.

S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun, K. Wen, A. Rodrigues, and K. Bergman, “Optical interconnects for extreme scale computing systems,” Parallel Comput. 64, 65–80 (2017).
[Crossref]

He, M.

J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, and S. Yu, “High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides,” Opt. Express 26(23), 29651–29658 (2018).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond,” ArXiv180710362 Phys. (2018).

Hendry, R.

Hkan, M.

H. Shen, M. Hkan, S. Xiao, and M. Qi, “Reducing mode-transition loss in silicon-on-insulator strip waveguide bends,” in 2008 Conference on Lasers and Electro-Optics (IEEE, 2008), pp. 1–2.

Hochberg, M.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
[Crossref]

Honardoost, A.

Hood, D.

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Hybrid silicon photonic-lithium niobate electro-optic Mach-Zehnder modulator beyond 100 GHz bandwidth,” ArXiv180310365 Phys. (2018).

Hu, Y.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photonics Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

D. J. Thomson, Y. Hu, G. T. Reed, and J.-M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

Hu, Z.

Jaeger, N. A. F.

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23(3), 3795–3808 (2015).
[Crossref]

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Janosik, N.

Jian, J.

J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, and S. Yu, “High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides,” Opt. Express 26(23), 29651–29658 (2018).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond,” ArXiv180710362 Phys. (2018).

Johnson, R.

D. Kuchta, A. Rylyakov, C. Schow, J. Proesel, F. Doany, C. W. Baks, B. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1Gb/s NRZ modulated 850 nm VCSEL-based optical link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OW1B.5.

Kar, A.

A. Kar, M. Bahadori, S. Gong, and L. L. Goddard, “Realization of alignment-tolerant grating couplers for z-cut thin-film lithium niobate,” Opt. Express 27(11), 15856–15867 (2019).
[Crossref]

M. Bahadori, A. Kar, Y. Yang, A. Lavasani, L. Goddard, and S. Gong, “High-performance integrated photonics in thin film lithium niobate platform,” in Conference on Lasers and Electro-Optics (2019).

Khan, S.

Kimerling, L. C.

Kocot, C.

D. Kuchta, A. Rylyakov, C. Schow, J. Proesel, F. Doany, C. W. Baks, B. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1Gb/s NRZ modulated 850 nm VCSEL-based optical link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OW1B.5.

Krasnokutska, I.

I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26(2), 897–904 (2018).
[Crossref]

I. Krasnokutska, J.-L. J. Tambasco, and A. Peruzzo, “Large free spectral range microring resonators in lithium niobate on insulator,” ArXiv180706531 Phys. 6 (2018).

Kuchta, D.

D. Kuchta, A. Rylyakov, C. Schow, J. Proesel, F. Doany, C. W. Baks, B. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1Gb/s NRZ modulated 850 nm VCSEL-based optical link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OW1B.5.

Kuchta, D. M.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Kumar, R.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanovic, and M. A. Popovic, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in 2015 IEEE Optical Interconnects Conference (OI) (IEEE, 2015), pp. 46–47.

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Kwong, D.-L.

Landry, G.

D. Kuchta, A. Rylyakov, C. Schow, J. Proesel, F. Doany, C. W. Baks, B. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1Gb/s NRZ modulated 850 nm VCSEL-based optical link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OW1B.5.

Larsson, A.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Lavasani, A.

M. Bahadori, A. Kar, Y. Yang, A. Lavasani, L. Goddard, and S. Gong, “High-performance integrated photonics in thin film lithium niobate platform,” in Conference on Lasers and Electro-Optics (2019).

Lee, K. K.

Leinders, S. M.

Lentine, A. L.

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Hybrid silicon photonic-lithium niobate electro-optic Mach-Zehnder modulator beyond 100 GHz bandwidth,” ArXiv180310365 Phys. (2018).

Li, C.

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

S. Palermo, K. Yu, A. Roshan-Zamir, B. Wang, C. Li, M. A. Seyedi, M. Fiorentino, and R. Beausoleil, “PAM4 silicon photonic microring resonator-based transceiver circuits,” in H. Schröder and R. T. Chen, eds. (2017), p. 101090F.

Li, Q.

S. Rumley, D. Nikolova, R. Hendry, Q. Li, D. Calhoun, and K. Bergman, “Silicon photonics for exascale systems,” J. Lightwave Technol. 33(3), 547–562 (2015).
[Crossref]

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Li, R.

X. Song, R. Li, G. Mi, J. Suo, Z. Zhang, and Y. Li, “Optoelectronic integrated circuits for growing datacenters: challenge, strategy, and evolution,” in Smart Photonic and Optoelectronic Integrated Circuits XXI, E.-H. Lee and S. He, eds. (SPIE, 2019), p. 11.

Li, X.

I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26(2), 897–904 (2018).
[Crossref]

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photonics Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

Li, Y.

X. Song, R. Li, G. Mi, J. Suo, Z. Zhang, and Y. Li, “Optoelectronic integrated circuits for growing datacenters: challenge, strategy, and evolution,” in Smart Photonic and Optoelectronic Integrated Circuits XXI, E.-H. Lee and S. He, eds. (SPIE, 2019), p. 11.

Li, Z.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photonics Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

Lim, A. E.

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Lim, A. E.-J.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
[Crossref]

Lim, D. R.

Liow, T.

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Liow, T.-Y.

Lipson, M.

Liu, L.

J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, and S. Yu, “High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides,” Opt. Express 26(23), 29651–29658 (2018).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond,” ArXiv180710362 Phys. (2018).

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond,” ArXiv180710362 Phys. (2018).

Liu, Y.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Lo, G.-Q.

Loncar, M.

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vpi,” in2018 Optical Fiber Communications Conference and Exposition (OFC) (2018), pp. 1–3.

Lu, Y. Y.

Lu, Z.

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23(3), 3795–3808 (2015).
[Crossref]

Ma, J.

Ma, M.

Ma, Y.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

MacInnes, A.

D. Kuchta, A. Rylyakov, C. Schow, J. Proesel, F. Doany, C. W. Baks, B. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1Gb/s NRZ modulated 850 nm VCSEL-based optical link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OW1B.5.

Mahmoud, A.

Mahmoud, M.

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

M. Mahmoud, S. Ghosh, and G. Piazza, “Lithium niobate on insulator (LNOI) grating couplers,” in CLEO: 2015 (2015), Paper SW4I.7 (Optical Society of America, 2015), p. SW4I.7.

Manipatruni, S.

Manzhosov, E.

Mazur, E.

O. Reshef, M. G. Moebius, and E. Mazur, “Extracting losses from asymmetric resonances in micro-ring resonators,” J. Opt. 19(6), 065804 (2017).
[Crossref]

Meng, X.

Mi, G.

X. Song, R. Li, G. Mi, J. Suo, Z. Zhang, and Y. Li, “Optoelectronic integrated circuits for growing datacenters: challenge, strategy, and evolution,” in Smart Photonic and Optoelectronic Integrated Circuits XXI, E.-H. Lee and S. He, eds. (SPIE, 2019), p. 11.

Mitchell, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Moebius, M. G.

O. Reshef, M. G. Moebius, and E. Mazur, “Extracting losses from asymmetric resonances in micro-ring resonators,” J. Opt. 19(6), 065804 (2017).
[Crossref]

Mookherjea, S.

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Hybrid silicon photonic-lithium niobate electro-optic Mach-Zehnder modulator beyond 100 GHz bandwidth,” ArXiv180310365 Phys. (2018).

Mudrick, J.

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Hybrid silicon photonic-lithium niobate electro-optic Mach-Zehnder modulator beyond 100 GHz bandwidth,” ArXiv180310365 Phys. (2018).

Nikdast, M.

Nikolova, D.

of E, I.

I. of E. Engineers, Properties of Lithium Niobate (IET, 2002).

Ogawa, K.

Padmaraju, K.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Palermo, S.

S. Palermo, K. Yu, A. Roshan-Zamir, B. Wang, C. Li, M. A. Seyedi, M. Fiorentino, and R. Beausoleil, “PAM4 silicon photonic microring resonator-based transceiver circuits,” in H. Schröder and R. T. Chen, eds. (2017), p. 101090F.

Paolella, A.

Park, A. H. K.

A. H. K. Park, H. Shoman, M. Ma, S. Shekhar, and L. Chrostowski, “Ring resonator based polarization diversity WDM receiver,” Opt. Express 27(5), 6147–6157 (2019).
[Crossref]

A. H. K. Park, A. S. Ramani, L. Chrostowski, and S. Shekhar, “Comparison of DAC-less PAM4 modulation in segmented ring resonator and dual cascaded ring resonator,” in 2017 IEEE Optical Interconnects Conference (OI) (IEEE, 2017), pp. 7–8.

Patil, A.

Pavanello, F.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanovic, and M. A. Popovic, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in 2015 IEEE Optical Interconnects Conference (OI) (IEEE, 2015), pp. 46–47.

Peruzzo, A.

I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26(2), 897–904 (2018).
[Crossref]

I. Krasnokutska, J.-L. J. Tambasco, and A. Peruzzo, “Large free spectral range microring resonators in lithium niobate on insulator,” ArXiv180706531 Phys. 6 (2018).

Piazza, G.

L. Cai, A. Mahmoud, and G. Piazza, “Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications,” Opt. Express 27(7), 9794 (2019).
[Crossref]

L. Cai and G. Piazza, “Low-loss chirped grating for vertical light coupling in lithium niobate on insulator,” J. Opt. 21(6), 065801 (2019).
[Crossref]

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

M. Mahmoud, S. Ghosh, and G. Piazza, “Lithium niobate on insulator (LNOI) grating couplers,” in CLEO: 2015 (2015), Paper SW4I.7 (Optical Society of America, 2015), p. SW4I.7.

Polster, R.

Pomerene, A. T.

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Hybrid silicon photonic-lithium niobate electro-optic Mach-Zehnder modulator beyond 100 GHz bandwidth,” ArXiv180310365 Phys. (2018).

Popovic, M. A.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanovic, and M. A. Popovic, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in 2015 IEEE Optical Interconnects Conference (OI) (IEEE, 2015), pp. 46–47.

Poulton, C. V.

D. Vermeulen and C. V. Poulton, “Optical interfaces for silicon photonic circuits,” Proc. IEEE 106(12), 2270–2280 (2018).
[Crossref]

Proesel, J.

D. Kuchta, A. Rylyakov, C. Schow, J. Proesel, F. Doany, C. W. Baks, B. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1Gb/s NRZ modulated 850 nm VCSEL-based optical link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OW1B.5.

Proesel, J. E.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Qi, M.

H. Shen, M. Hkan, S. Xiao, and M. Qi, “Reducing mode-transition loss in silicon-on-insulator strip waveguide bends,” in 2008 Conference on Lasers and Electro-Optics (IEEE, 2008), pp. 1–2.

Rabiei, P.

Ram, R.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanovic, and M. A. Popovic, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in 2015 IEEE Optical Interconnects Conference (OI) (IEEE, 2015), pp. 46–47.

Ramani, A. S.

A. H. K. Park, A. S. Ramani, L. Chrostowski, and S. Shekhar, “Comparison of DAC-less PAM4 modulation in segmented ring resonator and dual cascaded ring resonator,” in 2017 IEEE Optical Interconnects Conference (OI) (IEEE, 2017), pp. 7–8.

Rao, A.

A. Rao and S. Fathpour, “Second-harmonic generation in integrated photonics on silicon,” Phys. Status Solidi A 215(4), 1700684 (2018).
[Crossref]

A. Rao and S. Fathpour, “Heterogeneous thin-film lithium niobate integrated photonics for electrooptics and nonlinear optics,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–12 (2018).
[Crossref]

A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41(24), 5700–5703 (2016).
[Crossref]

Reano, R. M.

Rebeiz, G.

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Hybrid silicon photonic-lithium niobate electro-optic Mach-Zehnder modulator beyond 100 GHz bandwidth,” ArXiv180310365 Phys. (2018).

Reed, G. T.

D. J. Thomson, Y. Hu, G. T. Reed, and J.-M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

Ren, Y.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond,” ArXiv180710362 Phys. (2018).

Reshef, O.

O. Reshef, M. G. Moebius, and E. Mazur, “Extracting losses from asymmetric resonances in micro-ring resonators,” J. Opt. 19(6), 065804 (2017).
[Crossref]

Rodrigues, A.

S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun, K. Wen, A. Rodrigues, and K. Bergman, “Optical interconnects for extreme scale computing systems,” Parallel Comput. 64, 65–80 (2017).
[Crossref]

Roshan-Zamir, A.

S. Palermo, K. Yu, A. Roshan-Zamir, B. Wang, C. Li, M. A. Seyedi, M. Fiorentino, and R. Beausoleil, “PAM4 silicon photonic microring resonator-based transceiver circuits,” in H. Schröder and R. T. Chen, eds. (2017), p. 101090F.

Ruan, Z.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond,” ArXiv180710362 Phys. (2018).

Rumley, S.

Rylyakov, A.

D. Kuchta, A. Rylyakov, C. Schow, J. Proesel, F. Doany, C. W. Baks, B. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1Gb/s NRZ modulated 850 nm VCSEL-based optical link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OW1B.5.

Rylyakov, A. V.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Schmidt, B.

Schow, C.

D. Kuchta, A. Rylyakov, C. Schow, J. Proesel, F. Doany, C. W. Baks, B. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1Gb/s NRZ modulated 850 nm VCSEL-based optical link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OW1B.5.

Schow, C. L.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Seyedi, M. A.

S. Palermo, K. Yu, A. Roshan-Zamir, B. Wang, C. Li, M. A. Seyedi, M. Fiorentino, and R. Beausoleil, “PAM4 silicon photonic microring resonator-based transceiver circuits,” in H. Schröder and R. T. Chen, eds. (2017), p. 101090F.

Shakya, J.

Shams-Ansari, A.

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vpi,” in2018 Optical Fiber Communications Conference and Exposition (OFC) (2018), pp. 1–3.

Shaw, E.

D. Kuchta, A. Rylyakov, C. Schow, J. Proesel, F. Doany, C. W. Baks, B. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1Gb/s NRZ modulated 850 nm VCSEL-based optical link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OW1B.5.

Shekhar, S.

A. H. K. Park, H. Shoman, M. Ma, S. Shekhar, and L. Chrostowski, “Ring resonator based polarization diversity WDM receiver,” Opt. Express 27(5), 6147–6157 (2019).
[Crossref]

A. H. K. Park, A. S. Ramani, L. Chrostowski, and S. Shekhar, “Comparison of DAC-less PAM4 modulation in segmented ring resonator and dual cascaded ring resonator,” in 2017 IEEE Optical Interconnects Conference (OI) (IEEE, 2017), pp. 7–8.

Shen, H.

H. Shen, M. Hkan, S. Xiao, and M. Qi, “Reducing mode-transition loss in silicon-on-insulator strip waveguide bends,” in 2008 Conference on Lasers and Electro-Optics (IEEE, 2008), pp. 1–2.

Shen, Y.

Shi, W.

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Shin, J.

Shoman, H.

Song, J.

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Song, X.

X. Song, R. Li, G. Mi, J. Suo, Z. Zhang, and Y. Li, “Optoelectronic integrated circuits for growing datacenters: challenge, strategy, and evolution,” in Smart Photonic and Optoelectronic Integrated Circuits XXI, E.-H. Lee and S. He, eds. (SPIE, 2019), p. 11.

Starbuck, A. L.

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Hybrid silicon photonic-lithium niobate electro-optic Mach-Zehnder modulator beyond 100 GHz bandwidth,” ArXiv180310365 Phys. (2018).

Stern, B.

Stojanovic, V.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanovic, and M. A. Popovic, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in 2015 IEEE Optical Interconnects Conference (OI) (IEEE, 2015), pp. 46–47.

Sun, S.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond,” ArXiv180710362 Phys. (2018).

Suo, J.

X. Song, R. Li, G. Mi, J. Suo, Z. Zhang, and Y. Li, “Optoelectronic integrated circuits for growing datacenters: challenge, strategy, and evolution,” in Smart Photonic and Optoelectronic Integrated Circuits XXI, E.-H. Lee and S. He, eds. (SPIE, 2019), p. 11.

Tambasco, J.-L. J.

I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26(2), 897–904 (2018).
[Crossref]

I. Krasnokutska, J.-L. J. Tambasco, and A. Peruzzo, “Large free spectral range microring resonators in lithium niobate on insulator,” ArXiv180706531 Phys. 6 (2018).

Tan, Y. T.

Tatum, J.

D. Kuchta, A. Rylyakov, C. Schow, J. Proesel, F. Doany, C. W. Baks, B. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1Gb/s NRZ modulated 850 nm VCSEL-based optical link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OW1B.5.

Tern, R. P.

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Thomson, D. J.

D. J. Thomson, Y. Hu, G. T. Reed, and J.-M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

Trotter, D.

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Hybrid silicon photonic-lithium niobate electro-optic Mach-Zehnder modulator beyond 100 GHz bandwidth,” ArXiv180310365 Phys. (2018).

Tu, X.

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

K. Ogawa, K. Goi, Y. T. Tan, T.-Y. Liow, X. Tu, Q. Fang, G.-Q. Lo, and D.-L. Kwong, “Silicon Mach-Zehnder modulator of extinction ratio beyond 10 dB at 10.0-12.5 Gbps,” Opt. Express 19(26), B26–B31 (2011).
[Crossref]

Urbach, H. P.

Vaerenbergh, T. V.

van Dongen, K. W. A.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Vermeulen, D.

D. Vermeulen and C. V. Poulton, “Optical interfaces for silicon photonic circuits,” Proc. IEEE 106(12), 2270–2280 (2018).
[Crossref]

Wade, M. T.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanovic, and M. A. Popovic, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in 2015 IEEE Optical Interconnects Conference (OI) (IEEE, 2015), pp. 46–47.

Wang, B.

S. Palermo, K. Yu, A. Roshan-Zamir, B. Wang, C. Li, M. A. Seyedi, M. Fiorentino, and R. Beausoleil, “PAM4 silicon photonic microring resonator-based transceiver circuits,” in H. Schröder and R. T. Chen, eds. (2017), p. 101090F.

Wang, C.

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vpi,” in2018 Optical Fiber Communications Conference and Exposition (OFC) (2018), pp. 1–3.

Wang, X.

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Wang, Y.

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23(3), 3795–3808 (2015).
[Crossref]

Weigel, P. O.

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Hybrid silicon photonic-lithium niobate electro-optic Mach-Zehnder modulator beyond 100 GHz bandwidth,” ArXiv180310365 Phys. (2018).

Wen, K.

S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun, K. Wen, A. Rodrigues, and K. Bergman, “Optical interconnects for extreme scale computing systems,” Parallel Comput. 64, 65–80 (2017).
[Crossref]

Wen, X.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond,” ArXiv180710362 Phys. (2018).

Westbergh, P.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Westerveld, W. J.

Winzer, P.

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vpi,” in2018 Optical Fiber Communications Conference and Exposition (OFC) (2018), pp. 1–3.

Wood, M. G.

Wu, Z.

Xiao, S.

H. Shen, M. Hkan, S. Xiao, and M. Qi, “Reducing mode-transition loss in silicon-on-insulator strip waveguide bends,” in 2008 Conference on Lasers and Electro-Optics (IEEE, 2008), pp. 1–2.

Xiao, X.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photonics Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

Xiong, K.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photonics Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

Xu, H.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photonics Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

Xu, M.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond,” ArXiv180710362 Phys. (2018).

Xu, P.

Xu, Q.

Xu, Y.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond,” ArXiv180710362 Phys. (2018).

Yang, C.

Yang, S.

Yang, Y.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

M. Bahadori, A. Kar, Y. Yang, A. Lavasani, L. Goddard, and S. Gong, “High-performance integrated photonics in thin film lithium niobate platform,” in Conference on Lasers and Electro-Optics (2019).

Yousefi, M.

Yu, J.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photonics Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

Yu, K.

S. Palermo, K. Yu, A. Roshan-Zamir, B. Wang, C. Li, M. A. Seyedi, M. Fiorentino, and R. Beausoleil, “PAM4 silicon photonic microring resonator-based transceiver circuits,” in H. Schröder and R. T. Chen, eds. (2017), p. 101090F.

Yu, S.

J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, and S. Yu, “High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides,” Opt. Express 26(23), 29651–29658 (2018).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond,” ArXiv180710362 Phys. (2018).

Yu, Y.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photonics Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

Yun, H.

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23(3), 3795–3808 (2015).
[Crossref]

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Zhang, F.

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23(3), 3795–3808 (2015).
[Crossref]

Zhang, M.

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vpi,” in2018 Optical Fiber Communications Conference and Exposition (OFC) (2018), pp. 1–3.

Zhang, Y.

Zhang, Z.

X. Song, R. Li, G. Mi, J. Suo, Z. Zhang, and Y. Li, “Optoelectronic integrated circuits for growing datacenters: challenge, strategy, and evolution,” in Smart Photonic and Optoelectronic Integrated Circuits XXI, E.-H. Lee and S. He, eds. (SPIE, 2019), p. 11.

Zhao, J.

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Hybrid silicon photonic-lithium niobate electro-optic Mach-Zehnder modulator beyond 100 GHz bandwidth,” ArXiv180310365 Phys. (2018).

Zhou, L.

J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, and S. Yu, “High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides,” Opt. Express 26(23), 29651–29658 (2018).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond,” ArXiv180710362 Phys. (2018).

IEEE J. Sel. Top. Quantum Electron. (2)

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

A. Rao and S. Fathpour, “Heterogeneous thin-film lithium niobate integrated photonics for electrooptics and nonlinear optics,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–12 (2018).
[Crossref]

IEEE Photonics J. (2)

Y. Wang, H. Yun, Z. Lu, R. Bojko, W. Shi, X. Wang, J. Flueckiger, F. Zhang, M. Caverley, N. A. F. Jaeger, and L. Chrostowski, “Apodized focusing fully etched subwavelength grating couplers,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (3)

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photonics Technol. Lett. 24(19), 1712–1714 (2012).
[Crossref]

D. J. Thomson, Y. Hu, G. T. Reed, and J.-M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

J. Lightwave Technol. (6)

J. Opt. (2)

L. Cai and G. Piazza, “Low-loss chirped grating for vertical light coupling in lithium niobate on insulator,” J. Opt. 21(6), 065801 (2019).
[Crossref]

O. Reshef, M. G. Moebius, and E. Mazur, “Extracting losses from asymmetric resonances in micro-ring resonators,” J. Opt. 19(6), 065804 (2017).
[Crossref]

Laser Photonics Rev. (3)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
[Crossref]

Opt. Commun. (1)

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Opt. Express (12)

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[Crossref]

K. Ogawa, K. Goi, Y. T. Tan, T.-Y. Liow, X. Tu, Q. Fang, G.-Q. Lo, and D.-L. Kwong, “Silicon Mach-Zehnder modulator of extinction ratio beyond 10 dB at 10.0-12.5 Gbps,” Opt. Express 19(26), B26–B31 (2011).
[Crossref]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
[Crossref]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
[Crossref]

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23(3), 3795–3808 (2015).
[Crossref]

L. Cai, A. Mahmoud, and G. Piazza, “Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications,” Opt. Express 27(7), 9794 (2019).
[Crossref]

A. Kar, M. Bahadori, S. Gong, and L. L. Goddard, “Realization of alignment-tolerant grating couplers for z-cut thin-film lithium niobate,” Opt. Express 27(11), 15856–15867 (2019).
[Crossref]

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters [Invited],” Opt. Express 26(12), 16022–16043 (2018).
[Crossref]

J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, and S. Yu, “High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides,” Opt. Express 26(23), 29651–29658 (2018).
[Crossref]

A. H. K. Park, H. Shoman, M. Ma, S. Shekhar, and L. Chrostowski, “Ring resonator based polarization diversity WDM receiver,” Opt. Express 27(5), 6147–6157 (2019).
[Crossref]

I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26(2), 897–904 (2018).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

Opt. Lett. (2)

Optica (2)

Parallel Comput. (1)

S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun, K. Wen, A. Rodrigues, and K. Bergman, “Optical interconnects for extreme scale computing systems,” Parallel Comput. 64, 65–80 (2017).
[Crossref]

Phys. Status Solidi A (1)

A. Rao and S. Fathpour, “Second-harmonic generation in integrated photonics on silicon,” Phys. Status Solidi A 215(4), 1700684 (2018).
[Crossref]

Proc. IEEE (1)

D. Vermeulen and C. V. Poulton, “Optical interfaces for silicon photonic circuits,” Proc. IEEE 106(12), 2270–2280 (2018).
[Crossref]

Other (13)

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanovic, and M. A. Popovic, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in 2015 IEEE Optical Interconnects Conference (OI) (IEEE, 2015), pp. 46–47.

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Hybrid silicon photonic-lithium niobate electro-optic Mach-Zehnder modulator beyond 100 GHz bandwidth,” ArXiv180310365 Phys. (2018).

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond,” ArXiv180710362 Phys. (2018).

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vpi,” in2018 Optical Fiber Communications Conference and Exposition (OFC) (2018), pp. 1–3.

I. Krasnokutska, J.-L. J. Tambasco, and A. Peruzzo, “Large free spectral range microring resonators in lithium niobate on insulator,” ArXiv180706531 Phys. 6 (2018).

I. of E. Engineers, Properties of Lithium Niobate (IET, 2002).

M. Mahmoud, S. Ghosh, and G. Piazza, “Lithium niobate on insulator (LNOI) grating couplers,” in CLEO: 2015 (2015), Paper SW4I.7 (Optical Society of America, 2015), p. SW4I.7.

X. Song, R. Li, G. Mi, J. Suo, Z. Zhang, and Y. Li, “Optoelectronic integrated circuits for growing datacenters: challenge, strategy, and evolution,” in Smart Photonic and Optoelectronic Integrated Circuits XXI, E.-H. Lee and S. He, eds. (SPIE, 2019), p. 11.

D. Kuchta, A. Rylyakov, C. Schow, J. Proesel, F. Doany, C. W. Baks, B. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1Gb/s NRZ modulated 850 nm VCSEL-based optical link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OW1B.5.

A. H. K. Park, A. S. Ramani, L. Chrostowski, and S. Shekhar, “Comparison of DAC-less PAM4 modulation in segmented ring resonator and dual cascaded ring resonator,” in 2017 IEEE Optical Interconnects Conference (OI) (IEEE, 2017), pp. 7–8.

S. Palermo, K. Yu, A. Roshan-Zamir, B. Wang, C. Li, M. A. Seyedi, M. Fiorentino, and R. Beausoleil, “PAM4 silicon photonic microring resonator-based transceiver circuits,” in H. Schröder and R. T. Chen, eds. (2017), p. 101090F.

M. Bahadori, A. Kar, Y. Yang, A. Lavasani, L. Goddard, and S. Gong, “High-performance integrated photonics in thin film lithium niobate platform,” in Conference on Lasers and Electro-Optics (2019).

H. Shen, M. Hkan, S. Xiao, and M. Qi, “Reducing mode-transition loss in silicon-on-insulator strip waveguide bends,” in 2008 Conference on Lasers and Electro-Optics (IEEE, 2008), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. (a) Fabricaton steps. SiO2 is used as a hard mask for etching LN. Cr is chosen as a hard mask for defining SiO2. (b)-(e) SEM images of various devices after the Cr deposition (step 6). (f) Side view SEM image of etching the top SiO2 in a dummy sample (g) Sideview SEM image of a fully etched LN thin-film, showing a sidewall angle of 83°.
Fig. 2.
Fig. 2. (a) Calculated effective index of the fundamental TM mode in a fully etched waveguide of 800 nm × 560 nm in dimensions. (b) Calculated group index of the fundamental TM mode.
Fig. 3.
Fig. 3. (a) Calculated bending loss (radiation + mode-mismatch) for a 90° bend for TE and TM polarizations. (b) Estimated radiation loss (dB/cm) as a function of the radius. Losses < 1 dB/cm can be achieved for a radius > 25 µm.
Fig. 4.
Fig. 4. (a) FDTD simulation results of the coupling of Z-cut waveguide to a microring resonator with a 30 µm radius at $\lambda $ = 1550 nm for both TE and TM polarizations. (b) Calculated coupling for TM polarization as function of wavelength for gap = 400 nm.
Fig. 5.
Fig. 5. (a) Calculated spectrum of the all-pass microring structure with 5 dB/cm loss and a 400 nm coupling gap. (b) Calculated spectrum with 10 dB/cm loss.
Fig. 6.
Fig. 6. (a) Calculated spectrum of the add-drop microring structure with 5 dB/cm of loss and 400-nm coupling gaps. (b) Calculated spectrum with 10 dB/cm of loss.
Fig. 7.
Fig. 7. (a) Image of the measuring stage. The 1” × 1” sample is mounted on an XYZ stage and a fibearray (four fibers with a 250-µm pitch) is used. Side mirrors are used to view the height of the fiber array during alignment. (b) Optical microscope image of an add-drop structure on the chip. The fiber alignment markers are also shown.
Fig. 8.
Fig. 8. (a) Top view of an array of four grating couplers and zoomed-in view of the first grating. The pitch of fabricated grating is 1.127 µm and the number of grating periods is 20. (b) Measured coupling coefficient of one grating coupler and the smoothed data (red curve) as a guide for the eye.
Fig. 9.
Fig. 9. (a) SEM image of the fabricated all-pass ring resonator. Two back-to-back grating couplers are also included to extract the coupling loss of gratings. (b) SEM image of the ring resonator. (c) SEM image of the coupling gap between the ring and the waveguide. The coupling gap is estimated to be 420 nm. (d) Layout of the structure with the input and output paths of light. (e) Measured spectrum indicating 25 dB of extinction. (f) Zoomed-in view of the two resonances with the highest extinction. The FSR is measured to be 5.225 nm.
Fig. 10.
Fig. 10. Extraction of the resonance attributes close to (a) 1530 nm and (b) 1535 nm. Both resonances exhibit high extinction (∼ 25 dB). (c) Comparison of the normalized measured spectrum with the simulated one, assuming that critical coupling occurs around $\lambda $. = 1530 nm (loss ∼ 6.5 dB/cm).
Fig. 11.
Fig. 11. (a) Layout of the add-drop structure. The pitch of grating array is 250 µm. (b) SEM image of the add-drop microring resonator with a zoomed-in view of the coupling gap between the top waveguide and the ring. The size of the gap is estimated to be 405 nm. (c) Measured spectrum of the through path. (d) Measured spectrum of the drop path.
Fig. 12.
Fig. 12. (a) Measured drop spectrum (blue) and the fitted curve (red). The FSR is ∼5.268 nm. (b) Zoomed-in view of the resonances of the drop spectrum. (c) Plot of both the through spectrum and drop spectrum. The extinction of the through path is ∼ 10 dB. (d) Zoomed-in view of the through and drop spectra. The relative loss of the drop path at the resonance is ∼ 2 dB.
Fig. 13.
Fig. 13. Comparison of the normalized measured spectrum of the through path of the add-drop microring resonator with the simulated spectrum. A good agreement is observed in the extinctions of the resonances (∼ 10 dB).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F S R n m = λ n m 2 2 π R n m n g
T ( λ ) = t 2 + A 2 t A cos ( ϕ ) 1 + t 2 A 2 t A cos ( ϕ )
T ( λ ) = κ 1 2 κ 2 2 A 1 + t 1 2 t 2 2 A 2 t 1 t 2 A cos ( ϕ )
F W H M a l l p a s s F S R n m 2 π ( 2 π R α + κ 2 )
F W H M a d d d r o p F S R n m 2 π ( 2 π R α + κ 1 2 + κ 2 2 )

Metrics