Abstract

Biological microfibers are remarkable materials with diversity in their chemistry, structure and functions that provide a range of solutions for photonic structures. Here we proposed and demonstrated a humidity detection technique for spectral tuning of whispering gallery modes (WGMs) in a cylindrical microresonator formed by a piece of spider egg sac silk (SpEss) from Araneus Ventricosus. We launched a supercontinuum laser into the SpEss via a tapered single-mode fiber to excite WGMs. When the ambient humidity changed, the profile diameter and effective refractive index of the SpEss changed, which caused the WGM resonant dips to shift. The experimental results showed that when the relative humidity (RH) changed from 20% to 75% RH, the average testing sensitivity of the proposed sensor was 389.1 pm/%RH and the maximum testing sensitivity was 606.7 pm/%RH in the range of 60% to 75% RH. Also, the proposed SpEss-based humidity sensor showed a fast response time of 494 ms and good repeatability with fluctuations less than 8% compared with the initial test values. The SpEss-based sensor expanded the application of spider silk as a biodegradable and biocompatible material in biochemical sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spider silk-based humidity sensor

Zhihai Liu, Min Zhang, Yu Zhang, Yaxun Zhang, Keqiang Liu, Jianzhong Zhang, Jun Yang, and Libo Yuan
Opt. Lett. 44(11) 2907-2910 (2019)

Humidity sensing using THz metamaterial with silk protein fibroin

Hwan Sik Kim, Sung Ho Cha, Biswajit Roy, Sunghwan Kim, and Y. H. Ahn
Opt. Express 26(26) 33575-33581 (2018)

High-Q silk fibroin whispering gallery microresonator

Linhua Xu, Xuefeng Jiang, Guangming Zhao, Ding Ma, Hu Tao, Zhiwen Liu, Fiorenzo G. Omenetto, and Lan Yang
Opt. Express 24(18) 20825-20830 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of Staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
    [Crossref] [PubMed]
  2. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006).
    [Crossref] [PubMed]
  3. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
    [Crossref]
  4. B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
    [Crossref] [PubMed]
  5. T. Li, Y. Wu, J. Huang, and S. Zhang, “Gas sensors based on membrane diffusion for environmental monitoring,” Sens. Actuators B Chem. 243, 566–578 (2017).
    [Crossref]
  6. V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
    [Crossref] [PubMed]
  7. H. Cui, S. Li, S. Deng, H. Chen, and C. Wang, “Flexible, transparent, and free-standing silicon nanowire SERS platform for in situ food inspection,” ACS Sens. 2(3), 386–393 (2017).
    [Crossref] [PubMed]
  8. A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
    [Crossref] [PubMed]
  9. O. Korostynska, K. Arshak, E. Gill, and A. Arshak, “Materials and techniques for in vivo pH monitoring,” IEEE Sens. J. 8(1), 20–28 (2008).
    [Crossref]
  10. Y. Peng, J. Hou, Z. Huang, and Q. Lu, “Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber,” Appl. Opt. 51(26), 6361–6367 (2012).
    [Crossref] [PubMed]
  11. T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
    [Crossref]
  12. P. Hashemi, R. A. Zarjani, M. M. Abolghasemi, and Å. Olin, “Agarose film coated glass slides for preparation of pH optical sensors,” Sens. Actuators B Chem. 121(2), 396–400 (2007).
    [Crossref] [PubMed]
  13. R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
    [Crossref] [PubMed]
  14. L. Xu, X. Jiang, G. Zhao, D. Ma, H. Tao, Z. Liu, F. G. Omenetto, and L. Yang, “High-Q silk fibroin whispering gallery microresonator,” Opt. Express 24(18), 20825–20830 (2016).
    [Crossref] [PubMed]
  15. M. Heim, D. Keerl, and T. Scheibel, “Spider silk: from soluble protein to extraordinary fiber,” Angew. Chem. Int. Ed. Engl. 48(20), 3584–3596 (2009).
    [Crossref] [PubMed]
  16. F. G. Omenetto and D. L. Kaplan, “New opportunities for an ancient material,” Science 329(5991), 528–531 (2010).
    [Crossref] [PubMed]
  17. A. C. Zhao, T. F. Zhao, K. Nakagaki, Y. S. Zhang, Y. H. Sima, Y. G. Miao, K. Shiomi, Z. Kajiura, Y. Nagata, M. Takadera, and M. Nakagaki, “Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi,” Biochemistry 45(10), 3348–3356 (2006).
    [Crossref] [PubMed]
  18. A. Sponner, W. Vater, S. Monajembashi, E. Unger, F. Grosse, and K. Weisshart, “Composition and hierarchical organisation of a spider silk,” PLoS One 2(10), e998 (2007).
    [Crossref] [PubMed]
  19. K. Vasanthavada, X. Hu, A. M. Falick, C. La Mattina, A. M. F. Moore, P. R. Jones, R. Yee, R. Reza, T. Tuton, and C. Vierra, “Aciniform spidroin, a constituent of egg case sacs and wrapping silk fibers from the black widow spider Latrodectus hesperus,” J. Biol. Chem. 282(48), 35088–35097 (2007).
    [Crossref] [PubMed]
  20. J. M. Gosline, P. A. Guerette, C. S. Ortlepp, and K. N. Savage, “The mechanical design of spider silks: from fibroin sequence to mechanical function,” J. Exp. Biol. 202(Pt 23), 3295–3303 (1999).
    [PubMed]
  21. F. Cordier and S. Grzesiek, “Temperature-dependence of protein hydrogen bond properties as studied by high-resolution NMR,” J. Mol. Biol. 317(5), 739–752 (2002).
    [Crossref] [PubMed]
  22. E. Lepore, A. Marchioro, M. Isaia, M. J. Buehler, and N. M. Pugno, “Evidence of the most stretchable egg sac silk stalk, of the European spider of the year Meta menardi,” PLoS One 7(2), e30500 (2012).
    [Crossref] [PubMed]
  23. M. Eryürek, Z. Tasdemir, Y. Karadag, S. Anand, N. Kilinc, B. E. Alaca, and A. Kiraz, “Integrated humidity sensor based on SU-8 polymer microdisk microresonator,” Sens. Actuators B Chem. 242, 1115–1120 (2017).
    [Crossref]
  24. J. Zhang, J. Zhong, Y. F. Fang, J. Wang, G. S. Huang, X. G. Cui, and Y. F. Mei, “Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing,” Nanoscale 6(22), 13646–13650 (2014).
    [Crossref] [PubMed]
  25. K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Exploring the Use of Native Spider Silk as an Optical Fiber for Chemical Sensing,” J. Lightwave Technol. 36(4), 1138–1144 (2018).
    [Crossref]
  26. N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Paquet-Mercier, M. Pézolet, and B. Bêche, “Native spider silk as a biological optical fiber,” Appl. Phys. Lett. 102(12), 123702 (2013).
    [Crossref] [PubMed]
  27. K. Gellynck, P. Verdonk, R. Forsyth, K. F. Almqvist, E. Van Nimmen, T. Gheysens, J. Mertens, L. Van Langenhove, P. Kiekens, and G. Verbruggen, “Biocompatibility and biodegradability of spider egg sac silk,” J. Mater. Sci. Mater. Med. 19(8), 2963–2970 (2008).
    [Crossref] [PubMed]
  28. M. J. Foradori, J. Kovoor, M. J. Moon, and E. K. Tillinghast, “Relation between the outer cover of the egg case of Argiope aurantia (Araneae: Araneidae) and the emergence of its spiderlings,” J. Morphol. 252(2), 218–226 (2002).
    [Crossref] [PubMed]
  29. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
    [Crossref]
  30. A. K. Mallik, D. Liu, V. Kavungal, Q. Wu, G. Farrell, and Y. Semenova, “Agarose coated spherical micro resonator for humidity measurements,” Opt. Express 24(19), 21216–21227 (2016).
    [Crossref] [PubMed]
  31. M. Sumetsky, “Mode localization and the Q-factor of a cylindrical microresonator,” Opt. Lett. 35(14), 2385–2387 (2010).
    [Crossref] [PubMed]
  32. K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: a novel optical fibre for biochemical sensing,” in 24th International Conference on Optical Fibre Sensors (International Society for Optics and Photonics, 2015), p. 96347D.
  33. R. S. Rengasamy, M. Jassal, and C. Rameshkumar, “Studies on structure and properties of Nephila spider silk dragline,” AUTEX Res. J. 5(1), 30–39 (2005).
  34. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
    [Crossref] [PubMed]
  35. A. K. Mallik, G. Farrell, D. Liu, V. Kavungal, Q. Wu, and Y. Semenova, “A Coated Spherical Micro-Resonator for Measurement of Water Vapor Concentration at ppm Levels in Very Low Humidity Environments,” J. Lightwave Technol. 36(13), 2667–2674 (2018).
    [Crossref]
  36. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  37. L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, ““Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens,” Sens. Actuators B Chem. 169, 167–172 (2012).
    [Crossref]
  38. F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matías, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B Chem. 96(1–2), 165–172 (2003).
    [Crossref]
  39. L. Xu, J. C. Fanguy, K. Soni, and S. Tao, “Optical fiber humidity sensor based on evanescent-wave scattering,” Opt. Lett. 29(11), 1191–1193 (2004).
    [Crossref] [PubMed]

2018 (2)

2017 (3)

T. Li, Y. Wu, J. Huang, and S. Zhang, “Gas sensors based on membrane diffusion for environmental monitoring,” Sens. Actuators B Chem. 243, 566–578 (2017).
[Crossref]

H. Cui, S. Li, S. Deng, H. Chen, and C. Wang, “Flexible, transparent, and free-standing silicon nanowire SERS platform for in situ food inspection,” ACS Sens. 2(3), 386–393 (2017).
[Crossref] [PubMed]

M. Eryürek, Z. Tasdemir, Y. Karadag, S. Anand, N. Kilinc, B. E. Alaca, and A. Kiraz, “Integrated humidity sensor based on SU-8 polymer microdisk microresonator,” Sens. Actuators B Chem. 242, 1115–1120 (2017).
[Crossref]

2016 (2)

2015 (2)

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

2014 (3)

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[Crossref] [PubMed]

J. Zhang, J. Zhong, Y. F. Fang, J. Wang, G. S. Huang, X. G. Cui, and Y. F. Mei, “Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing,” Nanoscale 6(22), 13646–13650 (2014).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

2013 (1)

N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Paquet-Mercier, M. Pézolet, and B. Bêche, “Native spider silk as a biological optical fiber,” Appl. Phys. Lett. 102(12), 123702 (2013).
[Crossref] [PubMed]

2012 (3)

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, ““Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens,” Sens. Actuators B Chem. 169, 167–172 (2012).
[Crossref]

Y. Peng, J. Hou, Z. Huang, and Q. Lu, “Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber,” Appl. Opt. 51(26), 6361–6367 (2012).
[Crossref] [PubMed]

E. Lepore, A. Marchioro, M. Isaia, M. J. Buehler, and N. M. Pugno, “Evidence of the most stretchable egg sac silk stalk, of the European spider of the year Meta menardi,” PLoS One 7(2), e30500 (2012).
[Crossref] [PubMed]

2010 (2)

F. G. Omenetto and D. L. Kaplan, “New opportunities for an ancient material,” Science 329(5991), 528–531 (2010).
[Crossref] [PubMed]

M. Sumetsky, “Mode localization and the Q-factor of a cylindrical microresonator,” Opt. Lett. 35(14), 2385–2387 (2010).
[Crossref] [PubMed]

2009 (1)

M. Heim, D. Keerl, and T. Scheibel, “Spider silk: from soluble protein to extraordinary fiber,” Angew. Chem. Int. Ed. Engl. 48(20), 3584–3596 (2009).
[Crossref] [PubMed]

2008 (3)

O. Korostynska, K. Arshak, E. Gill, and A. Arshak, “Materials and techniques for in vivo pH monitoring,” IEEE Sens. J. 8(1), 20–28 (2008).
[Crossref]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

K. Gellynck, P. Verdonk, R. Forsyth, K. F. Almqvist, E. Van Nimmen, T. Gheysens, J. Mertens, L. Van Langenhove, P. Kiekens, and G. Verbruggen, “Biocompatibility and biodegradability of spider egg sac silk,” J. Mater. Sci. Mater. Med. 19(8), 2963–2970 (2008).
[Crossref] [PubMed]

2007 (3)

A. Sponner, W. Vater, S. Monajembashi, E. Unger, F. Grosse, and K. Weisshart, “Composition and hierarchical organisation of a spider silk,” PLoS One 2(10), e998 (2007).
[Crossref] [PubMed]

K. Vasanthavada, X. Hu, A. M. Falick, C. La Mattina, A. M. F. Moore, P. R. Jones, R. Yee, R. Reza, T. Tuton, and C. Vierra, “Aciniform spidroin, a constituent of egg case sacs and wrapping silk fibers from the black widow spider Latrodectus hesperus,” J. Biol. Chem. 282(48), 35088–35097 (2007).
[Crossref] [PubMed]

P. Hashemi, R. A. Zarjani, M. M. Abolghasemi, and Å. Olin, “Agarose film coated glass slides for preparation of pH optical sensors,” Sens. Actuators B Chem. 121(2), 396–400 (2007).
[Crossref] [PubMed]

2006 (2)

A. C. Zhao, T. F. Zhao, K. Nakagaki, Y. S. Zhang, Y. H. Sima, Y. G. Miao, K. Shiomi, Z. Kajiura, Y. Nagata, M. Takadera, and M. Nakagaki, “Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi,” Biochemistry 45(10), 3348–3356 (2006).
[Crossref] [PubMed]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006).
[Crossref] [PubMed]

2005 (2)

R. S. Rengasamy, M. Jassal, and C. Rameshkumar, “Studies on structure and properties of Nephila spider silk dragline,” AUTEX Res. J. 5(1), 30–39 (2005).

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[Crossref]

2004 (1)

2003 (1)

F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matías, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B Chem. 96(1–2), 165–172 (2003).
[Crossref]

2002 (4)

M. J. Foradori, J. Kovoor, M. J. Moon, and E. K. Tillinghast, “Relation between the outer cover of the egg case of Argiope aurantia (Araneae: Araneidae) and the emergence of its spiderlings,” J. Morphol. 252(2), 218–226 (2002).
[Crossref] [PubMed]

F. Cordier and S. Grzesiek, “Temperature-dependence of protein hydrogen bond properties as studied by high-resolution NMR,” J. Mol. Biol. 317(5), 739–752 (2002).
[Crossref] [PubMed]

R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of Staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

1999 (1)

J. M. Gosline, P. A. Guerette, C. S. Ortlepp, and K. N. Savage, “The mechanical design of spider silks: from fibroin sequence to mechanical function,” J. Exp. Biol. 202(Pt 23), 3295–3303 (1999).
[PubMed]

1996 (1)

1992 (1)

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[Crossref]

Abolghasemi, M. M.

P. Hashemi, R. A. Zarjani, M. M. Abolghasemi, and Å. Olin, “Agarose film coated glass slides for preparation of pH optical sensors,” Sens. Actuators B Chem. 121(2), 396–400 (2007).
[Crossref] [PubMed]

Alaca, B. E.

M. Eryürek, Z. Tasdemir, Y. Karadag, S. Anand, N. Kilinc, B. E. Alaca, and A. Kiraz, “Integrated humidity sensor based on SU-8 polymer microdisk microresonator,” Sens. Actuators B Chem. 242, 1115–1120 (2017).
[Crossref]

Almqvist, K. F.

K. Gellynck, P. Verdonk, R. Forsyth, K. F. Almqvist, E. Van Nimmen, T. Gheysens, J. Mertens, L. Van Langenhove, P. Kiekens, and G. Verbruggen, “Biocompatibility and biodegradability of spider egg sac silk,” J. Mater. Sci. Mater. Med. 19(8), 2963–2970 (2008).
[Crossref] [PubMed]

Anand, S.

M. Eryürek, Z. Tasdemir, Y. Karadag, S. Anand, N. Kilinc, B. E. Alaca, and A. Kiraz, “Integrated humidity sensor based on SU-8 polymer microdisk microresonator,” Sens. Actuators B Chem. 242, 1115–1120 (2017).
[Crossref]

Ang, X. M.

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, ““Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens,” Sens. Actuators B Chem. 169, 167–172 (2012).
[Crossref]

Arnold, S.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Arregui, F. J.

F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matías, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B Chem. 96(1–2), 165–172 (2003).
[Crossref]

Arshak, A.

O. Korostynska, K. Arshak, E. Gill, and A. Arshak, “Materials and techniques for in vivo pH monitoring,” IEEE Sens. J. 8(1), 20–28 (2008).
[Crossref]

Arshak, K.

O. Korostynska, K. Arshak, E. Gill, and A. Arshak, “Materials and techniques for in vivo pH monitoring,” IEEE Sens. J. 8(1), 20–28 (2008).
[Crossref]

Balamurali, P.

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, ““Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens,” Sens. Actuators B Chem. 169, 167–172 (2012).
[Crossref]

Bang, O.

Beaufils, S.

N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Paquet-Mercier, M. Pézolet, and B. Bêche, “Native spider silk as a biological optical fiber,” Appl. Phys. Lett. 102(12), 123702 (2013).
[Crossref] [PubMed]

Bêche, B.

N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Paquet-Mercier, M. Pézolet, and B. Bêche, “Native spider silk as a biological optical fiber,” Appl. Phys. Lett. 102(12), 123702 (2013).
[Crossref] [PubMed]

Bertucci, A.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

Birks, T. A.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[Crossref]

Bonam, R. K.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Brynda, E.

R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of Staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
[Crossref] [PubMed]

Buehler, M. J.

E. Lepore, A. Marchioro, M. Isaia, M. J. Buehler, and N. M. Pugno, “Evidence of the most stretchable egg sac silk stalk, of the European spider of the year Meta menardi,” PLoS One 7(2), e30500 (2012).
[Crossref] [PubMed]

Bunning, T.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Candiani, A.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

Caucheteur, C.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[Crossref] [PubMed]

Chan, C. C.

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, ““Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens,” Sens. Actuators B Chem. 169, 167–172 (2012).
[Crossref]

Chen, H.

H. Cui, S. Li, S. Deng, H. Chen, and C. Wang, “Flexible, transparent, and free-standing silicon nanowire SERS platform for in situ food inspection,” ACS Sens. 2(3), 386–393 (2017).
[Crossref] [PubMed]

Chen, L. H.

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, ““Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens,” Sens. Actuators B Chem. 169, 167–172 (2012).
[Crossref]

Chen, Y. F.

Cheng, Y.

Chiang, K. S.

Chow, D. M.

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Exploring the Use of Native Spider Silk as an Optical Fiber for Chemical Sensing,” J. Lightwave Technol. 36(4), 1138–1144 (2018).
[Crossref]

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: a novel optical fibre for biochemical sensing,” in 24th International Conference on Optical Fibre Sensors (International Society for Optics and Photonics, 2015), p. 96347D.

Ciaurriz, Z.

F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matías, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B Chem. 96(1–2), 165–172 (2003).
[Crossref]

Cordier, F.

F. Cordier and S. Grzesiek, “Temperature-dependence of protein hydrogen bond properties as studied by high-resolution NMR,” J. Mol. Biol. 317(5), 739–752 (2002).
[Crossref] [PubMed]

Corradini, R.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

Cucinotta, A.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

Cui, H.

H. Cui, S. Li, S. Deng, H. Chen, and C. Wang, “Flexible, transparent, and free-standing silicon nanowire SERS platform for in situ food inspection,” ACS Sens. 2(3), 386–393 (2017).
[Crossref] [PubMed]

Cui, X. G.

J. Zhang, J. Zhong, Y. F. Fang, J. Wang, G. S. Huang, X. G. Cui, and Y. F. Mei, “Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing,” Nanoscale 6(22), 13646–13650 (2014).
[Crossref] [PubMed]

Damman, P.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[Crossref] [PubMed]

Deng, S.

H. Cui, S. Li, S. Deng, H. Chen, and C. Wang, “Flexible, transparent, and free-standing silicon nanowire SERS platform for in situ food inspection,” ACS Sens. 2(3), 386–393 (2017).
[Crossref] [PubMed]

Deng, T.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Dicaire, I.

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Exploring the Use of Native Spider Silk as an Optical Fiber for Chemical Sensing,” J. Lightwave Technol. 36(4), 1138–1144 (2018).
[Crossref]

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: a novel optical fibre for biochemical sensing,” in 24th International Conference on Optical Fibre Sensors (International Society for Optics and Photonics, 2015), p. 96347D.

Dufva, M.

Eryürek, M.

M. Eryürek, Z. Tasdemir, Y. Karadag, S. Anand, N. Kilinc, B. E. Alaca, and A. Kiraz, “Integrated humidity sensor based on SU-8 polymer microdisk microresonator,” Sens. Actuators B Chem. 242, 1115–1120 (2017).
[Crossref]

Falick, A. M.

K. Vasanthavada, X. Hu, A. M. Falick, C. La Mattina, A. M. F. Moore, P. R. Jones, R. Yee, R. Reza, T. Tuton, and C. Vierra, “Aciniform spidroin, a constituent of egg case sacs and wrapping silk fibers from the black widow spider Latrodectus hesperus,” J. Biol. Chem. 282(48), 35088–35097 (2007).
[Crossref] [PubMed]

Fan, X.

Fang, Y. F.

J. Zhang, J. Zhong, Y. F. Fang, J. Wang, G. S. Huang, X. G. Cui, and Y. F. Mei, “Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing,” Nanoscale 6(22), 13646–13650 (2014).
[Crossref] [PubMed]

Fanguy, J. C.

Farrell, G.

Foradori, M. J.

M. J. Foradori, J. Kovoor, M. J. Moon, and E. K. Tillinghast, “Relation between the outer cover of the egg case of Argiope aurantia (Araneae: Araneidae) and the emergence of its spiderlings,” J. Morphol. 252(2), 218–226 (2002).
[Crossref] [PubMed]

Forsyth, R.

K. Gellynck, P. Verdonk, R. Forsyth, K. F. Almqvist, E. Van Nimmen, T. Gheysens, J. Mertens, L. Van Langenhove, P. Kiekens, and G. Verbruggen, “Biocompatibility and biodegradability of spider egg sac silk,” J. Mater. Sci. Mater. Med. 19(8), 2963–2970 (2008).
[Crossref] [PubMed]

Gellynck, K.

K. Gellynck, P. Verdonk, R. Forsyth, K. F. Almqvist, E. Van Nimmen, T. Gheysens, J. Mertens, L. Van Langenhove, P. Kiekens, and G. Verbruggen, “Biocompatibility and biodegradability of spider egg sac silk,” J. Mater. Sci. Mater. Med. 19(8), 2963–2970 (2008).
[Crossref] [PubMed]

Gheysens, T.

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Exploring the Use of Native Spider Silk as an Optical Fiber for Chemical Sensing,” J. Lightwave Technol. 36(4), 1138–1144 (2018).
[Crossref]

K. Gellynck, P. Verdonk, R. Forsyth, K. F. Almqvist, E. Van Nimmen, T. Gheysens, J. Mertens, L. Van Langenhove, P. Kiekens, and G. Verbruggen, “Biocompatibility and biodegradability of spider egg sac silk,” J. Mater. Sci. Mater. Med. 19(8), 2963–2970 (2008).
[Crossref] [PubMed]

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: a novel optical fibre for biochemical sensing,” in 24th International Conference on Optical Fibre Sensors (International Society for Optics and Photonics, 2015), p. 96347D.

Giannetti, S.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

Gill, E.

O. Korostynska, K. Arshak, E. Gill, and A. Arshak, “Materials and techniques for in vivo pH monitoring,” IEEE Sens. J. 8(1), 20–28 (2008).
[Crossref]

Gong, Y.

Gorodetsky, M. L.

Gosline, J. M.

J. M. Gosline, P. A. Guerette, C. S. Ortlepp, and K. N. Savage, “The mechanical design of spider silks: from fibroin sequence to mechanical function,” J. Exp. Biol. 202(Pt 23), 3295–3303 (1999).
[PubMed]

Grande, J. C.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Grattan, K. T. V.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[Crossref]

Grosse, F.

A. Sponner, W. Vater, S. Monajembashi, E. Unger, F. Grosse, and K. Weisshart, “Composition and hierarchical organisation of a spider silk,” PLoS One 2(10), e998 (2007).
[Crossref] [PubMed]

Grzesiek, S.

F. Cordier and S. Grzesiek, “Temperature-dependence of protein hydrogen bond properties as studied by high-resolution NMR,” J. Mol. Biol. 317(5), 739–752 (2002).
[Crossref] [PubMed]

Guerette, P. A.

J. M. Gosline, P. A. Guerette, C. S. Ortlepp, and K. N. Savage, “The mechanical design of spider silks: from fibroin sequence to mechanical function,” J. Exp. Biol. 202(Pt 23), 3295–3303 (1999).
[PubMed]

Hartley, J. G.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Hashemi, P.

P. Hashemi, R. A. Zarjani, M. M. Abolghasemi, and Å. Olin, “Agarose film coated glass slides for preparation of pH optical sensors,” Sens. Actuators B Chem. 121(2), 396–400 (2007).
[Crossref] [PubMed]

Heim, M.

M. Heim, D. Keerl, and T. Scheibel, “Spider silk: from soluble protein to extraordinary fiber,” Angew. Chem. Int. Ed. Engl. 48(20), 3584–3596 (2009).
[Crossref] [PubMed]

Høiby, P. E.

Homola, J.

R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of Staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
[Crossref] [PubMed]

Hou, J.

Hu, X.

K. Vasanthavada, X. Hu, A. M. Falick, C. La Mattina, A. M. F. Moore, P. R. Jones, R. Yee, R. Reza, T. Tuton, and C. Vierra, “Aciniform spidroin, a constituent of egg case sacs and wrapping silk fibers from the black widow spider Latrodectus hesperus,” J. Biol. Chem. 282(48), 35088–35097 (2007).
[Crossref] [PubMed]

Huang, G. S.

J. Zhang, J. Zhong, Y. F. Fang, J. Wang, G. S. Huang, X. G. Cui, and Y. F. Mei, “Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing,” Nanoscale 6(22), 13646–13650 (2014).
[Crossref] [PubMed]

Huang, J.

T. Li, Y. Wu, J. Huang, and S. Zhang, “Gas sensors based on membrane diffusion for environmental monitoring,” Sens. Actuators B Chem. 243, 566–578 (2017).
[Crossref]

Huang, Z.

Huby, N.

N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Paquet-Mercier, M. Pézolet, and B. Bêche, “Native spider silk as a biological optical fiber,” Appl. Phys. Lett. 102(12), 123702 (2013).
[Crossref] [PubMed]

Ilchenko, V. S.

Isaia, M.

E. Lepore, A. Marchioro, M. Isaia, M. J. Buehler, and N. M. Pugno, “Evidence of the most stretchable egg sac silk stalk, of the European spider of the year Meta menardi,” PLoS One 7(2), e30500 (2012).
[Crossref] [PubMed]

Jassal, M.

R. S. Rengasamy, M. Jassal, and C. Rameshkumar, “Studies on structure and properties of Nephila spider silk dragline,” AUTEX Res. J. 5(1), 30–39 (2005).

Jensen, J. B.

Jiang, X.

Jones, P. R.

K. Vasanthavada, X. Hu, A. M. Falick, C. La Mattina, A. M. F. Moore, P. R. Jones, R. Yee, R. Reza, T. Tuton, and C. Vierra, “Aciniform spidroin, a constituent of egg case sacs and wrapping silk fibers from the black widow spider Latrodectus hesperus,” J. Biol. Chem. 282(48), 35088–35097 (2007).
[Crossref] [PubMed]

Kajiura, Z.

A. C. Zhao, T. F. Zhao, K. Nakagaki, Y. S. Zhang, Y. H. Sima, Y. G. Miao, K. Shiomi, Z. Kajiura, Y. Nagata, M. Takadera, and M. Nakagaki, “Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi,” Biochemistry 45(10), 3348–3356 (2006).
[Crossref] [PubMed]

Kaplan, D. L.

F. G. Omenetto and D. L. Kaplan, “New opportunities for an ancient material,” Science 329(5991), 528–531 (2010).
[Crossref] [PubMed]

Karadag, Y.

M. Eryürek, Z. Tasdemir, Y. Karadag, S. Anand, N. Kilinc, B. E. Alaca, and A. Kiraz, “Integrated humidity sensor based on SU-8 polymer microdisk microresonator,” Sens. Actuators B Chem. 242, 1115–1120 (2017).
[Crossref]

Kavungal, V.

Keerl, D.

M. Heim, D. Keerl, and T. Scheibel, “Spider silk: from soluble protein to extraordinary fiber,” Angew. Chem. Int. Ed. Engl. 48(20), 3584–3596 (2009).
[Crossref] [PubMed]

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Kiekens, P.

K. Gellynck, P. Verdonk, R. Forsyth, K. F. Almqvist, E. Van Nimmen, T. Gheysens, J. Mertens, L. Van Langenhove, P. Kiekens, and G. Verbruggen, “Biocompatibility and biodegradability of spider egg sac silk,” J. Mater. Sci. Mater. Med. 19(8), 2963–2970 (2008).
[Crossref] [PubMed]

Kilinc, N.

M. Eryürek, Z. Tasdemir, Y. Karadag, S. Anand, N. Kilinc, B. E. Alaca, and A. Kiraz, “Integrated humidity sensor based on SU-8 polymer microdisk microresonator,” Sens. Actuators B Chem. 242, 1115–1120 (2017).
[Crossref]

Kiraz, A.

M. Eryürek, Z. Tasdemir, Y. Karadag, S. Anand, N. Kilinc, B. E. Alaca, and A. Kiraz, “Integrated humidity sensor based on SU-8 polymer microdisk microresonator,” Sens. Actuators B Chem. 242, 1115–1120 (2017).
[Crossref]

Konstantaki, M.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

Korostynska, O.

O. Korostynska, K. Arshak, E. Gill, and A. Arshak, “Materials and techniques for in vivo pH monitoring,” IEEE Sens. J. 8(1), 20–28 (2008).
[Crossref]

Kovoor, J.

M. J. Foradori, J. Kovoor, M. J. Moon, and E. K. Tillinghast, “Relation between the outer cover of the egg case of Argiope aurantia (Araneae: Araneidae) and the emergence of its spiderlings,” J. Morphol. 252(2), 218–226 (2002).
[Crossref] [PubMed]

La Mattina, C.

K. Vasanthavada, X. Hu, A. M. Falick, C. La Mattina, A. M. F. Moore, P. R. Jones, R. Yee, R. Reza, T. Tuton, and C. Vierra, “Aciniform spidroin, a constituent of egg case sacs and wrapping silk fibers from the black widow spider Latrodectus hesperus,” J. Biol. Chem. 282(48), 35088–35097 (2007).
[Crossref] [PubMed]

Lade, R.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[Crossref]

Larsen, M.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Le Tarte, L. A.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Lefèvre, T.

N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Paquet-Mercier, M. Pézolet, and B. Bêche, “Native spider silk as a biological optical fiber,” Appl. Phys. Lett. 102(12), 123702 (2013).
[Crossref] [PubMed]

Leong, K. C.

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, ““Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens,” Sens. Actuators B Chem. 169, 167–172 (2012).
[Crossref]

Lepore, E.

E. Lepore, A. Marchioro, M. Isaia, M. J. Buehler, and N. M. Pugno, “Evidence of the most stretchable egg sac silk stalk, of the European spider of the year Meta menardi,” PLoS One 7(2), e30500 (2012).
[Crossref] [PubMed]

Li, S.

H. Cui, S. Li, S. Deng, H. Chen, and C. Wang, “Flexible, transparent, and free-standing silicon nanowire SERS platform for in situ food inspection,” ACS Sens. 2(3), 386–393 (2017).
[Crossref] [PubMed]

Li, T.

T. Li, Y. Wu, J. Huang, and S. Zhang, “Gas sensors based on membrane diffusion for environmental monitoring,” Sens. Actuators B Chem. 243, 566–578 (2017).
[Crossref]

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, ““Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens,” Sens. Actuators B Chem. 169, 167–172 (2012).
[Crossref]

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[Crossref]

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Liu, D.

Liu, Z.

Lu, Q.

Ma, D.

Mallik, A. K.

Manicardi, A.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

Marchioro, A.

E. Lepore, A. Marchioro, M. Isaia, M. J. Buehler, and N. M. Pugno, “Evidence of the most stretchable egg sac silk stalk, of the European spider of the year Meta menardi,” PLoS One 7(2), e30500 (2012).
[Crossref] [PubMed]

Matías, I. R.

F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matías, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B Chem. 96(1–2), 165–172 (2003).
[Crossref]

Mégret, P.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[Crossref] [PubMed]

Mei, Y. F.

J. Zhang, J. Zhong, Y. F. Fang, J. Wang, G. S. Huang, X. G. Cui, and Y. F. Mei, “Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing,” Nanoscale 6(22), 13646–13650 (2014).
[Crossref] [PubMed]

Menon, R.

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, ““Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens,” Sens. Actuators B Chem. 169, 167–172 (2012).
[Crossref]

Mertens, J.

K. Gellynck, P. Verdonk, R. Forsyth, K. F. Almqvist, E. Van Nimmen, T. Gheysens, J. Mertens, L. Van Langenhove, P. Kiekens, and G. Verbruggen, “Biocompatibility and biodegradability of spider egg sac silk,” J. Mater. Sci. Mater. Med. 19(8), 2963–2970 (2008).
[Crossref] [PubMed]

Miao, Y. G.

A. C. Zhao, T. F. Zhao, K. Nakagaki, Y. S. Zhang, Y. H. Sima, Y. G. Miao, K. Shiomi, Z. Kajiura, Y. Nagata, M. Takadera, and M. Nakagaki, “Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi,” Biochemistry 45(10), 3348–3356 (2006).
[Crossref] [PubMed]

Monajembashi, S.

A. Sponner, W. Vater, S. Monajembashi, E. Unger, F. Grosse, and K. Weisshart, “Composition and hierarchical organisation of a spider silk,” PLoS One 2(10), e998 (2007).
[Crossref] [PubMed]

Moon, M. J.

M. J. Foradori, J. Kovoor, M. J. Moon, and E. K. Tillinghast, “Relation between the outer cover of the egg case of Argiope aurantia (Araneae: Araneidae) and the emergence of its spiderlings,” J. Morphol. 252(2), 218–226 (2002).
[Crossref] [PubMed]

Moore, A. M. F.

K. Vasanthavada, X. Hu, A. M. Falick, C. La Mattina, A. M. F. Moore, P. R. Jones, R. Yee, R. Reza, T. Tuton, and C. Vierra, “Aciniform spidroin, a constituent of egg case sacs and wrapping silk fibers from the black widow spider Latrodectus hesperus,” J. Biol. Chem. 282(48), 35088–35097 (2007).
[Crossref] [PubMed]

Nagata, Y.

A. C. Zhao, T. F. Zhao, K. Nakagaki, Y. S. Zhang, Y. H. Sima, Y. G. Miao, K. Shiomi, Z. Kajiura, Y. Nagata, M. Takadera, and M. Nakagaki, “Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi,” Biochemistry 45(10), 3348–3356 (2006).
[Crossref] [PubMed]

Naik, R. R.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Nakagaki, K.

A. C. Zhao, T. F. Zhao, K. Nakagaki, Y. S. Zhang, Y. H. Sima, Y. G. Miao, K. Shiomi, Z. Kajiura, Y. Nagata, M. Takadera, and M. Nakagaki, “Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi,” Biochemistry 45(10), 3348–3356 (2006).
[Crossref] [PubMed]

Nakagaki, M.

A. C. Zhao, T. F. Zhao, K. Nakagaki, Y. S. Zhang, Y. H. Sima, Y. G. Miao, K. Shiomi, Z. Kajiura, Y. Nagata, M. Takadera, and M. Nakagaki, “Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi,” Biochemistry 45(10), 3348–3356 (2006).
[Crossref] [PubMed]

Neu, B.

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, ““Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens,” Sens. Actuators B Chem. 169, 167–172 (2012).
[Crossref]

Olin, Å.

P. Hashemi, R. A. Zarjani, M. M. Abolghasemi, and Å. Olin, “Agarose film coated glass slides for preparation of pH optical sensors,” Sens. Actuators B Chem. 121(2), 396–400 (2007).
[Crossref] [PubMed]

Omenetto, F. G.

Oneca, M.

F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matías, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B Chem. 96(1–2), 165–172 (2003).
[Crossref]

Ortlepp, C. S.

J. M. Gosline, P. A. Guerette, C. S. Ortlepp, and K. N. Savage, “The mechanical design of spider silks: from fibroin sequence to mechanical function,” J. Exp. Biol. 202(Pt 23), 3295–3303 (1999).
[PubMed]

Palacios, M. A.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Paquet-Mercier, F.

N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Paquet-Mercier, M. Pézolet, and B. Bêche, “Native spider silk as a biological optical fiber,” Appl. Phys. Lett. 102(12), 123702 (2013).
[Crossref] [PubMed]

Parry, D.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[Crossref]

Pedersen, L. H.

Peng, Y.

Pézolet, M.

N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Paquet-Mercier, M. Pézolet, and B. Bêche, “Native spider silk as a biological optical fiber,” Appl. Phys. Lett. 102(12), 123702 (2013).
[Crossref] [PubMed]

Pilate, J.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[Crossref] [PubMed]

Pissadakis, S.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

Potyrailo, R. A.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Powell, B. D.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[Crossref]

Pugno, N. M.

E. Lepore, A. Marchioro, M. Isaia, M. J. Buehler, and N. M. Pugno, “Evidence of the most stretchable egg sac silk stalk, of the European spider of the year Meta menardi,” PLoS One 7(2), e30500 (2012).
[Crossref] [PubMed]

Rameshkumar, C.

R. S. Rengasamy, M. Jassal, and C. Rameshkumar, “Studies on structure and properties of Nephila spider silk dragline,” AUTEX Res. J. 5(1), 30–39 (2005).

Rao, Y. J.

Renault, A.

N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Paquet-Mercier, M. Pézolet, and B. Bêche, “Native spider silk as a biological optical fiber,” Appl. Phys. Lett. 102(12), 123702 (2013).
[Crossref] [PubMed]

Rengasamy, R. S.

R. S. Rengasamy, M. Jassal, and C. Rameshkumar, “Studies on structure and properties of Nephila spider silk dragline,” AUTEX Res. J. 5(1), 30–39 (2005).

Reza, R.

K. Vasanthavada, X. Hu, A. M. Falick, C. La Mattina, A. M. F. Moore, P. R. Jones, R. Yee, R. Reza, T. Tuton, and C. Vierra, “Aciniform spidroin, a constituent of egg case sacs and wrapping silk fibers from the black widow spider Latrodectus hesperus,” J. Biol. Chem. 282(48), 35088–35097 (2007).
[Crossref] [PubMed]

Rindorf, L.

Savage, K. N.

J. M. Gosline, P. A. Guerette, C. S. Ortlepp, and K. N. Savage, “The mechanical design of spider silks: from fibroin sequence to mechanical function,” J. Exp. Biol. 202(Pt 23), 3295–3303 (1999).
[PubMed]

Savchenkov, A. A.

Scheibel, T.

M. Heim, D. Keerl, and T. Scheibel, “Spider silk: from soluble protein to extraordinary fiber,” Angew. Chem. Int. Ed. Engl. 48(20), 3584–3596 (2009).
[Crossref] [PubMed]

Selleri, S.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

Semenova, Y.

Shaillender, M.

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, ““Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens,” Sens. Actuators B Chem. 169, 167–172 (2012).
[Crossref]

Shiomi, K.

A. C. Zhao, T. F. Zhao, K. Nakagaki, Y. S. Zhang, Y. H. Sima, Y. G. Miao, K. Shiomi, Z. Kajiura, Y. Nagata, M. Takadera, and M. Nakagaki, “Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi,” Biochemistry 45(10), 3348–3356 (2006).
[Crossref] [PubMed]

Sima, Y. H.

A. C. Zhao, T. F. Zhao, K. Nakagaki, Y. S. Zhang, Y. H. Sima, Y. G. Miao, K. Shiomi, Z. Kajiura, Y. Nagata, M. Takadera, and M. Nakagaki, “Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi,” Biochemistry 45(10), 3348–3356 (2006).
[Crossref] [PubMed]

Slavík, R.

R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of Staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
[Crossref] [PubMed]

Soni, K.

Sponner, A.

A. Sponner, W. Vater, S. Monajembashi, E. Unger, F. Grosse, and K. Weisshart, “Composition and hierarchical organisation of a spider silk,” PLoS One 2(10), e998 (2007).
[Crossref] [PubMed]

Spoto, G.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

Starkey, T. A.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Sumetsky, M.

Sun, T.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[Crossref]

Takadera, M.

A. C. Zhao, T. F. Zhao, K. Nakagaki, Y. S. Zhang, Y. H. Sima, Y. G. Miao, K. Shiomi, Z. Kajiura, Y. Nagata, M. Takadera, and M. Nakagaki, “Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi,” Biochemistry 45(10), 3348–3356 (2006).
[Crossref] [PubMed]

Tang, Z.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Tao, H.

Tao, S.

Tasdemir, Z.

M. Eryürek, Z. Tasdemir, Y. Karadag, S. Anand, N. Kilinc, B. E. Alaca, and A. Kiraz, “Integrated humidity sensor based on SU-8 polymer microdisk microresonator,” Sens. Actuators B Chem. 242, 1115–1120 (2017).
[Crossref]

Teraoka, I.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Thévenaz, L.

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Exploring the Use of Native Spider Silk as an Optical Fiber for Chemical Sensing,” J. Lightwave Technol. 36(4), 1138–1144 (2018).
[Crossref]

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: a novel optical fibre for biochemical sensing,” in 24th International Conference on Optical Fibre Sensors (International Society for Optics and Photonics, 2015), p. 96347D.

Tillinghast, E. K.

M. J. Foradori, J. Kovoor, M. J. Moon, and E. K. Tillinghast, “Relation between the outer cover of the egg case of Argiope aurantia (Araneae: Araneidae) and the emergence of its spiderlings,” J. Morphol. 252(2), 218–226 (2002).
[Crossref] [PubMed]

Tow, K. H.

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Exploring the Use of Native Spider Silk as an Optical Fiber for Chemical Sensing,” J. Lightwave Technol. 36(4), 1138–1144 (2018).
[Crossref]

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: a novel optical fibre for biochemical sensing,” in 24th International Conference on Optical Fibre Sensors (International Society for Optics and Photonics, 2015), p. 96347D.

Tuton, T.

K. Vasanthavada, X. Hu, A. M. Falick, C. La Mattina, A. M. F. Moore, P. R. Jones, R. Yee, R. Reza, T. Tuton, and C. Vierra, “Aciniform spidroin, a constituent of egg case sacs and wrapping silk fibers from the black widow spider Latrodectus hesperus,” J. Biol. Chem. 282(48), 35088–35097 (2007).
[Crossref] [PubMed]

Unger, E.

A. Sponner, W. Vater, S. Monajembashi, E. Unger, F. Grosse, and K. Weisshart, “Composition and hierarchical organisation of a spider silk,” PLoS One 2(10), e998 (2007).
[Crossref] [PubMed]

Van Langenhove, L.

K. Gellynck, P. Verdonk, R. Forsyth, K. F. Almqvist, E. Van Nimmen, T. Gheysens, J. Mertens, L. Van Langenhove, P. Kiekens, and G. Verbruggen, “Biocompatibility and biodegradability of spider egg sac silk,” J. Mater. Sci. Mater. Med. 19(8), 2963–2970 (2008).
[Crossref] [PubMed]

Van Nimmen, E.

K. Gellynck, P. Verdonk, R. Forsyth, K. F. Almqvist, E. Van Nimmen, T. Gheysens, J. Mertens, L. Van Langenhove, P. Kiekens, and G. Verbruggen, “Biocompatibility and biodegradability of spider egg sac silk,” J. Mater. Sci. Mater. Med. 19(8), 2963–2970 (2008).
[Crossref] [PubMed]

Vasanthavada, K.

K. Vasanthavada, X. Hu, A. M. Falick, C. La Mattina, A. M. F. Moore, P. R. Jones, R. Yee, R. Reza, T. Tuton, and C. Vierra, “Aciniform spidroin, a constituent of egg case sacs and wrapping silk fibers from the black widow spider Latrodectus hesperus,” J. Biol. Chem. 282(48), 35088–35097 (2007).
[Crossref] [PubMed]

Vasudev, M.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Vater, W.

A. Sponner, W. Vater, S. Monajembashi, E. Unger, F. Grosse, and K. Weisshart, “Composition and hierarchical organisation of a spider silk,” PLoS One 2(10), e998 (2007).
[Crossref] [PubMed]

Verbruggen, G.

K. Gellynck, P. Verdonk, R. Forsyth, K. F. Almqvist, E. Van Nimmen, T. Gheysens, J. Mertens, L. Van Langenhove, P. Kiekens, and G. Verbruggen, “Biocompatibility and biodegradability of spider egg sac silk,” J. Mater. Sci. Mater. Med. 19(8), 2963–2970 (2008).
[Crossref] [PubMed]

Verdonk, P.

K. Gellynck, P. Verdonk, R. Forsyth, K. F. Almqvist, E. Van Nimmen, T. Gheysens, J. Mertens, L. Van Langenhove, P. Kiekens, and G. Verbruggen, “Biocompatibility and biodegradability of spider egg sac silk,” J. Mater. Sci. Mater. Med. 19(8), 2963–2970 (2008).
[Crossref] [PubMed]

Vié, V.

N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Paquet-Mercier, M. Pézolet, and B. Bêche, “Native spider silk as a biological optical fiber,” Appl. Phys. Lett. 102(12), 123702 (2013).
[Crossref] [PubMed]

Vierra, C.

K. Vasanthavada, X. Hu, A. M. Falick, C. La Mattina, A. M. F. Moore, P. R. Jones, R. Yee, R. Reza, T. Tuton, and C. Vierra, “Aciniform spidroin, a constituent of egg case sacs and wrapping silk fibers from the black widow spider Latrodectus hesperus,” J. Biol. Chem. 282(48), 35088–35097 (2007).
[Crossref] [PubMed]

Voisin, V.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[Crossref] [PubMed]

Vollmer, F.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Vollrath, F.

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Exploring the Use of Native Spider Silk as an Optical Fiber for Chemical Sensing,” J. Lightwave Technol. 36(4), 1138–1144 (2018).
[Crossref]

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: a novel optical fibre for biochemical sensing,” in 24th International Conference on Optical Fibre Sensors (International Society for Optics and Photonics, 2015), p. 96347D.

Vukusic, P.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Wang, C.

H. Cui, S. Li, S. Deng, H. Chen, and C. Wang, “Flexible, transparent, and free-standing silicon nanowire SERS platform for in situ food inspection,” ACS Sens. 2(3), 386–393 (2017).
[Crossref] [PubMed]

Wang, J.

J. Zhang, J. Zhong, Y. F. Fang, J. Wang, G. S. Huang, X. G. Cui, and Y. F. Mei, “Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing,” Nanoscale 6(22), 13646–13650 (2014).
[Crossref] [PubMed]

Wang, Z. G.

Weisshart, K.

A. Sponner, W. Vater, S. Monajembashi, E. Unger, F. Grosse, and K. Weisshart, “Composition and hierarchical organisation of a spider silk,” PLoS One 2(10), e998 (2007).
[Crossref] [PubMed]

White, I. M.

Wong, W. C.

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, ““Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens,” Sens. Actuators B Chem. 169, 167–172 (2012).
[Crossref]

Wu, Q.

Wu, Y.

Xu, L.

Yang, L.

Yao, B. C.

Yee, R.

K. Vasanthavada, X. Hu, A. M. Falick, C. La Mattina, A. M. F. Moore, P. R. Jones, R. Yee, R. Reza, T. Tuton, and C. Vierra, “Aciniform spidroin, a constituent of egg case sacs and wrapping silk fibers from the black widow spider Latrodectus hesperus,” J. Biol. Chem. 282(48), 35088–35097 (2007).
[Crossref] [PubMed]

Yeo, T. L.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[Crossref]

Zarjani, R. A.

P. Hashemi, R. A. Zarjani, M. M. Abolghasemi, and Å. Olin, “Agarose film coated glass slides for preparation of pH optical sensors,” Sens. Actuators B Chem. 121(2), 396–400 (2007).
[Crossref] [PubMed]

Zhang, A. Q.

Zhang, J.

J. Zhang, J. Zhong, Y. F. Fang, J. Wang, G. S. Huang, X. G. Cui, and Y. F. Mei, “Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing,” Nanoscale 6(22), 13646–13650 (2014).
[Crossref] [PubMed]

Zhang, S.

T. Li, Y. Wu, J. Huang, and S. Zhang, “Gas sensors based on membrane diffusion for environmental monitoring,” Sens. Actuators B Chem. 243, 566–578 (2017).
[Crossref]

Zhang, W. L.

Zhang, Y. S.

A. C. Zhao, T. F. Zhao, K. Nakagaki, Y. S. Zhang, Y. H. Sima, Y. G. Miao, K. Shiomi, Z. Kajiura, Y. Nagata, M. Takadera, and M. Nakagaki, “Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi,” Biochemistry 45(10), 3348–3356 (2006).
[Crossref] [PubMed]

Zhao, A. C.

A. C. Zhao, T. F. Zhao, K. Nakagaki, Y. S. Zhang, Y. H. Sima, Y. G. Miao, K. Shiomi, Z. Kajiura, Y. Nagata, M. Takadera, and M. Nakagaki, “Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi,” Biochemistry 45(10), 3348–3356 (2006).
[Crossref] [PubMed]

Zhao, G.

Zhao, T. F.

A. C. Zhao, T. F. Zhao, K. Nakagaki, Y. S. Zhang, Y. H. Sima, Y. G. Miao, K. Shiomi, Z. Kajiura, Y. Nagata, M. Takadera, and M. Nakagaki, “Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi,” Biochemistry 45(10), 3348–3356 (2006).
[Crossref] [PubMed]

Zhong, J.

J. Zhang, J. Zhong, Y. F. Fang, J. Wang, G. S. Huang, X. G. Cui, and Y. F. Mei, “Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing,” Nanoscale 6(22), 13646–13650 (2014).
[Crossref] [PubMed]

Zhong, S.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Zu, P.

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, ““Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens,” Sens. Actuators B Chem. 169, 167–172 (2012).
[Crossref]

ACS Sens. (1)

H. Cui, S. Li, S. Deng, H. Chen, and C. Wang, “Flexible, transparent, and free-standing silicon nanowire SERS platform for in situ food inspection,” ACS Sens. 2(3), 386–393 (2017).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

M. Heim, D. Keerl, and T. Scheibel, “Spider silk: from soluble protein to extraordinary fiber,” Angew. Chem. Int. Ed. Engl. 48(20), 3584–3596 (2009).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

N. Huby, V. Vié, A. Renault, S. Beaufils, T. Lefèvre, F. Paquet-Mercier, M. Pézolet, and B. Bêche, “Native spider silk as a biological optical fiber,” Appl. Phys. Lett. 102(12), 123702 (2013).
[Crossref] [PubMed]

AUTEX Res. J. (1)

R. S. Rengasamy, M. Jassal, and C. Rameshkumar, “Studies on structure and properties of Nephila spider silk dragline,” AUTEX Res. J. 5(1), 30–39 (2005).

Biochemistry (1)

A. C. Zhao, T. F. Zhao, K. Nakagaki, Y. S. Zhang, Y. H. Sima, Y. G. Miao, K. Shiomi, Z. Kajiura, Y. Nagata, M. Takadera, and M. Nakagaki, “Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi,” Biochemistry 45(10), 3348–3356 (2006).
[Crossref] [PubMed]

Biosens. Bioelectron. (3)

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[Crossref] [PubMed]

R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of Staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
[Crossref] [PubMed]

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

IEEE Sens. J. (1)

O. Korostynska, K. Arshak, E. Gill, and A. Arshak, “Materials and techniques for in vivo pH monitoring,” IEEE Sens. J. 8(1), 20–28 (2008).
[Crossref]

J. Biol. Chem. (1)

K. Vasanthavada, X. Hu, A. M. Falick, C. La Mattina, A. M. F. Moore, P. R. Jones, R. Yee, R. Reza, T. Tuton, and C. Vierra, “Aciniform spidroin, a constituent of egg case sacs and wrapping silk fibers from the black widow spider Latrodectus hesperus,” J. Biol. Chem. 282(48), 35088–35097 (2007).
[Crossref] [PubMed]

J. Exp. Biol. (1)

J. M. Gosline, P. A. Guerette, C. S. Ortlepp, and K. N. Savage, “The mechanical design of spider silks: from fibroin sequence to mechanical function,” J. Exp. Biol. 202(Pt 23), 3295–3303 (1999).
[PubMed]

J. Lightwave Technol. (3)

J. Mater. Sci. Mater. Med. (1)

K. Gellynck, P. Verdonk, R. Forsyth, K. F. Almqvist, E. Van Nimmen, T. Gheysens, J. Mertens, L. Van Langenhove, P. Kiekens, and G. Verbruggen, “Biocompatibility and biodegradability of spider egg sac silk,” J. Mater. Sci. Mater. Med. 19(8), 2963–2970 (2008).
[Crossref] [PubMed]

J. Mol. Biol. (1)

F. Cordier and S. Grzesiek, “Temperature-dependence of protein hydrogen bond properties as studied by high-resolution NMR,” J. Mol. Biol. 317(5), 739–752 (2002).
[Crossref] [PubMed]

J. Morphol. (1)

M. J. Foradori, J. Kovoor, M. J. Moon, and E. K. Tillinghast, “Relation between the outer cover of the egg case of Argiope aurantia (Araneae: Araneidae) and the emergence of its spiderlings,” J. Morphol. 252(2), 218–226 (2002).
[Crossref] [PubMed]

Nanoscale (1)

J. Zhang, J. Zhong, Y. F. Fang, J. Wang, G. S. Huang, X. G. Cui, and Y. F. Mei, “Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing,” Nanoscale 6(22), 13646–13650 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

PLoS One (2)

A. Sponner, W. Vater, S. Monajembashi, E. Unger, F. Grosse, and K. Weisshart, “Composition and hierarchical organisation of a spider silk,” PLoS One 2(10), e998 (2007).
[Crossref] [PubMed]

E. Lepore, A. Marchioro, M. Isaia, M. J. Buehler, and N. M. Pugno, “Evidence of the most stretchable egg sac silk stalk, of the European spider of the year Meta menardi,” PLoS One 7(2), e30500 (2012).
[Crossref] [PubMed]

Science (1)

F. G. Omenetto and D. L. Kaplan, “New opportunities for an ancient material,” Science 329(5991), 528–531 (2010).
[Crossref] [PubMed]

Sens. Actuators B Chem. (6)

M. Eryürek, Z. Tasdemir, Y. Karadag, S. Anand, N. Kilinc, B. E. Alaca, and A. Kiraz, “Integrated humidity sensor based on SU-8 polymer microdisk microresonator,” Sens. Actuators B Chem. 242, 1115–1120 (2017).
[Crossref]

T. Li, Y. Wu, J. Huang, and S. Zhang, “Gas sensors based on membrane diffusion for environmental monitoring,” Sens. Actuators B Chem. 243, 566–578 (2017).
[Crossref]

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[Crossref]

P. Hashemi, R. A. Zarjani, M. M. Abolghasemi, and Å. Olin, “Agarose film coated glass slides for preparation of pH optical sensors,” Sens. Actuators B Chem. 121(2), 396–400 (2007).
[Crossref] [PubMed]

L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, ““Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens,” Sens. Actuators B Chem. 169, 167–172 (2012).
[Crossref]

F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matías, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B Chem. 96(1–2), 165–172 (2003).
[Crossref]

Other (1)

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: a novel optical fibre for biochemical sensing,” in 24th International Conference on Optical Fibre Sensors (International Society for Optics and Photonics, 2015), p. 96347D.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Image of an Araneus Ventricosus and a bunch of SpEss. (b) Scanning electron microscope (SEM) image of the SpEss.
Fig. 2
Fig. 2 (a) Image of the tapered fiber with the waist diameter of ~2.5 µm. (b) Image of the tapered fiber under the 1000x magnification. (c) Experimental setup scheme for the proposed SpEss-based RH sensor.
Fig. 3
Fig. 3 (a) Transmission spectrum of the SpEss-based WGM resonator, where the diameter of the SpEss was 8.7 µm. (b) Enlarged schematic diagram showing the connection between the SpEss and the tapered shape fiber.
Fig. 4
Fig. 4 (a) Experimental results of the SpEss-based WGM resonator in the humidity range of 20% to 75% RH at the temperature of 22 °C. (b) The zoom-in spectrum of the resonance dip. (c) The experimental results of the relationship between the RH and the resonance wavelength.
Fig. 5
Fig. 5 (a) Experimental setup scheme for measuring the SpEss diameter. (b) The measurement results of the SpEss diameter at 65%RH. (c) The relationship between the SpEss diameter, effect refractive index and the relative humidity. (d) Comparison results of the experimental and calculated results of Δλr.
Fig. 6
Fig. 6 (a) The repeatability of the SpEss-based sensor over the period of one week. (b) The repeatability of the SpEss-based sensor during the humidity increasing and decreasing process. (c) The time-dependent response of the SpEss-based sensor. (d) The RH response of the SpEss-based sensor with different temperature.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ λ r λ r = Δ n e f f n e f f + Δ r r
D L = R S
R = 3 ( σ a m p n o i s e 2 + σ t e m p i n d u c e d 2 + σ a m p n o i s e 2 )
σ a m p n o i s e Δ λ F W H M 4.5 ( S N R 0.25 )

Metrics