Abstract

We describe the design of a simple instrument for the identification and characterization of fabrication errors in diffraction gratings. The instrument uses an uncooled charge-coupled device (CCD) camera and a high dynamic range imaging process to detect the light scattered off a grating under test in the focal plane of a lens. We demonstrate that the instrument can achieve a dynamic range around nine orders of magnitude and we show that we are able to clearly identify small, periodic fabrication errors in two test gratings that could not be detected with microscopic techniques.

Full Article  |  PDF Article
OSA Recommended Articles
Use of high dynamic range imaging for quantitative combustion diagnostics

Davide Giassi, Bolun Liu, and Marshall B. Long
Appl. Opt. 54(14) 4580-4588 (2015)

Digital micromirror device camera with per-pixel coded exposure for high dynamic range imaging

Wei Feng, Fumin Zhang, Weijing Wang, Wei Xing, and Xinghua Qu
Appl. Opt. 56(13) 3831-3840 (2017)

High dynamic spectroscopy using a digital micromirror device and periodic shadowing

Elias Kristensson, Andreas Ehn, and Edouard Berrocal
Opt. Express 25(1) 212-222 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. I. Afzal, S. C. Corzo-Garcia, and U. Griesmann, “A focal plane imager with high dynamic range to identify fabrication errors in diffractive optics,” in Optical Fabrication and Testing, (Optical Society of America, 2017), pp. OW3B–2.
  2. S. C. Corzo-Garcia, M. I. Afzal, B. T. Kidder, M. M. Grigas, and U. Griesmann, “A high dynamic range imaging method for the characterization of periodic errors in diffraction gratings,” in Reflection, Scattering, and Diffraction from Surfaces VI, vol. 10750 (International Society for Optics and Photonics, 2018), p. 1075009.
  3. J. P. Marsh, D. J. Mar, and D. T. Jaffe, “Production and evaluation of silicon immersion gratings for infrared astronomy,” Appl. Opt. 46, 3400–3416 (2007).
    [Crossref] [PubMed]
  4. C. B. Brooks, B. T. Kidder, M. M. Grigas, U. Griesmann, D. W. Wilson, R. E. Muller, and D. T. Jaffe, “Process improvements in the production of silicon immersion gratings,” in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, vol. 9912 (International Society for Optics and Photonics, 2016), p. 99123Z.
    [Crossref]
  5. C. B. Brooks, B. T. Kidder, M. M. Grigas, and D. T. Jaffe, “Process and metrology developments in the production of immersion gratings,” in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, vol. 10706 (2018), p. 1070654.
  6. J. Fraunhofer, “Neue Modifikation des Lichtes durch gegenseitige Einwirkung und Beugung der Strahlen, und Gesetze derselben [A new method for modifying light through mutual influence and diffraction of rays, and its laws,],” in, Joseph von Fraunhofer’s Gesammelte Schriften, E. Lommel, ed. (Verlag der Königlichen Akademie, 1888), pp. 91–94.
  7. E. Hulthén, “Refraction gratings,” Ark. Fys. 2, 439–441 (1950).
  8. E. Hulthén and H. Neuhaus, “Diffraction gratings in immersion,” Nature 173, 442–443 (1954).
    [Crossref]
  9. H. Dekker, “An immersion grating for an astronomical spectrograph,” in Instrumentation for Ground-Based Optical Astronomy. Santa Cruz Summer Workshops in Astronomy and Astrophysics, L. B. Robinson, ed. (Springer, 1988), pp. 183–188.
  10. C. A. Palmer and E. G. Loewen, Diffraction grating handbook (Richardson Gratings, Newport Corp., 2014), 7th ed.
  11. J. E. Harvey and C. L. Vernold, “Description of diffraction grating behavior in cosine space,” Appl. Opt. 37, 8158–8160 (1959).
    [Crossref]
  12. G. Wiedemann and D. J. Jennings, “Immersion grating for infrared astronomy,” Appl. Opt. 32, 1176–1178 (1993).
    [Crossref] [PubMed]
  13. Y. Ikeda, N. Kobayashi, Y. Sarugaku, T. Sukegawa, S. Sugiyama, S. Kaji, K. Nakanishi, S. Kondo, C. Yasui, H. Kataza, T. Nakagawa, and H. Kawakita, “Machined immersion grating with theoretically predicted diffraction efficiency,” Appl. Opt. 54, 5193–5202 (2015).
    [Crossref] [PubMed]
  14. K. Williams and R. S. Muller, “Etch rates for micromachining processing,” J. Microelectromechanical systems 5, 256–269 (1996).
    [Crossref]
  15. W.-T. Tsang and S. Wang, “Preferentially etched diffraction gratings in silicon,” J. Appl. Phys. 46, 2163–2166 (1975).
    [Crossref]
  16. W. Wang, M. Gully-Santiago, C. Deen, D. J. Mar, and D. T. Jaffe, “Manuacturing of silicon immersion gratings for infrared spectrometers,” in Modern technologies in space- and ground-based telescopes, vol. 7739 (International Society for Optics and Photonics, 2010), p. 77394L.
  17. J. Ge, B. Zhao, S. Powell, A. Fletcher, X. Wan, L. Chang, H. Jakeman, D. Koukis, Tanner, B. David, D. Ebbets, and P. J. Kuzmenko, “Silicon immersion gratings and their spectroscopic applications,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 (International Society for Optics and Photonics, 2012), p. 84502U.
    [Crossref]
  18. B. T. Kidder, C. B. Brooks, M. M. Grigas, and D. T. Jaffe, “Manufacturing silicon immersion gratings on 150 mm material,” in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, vol. 10706 (International Society for Optics and Photonics, 2018), p. 1070626.
  19. C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
    [Crossref]
  20. A. F. Fercher, “Computer-generated holograms for testing optical elements: Error analysis and error compensation,” Opt. Acta 23, 347–365 (1976).
    [Crossref]
  21. G. R. Harrison, “The challenge of the ruled grating,” Phys. Today 3, 6–12 (1950).
    [Crossref]
  22. H. B. Babcock and H. W. Babcock, “The ruling of diffraction gratings at the Mount Wilson Observatory,” J. Opt. Soc. Am. 41776–786 (1951).
    [Crossref]
  23. M. Heusinger, M. Banasch, T. Flügel-Paul, and U.-D. Zeitner, “Investigation and optimization of rowland ghosts in high efficiency spectrometer gratings fabricated by e-beam lithography,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX, vol. 9759 (International Society for Optics and Photonics, 2016), p. 97590A.
  24. M. Heusinger, T. Flügel-Paul, and U.-D. Zeitner, “Large-scale segmentation errors in optical gratings and their unique effect onto optical scattering spectra,” Appl. Phys. B 122, 222 (2016).
    [Crossref]
  25. J. Z. Malacara, “Angle, distance, curvature, and focal length measurements,” in Optical Shop Testing, D. Malacara, ed. (John Wiley & Sons, 1992), pp. 715–741, 2nd ed.
  26. H. R. Simonsen and A. Zarka, “Iodine stabilized extended-cavity diode lasers at λ≈ 633 nm: result of an international comparison,” Metrologia 35, 197–202 (1998).
    [Crossref]
  27. J. Gray, P. Thomas, and X. D. Zhu, “Laser pointing stability measured by an oblique-incidence optical transmittance difference technique,” Rev. Sci. Instrum. 72, 3714–3717 (2001).
    [Crossref]
  28. R. P. Heinisch and C. L. Jolliffe, “Light baffle attenuation measurements in the visible,” Appl. Opt. 10, 2016–2020 (1971).
    [Crossref] [PubMed]
  29. J. J. McCann and A. Rizzi, The art and science of HDR imaging(John Wiley and Sons, 2012).
  30. B. C. Madden, “Extended intensity range imaging,” Tech. Rep. MS-CIS-93-96, University of Pennsylvania (1993).
  31. S. Mann and R. W. Picard, “Being ’undigital’ with digital cameras: Extending dynamic range by combining differently exposed pictures,” Tech. Rep. 323, M.I.T. Media Lab Perceptual Computing Section (1994).
  32. P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, (ACM Press/Addison-Wesley Publishing Co., 1997), SIGGRAPH ’97, pp. 369–378.
  33. U. Griesmann, Q. Wang, J. A. Soons, and L. Assoufid, “Figure metrology for x-ray focusing mirrors with fresnel holograms and photon sieves,” in Optical Fabrication and Testing, (2014), pp. OTu4A–5.
  34. L. Kipp, M. Skibowski, R. L. Johnson, R. Bernd, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft x-rays with photon sieves,” Nature 414, 184–188 (2001).
    [Crossref] [PubMed]
  35. H. I. Smith, M. E. Walsh, F. Zhang, J. Ferrara, G. Hourihan, D. Smith, R. Light, and M. Jaspan, “An innovative tool for fabricating computer-generated holograms,” J. Phys. Conf. Ser.415, 012037 (2013).
  36. M. A. Martínez, E. M. Valero, and J. Hernández-Andrés, “Adaptive exposure estimation or high dynamic range imaging applied to natural scenes and daylight skies,” Appl. Opt. 54, B241–B250 (2015).
    [Crossref]
  37. J. J. Ma, S. Masodian, D. A. Starkey, and E. R. Fossum, “Photon-number-resolving megapixel image sensor at room temperature without avalanche gain,” Optica 4, 1474–1481 (2017).
    [Crossref]

2017 (1)

2016 (1)

M. Heusinger, T. Flügel-Paul, and U.-D. Zeitner, “Large-scale segmentation errors in optical gratings and their unique effect onto optical scattering spectra,” Appl. Phys. B 122, 222 (2016).
[Crossref]

2015 (2)

2007 (1)

2004 (1)

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
[Crossref]

2001 (2)

J. Gray, P. Thomas, and X. D. Zhu, “Laser pointing stability measured by an oblique-incidence optical transmittance difference technique,” Rev. Sci. Instrum. 72, 3714–3717 (2001).
[Crossref]

L. Kipp, M. Skibowski, R. L. Johnson, R. Bernd, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft x-rays with photon sieves,” Nature 414, 184–188 (2001).
[Crossref] [PubMed]

1998 (1)

H. R. Simonsen and A. Zarka, “Iodine stabilized extended-cavity diode lasers at λ≈ 633 nm: result of an international comparison,” Metrologia 35, 197–202 (1998).
[Crossref]

1996 (1)

K. Williams and R. S. Muller, “Etch rates for micromachining processing,” J. Microelectromechanical systems 5, 256–269 (1996).
[Crossref]

1993 (1)

1976 (1)

A. F. Fercher, “Computer-generated holograms for testing optical elements: Error analysis and error compensation,” Opt. Acta 23, 347–365 (1976).
[Crossref]

1975 (1)

W.-T. Tsang and S. Wang, “Preferentially etched diffraction gratings in silicon,” J. Appl. Phys. 46, 2163–2166 (1975).
[Crossref]

1971 (1)

1959 (1)

1954 (1)

E. Hulthén and H. Neuhaus, “Diffraction gratings in immersion,” Nature 173, 442–443 (1954).
[Crossref]

1951 (1)

1950 (2)

E. Hulthén, “Refraction gratings,” Ark. Fys. 2, 439–441 (1950).

G. R. Harrison, “The challenge of the ruled grating,” Phys. Today 3, 6–12 (1950).
[Crossref]

Adelung, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Bernd, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft x-rays with photon sieves,” Nature 414, 184–188 (2001).
[Crossref] [PubMed]

Afzal, M. I.

M. I. Afzal, S. C. Corzo-Garcia, and U. Griesmann, “A focal plane imager with high dynamic range to identify fabrication errors in diffractive optics,” in Optical Fabrication and Testing, (Optical Society of America, 2017), pp. OW3B–2.

S. C. Corzo-Garcia, M. I. Afzal, B. T. Kidder, M. M. Grigas, and U. Griesmann, “A high dynamic range imaging method for the characterization of periodic errors in diffraction gratings,” in Reflection, Scattering, and Diffraction from Surfaces VI, vol. 10750 (International Society for Optics and Photonics, 2018), p. 1075009.

Assoufid, L.

U. Griesmann, Q. Wang, J. A. Soons, and L. Assoufid, “Figure metrology for x-ray focusing mirrors with fresnel holograms and photon sieves,” in Optical Fabrication and Testing, (2014), pp. OTu4A–5.

Babcock, H. B.

Babcock, H. W.

Banasch, M.

M. Heusinger, M. Banasch, T. Flügel-Paul, and U.-D. Zeitner, “Investigation and optimization of rowland ghosts in high efficiency spectrometer gratings fabricated by e-beam lithography,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX, vol. 9759 (International Society for Optics and Photonics, 2016), p. 97590A.

Bernd, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Bernd, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft x-rays with photon sieves,” Nature 414, 184–188 (2001).
[Crossref] [PubMed]

Brooks, C. B.

B. T. Kidder, C. B. Brooks, M. M. Grigas, and D. T. Jaffe, “Manufacturing silicon immersion gratings on 150 mm material,” in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, vol. 10706 (International Society for Optics and Photonics, 2018), p. 1070626.

C. B. Brooks, B. T. Kidder, M. M. Grigas, U. Griesmann, D. W. Wilson, R. E. Muller, and D. T. Jaffe, “Process improvements in the production of silicon immersion gratings,” in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, vol. 9912 (International Society for Optics and Photonics, 2016), p. 99123Z.
[Crossref]

C. B. Brooks, B. T. Kidder, M. M. Grigas, and D. T. Jaffe, “Process and metrology developments in the production of immersion gratings,” in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, vol. 10706 (2018), p. 1070654.

Chang, L.

J. Ge, B. Zhao, S. Powell, A. Fletcher, X. Wan, L. Chang, H. Jakeman, D. Koukis, Tanner, B. David, D. Ebbets, and P. J. Kuzmenko, “Silicon immersion gratings and their spectroscopic applications,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 (International Society for Optics and Photonics, 2012), p. 84502U.
[Crossref]

Corzo-Garcia, S. C.

S. C. Corzo-Garcia, M. I. Afzal, B. T. Kidder, M. M. Grigas, and U. Griesmann, “A high dynamic range imaging method for the characterization of periodic errors in diffraction gratings,” in Reflection, Scattering, and Diffraction from Surfaces VI, vol. 10750 (International Society for Optics and Photonics, 2018), p. 1075009.

M. I. Afzal, S. C. Corzo-Garcia, and U. Griesmann, “A focal plane imager with high dynamic range to identify fabrication errors in diffractive optics,” in Optical Fabrication and Testing, (Optical Society of America, 2017), pp. OW3B–2.

David, B.

J. Ge, B. Zhao, S. Powell, A. Fletcher, X. Wan, L. Chang, H. Jakeman, D. Koukis, Tanner, B. David, D. Ebbets, and P. J. Kuzmenko, “Silicon immersion gratings and their spectroscopic applications,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 (International Society for Optics and Photonics, 2012), p. 84502U.
[Crossref]

Debevec, P. E.

P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, (ACM Press/Addison-Wesley Publishing Co., 1997), SIGGRAPH ’97, pp. 369–378.

Deen, C.

W. Wang, M. Gully-Santiago, C. Deen, D. J. Mar, and D. T. Jaffe, “Manuacturing of silicon immersion gratings for infrared spectrometers,” in Modern technologies in space- and ground-based telescopes, vol. 7739 (International Society for Optics and Photonics, 2010), p. 77394L.

Dekker, H.

H. Dekker, “An immersion grating for an astronomical spectrograph,” in Instrumentation for Ground-Based Optical Astronomy. Santa Cruz Summer Workshops in Astronomy and Astrophysics, L. B. Robinson, ed. (Springer, 1988), pp. 183–188.

Ebbets, D.

J. Ge, B. Zhao, S. Powell, A. Fletcher, X. Wan, L. Chang, H. Jakeman, D. Koukis, Tanner, B. David, D. Ebbets, and P. J. Kuzmenko, “Silicon immersion gratings and their spectroscopic applications,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 (International Society for Optics and Photonics, 2012), p. 84502U.
[Crossref]

Fercher, A. F.

A. F. Fercher, “Computer-generated holograms for testing optical elements: Error analysis and error compensation,” Opt. Acta 23, 347–365 (1976).
[Crossref]

Ferrara, J.

H. I. Smith, M. E. Walsh, F. Zhang, J. Ferrara, G. Hourihan, D. Smith, R. Light, and M. Jaspan, “An innovative tool for fabricating computer-generated holograms,” J. Phys. Conf. Ser.415, 012037 (2013).

Fletcher, A.

J. Ge, B. Zhao, S. Powell, A. Fletcher, X. Wan, L. Chang, H. Jakeman, D. Koukis, Tanner, B. David, D. Ebbets, and P. J. Kuzmenko, “Silicon immersion gratings and their spectroscopic applications,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 (International Society for Optics and Photonics, 2012), p. 84502U.
[Crossref]

Flügel-Paul, T.

M. Heusinger, T. Flügel-Paul, and U.-D. Zeitner, “Large-scale segmentation errors in optical gratings and their unique effect onto optical scattering spectra,” Appl. Phys. B 122, 222 (2016).
[Crossref]

M. Heusinger, M. Banasch, T. Flügel-Paul, and U.-D. Zeitner, “Investigation and optimization of rowland ghosts in high efficiency spectrometer gratings fabricated by e-beam lithography,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX, vol. 9759 (International Society for Optics and Photonics, 2016), p. 97590A.

Fossum, E. R.

Fraunhofer, J.

J. Fraunhofer, “Neue Modifikation des Lichtes durch gegenseitige Einwirkung und Beugung der Strahlen, und Gesetze derselben [A new method for modifying light through mutual influence and diffraction of rays, and its laws,],” in, Joseph von Fraunhofer’s Gesammelte Schriften, E. Lommel, ed. (Verlag der Königlichen Akademie, 1888), pp. 91–94.

Ge, J.

J. Ge, B. Zhao, S. Powell, A. Fletcher, X. Wan, L. Chang, H. Jakeman, D. Koukis, Tanner, B. David, D. Ebbets, and P. J. Kuzmenko, “Silicon immersion gratings and their spectroscopic applications,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 (International Society for Optics and Photonics, 2012), p. 84502U.
[Crossref]

Gray, J.

J. Gray, P. Thomas, and X. D. Zhu, “Laser pointing stability measured by an oblique-incidence optical transmittance difference technique,” Rev. Sci. Instrum. 72, 3714–3717 (2001).
[Crossref]

Griesmann, U.

U. Griesmann, Q. Wang, J. A. Soons, and L. Assoufid, “Figure metrology for x-ray focusing mirrors with fresnel holograms and photon sieves,” in Optical Fabrication and Testing, (2014), pp. OTu4A–5.

C. B. Brooks, B. T. Kidder, M. M. Grigas, U. Griesmann, D. W. Wilson, R. E. Muller, and D. T. Jaffe, “Process improvements in the production of silicon immersion gratings,” in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, vol. 9912 (International Society for Optics and Photonics, 2016), p. 99123Z.
[Crossref]

S. C. Corzo-Garcia, M. I. Afzal, B. T. Kidder, M. M. Grigas, and U. Griesmann, “A high dynamic range imaging method for the characterization of periodic errors in diffraction gratings,” in Reflection, Scattering, and Diffraction from Surfaces VI, vol. 10750 (International Society for Optics and Photonics, 2018), p. 1075009.

M. I. Afzal, S. C. Corzo-Garcia, and U. Griesmann, “A focal plane imager with high dynamic range to identify fabrication errors in diffractive optics,” in Optical Fabrication and Testing, (Optical Society of America, 2017), pp. OW3B–2.

Grigas, M. M.

S. C. Corzo-Garcia, M. I. Afzal, B. T. Kidder, M. M. Grigas, and U. Griesmann, “A high dynamic range imaging method for the characterization of periodic errors in diffraction gratings,” in Reflection, Scattering, and Diffraction from Surfaces VI, vol. 10750 (International Society for Optics and Photonics, 2018), p. 1075009.

C. B. Brooks, B. T. Kidder, M. M. Grigas, U. Griesmann, D. W. Wilson, R. E. Muller, and D. T. Jaffe, “Process improvements in the production of silicon immersion gratings,” in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, vol. 9912 (International Society for Optics and Photonics, 2016), p. 99123Z.
[Crossref]

C. B. Brooks, B. T. Kidder, M. M. Grigas, and D. T. Jaffe, “Process and metrology developments in the production of immersion gratings,” in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, vol. 10706 (2018), p. 1070654.

B. T. Kidder, C. B. Brooks, M. M. Grigas, and D. T. Jaffe, “Manufacturing silicon immersion gratings on 150 mm material,” in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, vol. 10706 (International Society for Optics and Photonics, 2018), p. 1070626.

Gully-Santiago, M.

W. Wang, M. Gully-Santiago, C. Deen, D. J. Mar, and D. T. Jaffe, “Manuacturing of silicon immersion gratings for infrared spectrometers,” in Modern technologies in space- and ground-based telescopes, vol. 7739 (International Society for Optics and Photonics, 2010), p. 77394L.

Harm, S.

L. Kipp, M. Skibowski, R. L. Johnson, R. Bernd, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft x-rays with photon sieves,” Nature 414, 184–188 (2001).
[Crossref] [PubMed]

Harrison, G. R.

G. R. Harrison, “The challenge of the ruled grating,” Phys. Today 3, 6–12 (1950).
[Crossref]

Harvey, J. E.

Heinisch, R. P.

Hernández-Andrés, J.

Heusinger, M.

M. Heusinger, T. Flügel-Paul, and U.-D. Zeitner, “Large-scale segmentation errors in optical gratings and their unique effect onto optical scattering spectra,” Appl. Phys. B 122, 222 (2016).
[Crossref]

M. Heusinger, M. Banasch, T. Flügel-Paul, and U.-D. Zeitner, “Investigation and optimization of rowland ghosts in high efficiency spectrometer gratings fabricated by e-beam lithography,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX, vol. 9759 (International Society for Optics and Photonics, 2016), p. 97590A.

Hourihan, G.

H. I. Smith, M. E. Walsh, F. Zhang, J. Ferrara, G. Hourihan, D. Smith, R. Light, and M. Jaspan, “An innovative tool for fabricating computer-generated holograms,” J. Phys. Conf. Ser.415, 012037 (2013).

Hulthén, E.

E. Hulthén and H. Neuhaus, “Diffraction gratings in immersion,” Nature 173, 442–443 (1954).
[Crossref]

E. Hulthén, “Refraction gratings,” Ark. Fys. 2, 439–441 (1950).

Ikeda, Y.

Jaffe, D. T.

J. P. Marsh, D. J. Mar, and D. T. Jaffe, “Production and evaluation of silicon immersion gratings for infrared astronomy,” Appl. Opt. 46, 3400–3416 (2007).
[Crossref] [PubMed]

C. B. Brooks, B. T. Kidder, M. M. Grigas, and D. T. Jaffe, “Process and metrology developments in the production of immersion gratings,” in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, vol. 10706 (2018), p. 1070654.

C. B. Brooks, B. T. Kidder, M. M. Grigas, U. Griesmann, D. W. Wilson, R. E. Muller, and D. T. Jaffe, “Process improvements in the production of silicon immersion gratings,” in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, vol. 9912 (International Society for Optics and Photonics, 2016), p. 99123Z.
[Crossref]

W. Wang, M. Gully-Santiago, C. Deen, D. J. Mar, and D. T. Jaffe, “Manuacturing of silicon immersion gratings for infrared spectrometers,” in Modern technologies in space- and ground-based telescopes, vol. 7739 (International Society for Optics and Photonics, 2010), p. 77394L.

B. T. Kidder, C. B. Brooks, M. M. Grigas, and D. T. Jaffe, “Manufacturing silicon immersion gratings on 150 mm material,” in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, vol. 10706 (International Society for Optics and Photonics, 2018), p. 1070626.

Jakeman, H.

J. Ge, B. Zhao, S. Powell, A. Fletcher, X. Wan, L. Chang, H. Jakeman, D. Koukis, Tanner, B. David, D. Ebbets, and P. J. Kuzmenko, “Silicon immersion gratings and their spectroscopic applications,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 (International Society for Optics and Photonics, 2012), p. 84502U.
[Crossref]

Jaspan, M.

H. I. Smith, M. E. Walsh, F. Zhang, J. Ferrara, G. Hourihan, D. Smith, R. Light, and M. Jaspan, “An innovative tool for fabricating computer-generated holograms,” J. Phys. Conf. Ser.415, 012037 (2013).

Jennings, D. J.

Johnson, R. L.

L. Kipp, M. Skibowski, R. L. Johnson, R. Bernd, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft x-rays with photon sieves,” Nature 414, 184–188 (2001).
[Crossref] [PubMed]

Jolliffe, C. L.

Kaji, S.

Kataza, H.

Kawakita, H.

Kidder, B. T.

B. T. Kidder, C. B. Brooks, M. M. Grigas, and D. T. Jaffe, “Manufacturing silicon immersion gratings on 150 mm material,” in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, vol. 10706 (International Society for Optics and Photonics, 2018), p. 1070626.

S. C. Corzo-Garcia, M. I. Afzal, B. T. Kidder, M. M. Grigas, and U. Griesmann, “A high dynamic range imaging method for the characterization of periodic errors in diffraction gratings,” in Reflection, Scattering, and Diffraction from Surfaces VI, vol. 10750 (International Society for Optics and Photonics, 2018), p. 1075009.

C. B. Brooks, B. T. Kidder, M. M. Grigas, and D. T. Jaffe, “Process and metrology developments in the production of immersion gratings,” in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, vol. 10706 (2018), p. 1070654.

C. B. Brooks, B. T. Kidder, M. M. Grigas, U. Griesmann, D. W. Wilson, R. E. Muller, and D. T. Jaffe, “Process improvements in the production of silicon immersion gratings,” in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, vol. 9912 (International Society for Optics and Photonics, 2016), p. 99123Z.
[Crossref]

Kipp, L.

L. Kipp, M. Skibowski, R. L. Johnson, R. Bernd, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft x-rays with photon sieves,” Nature 414, 184–188 (2001).
[Crossref] [PubMed]

Kobayashi, N.

Kondo, S.

Koukis, D.

J. Ge, B. Zhao, S. Powell, A. Fletcher, X. Wan, L. Chang, H. Jakeman, D. Koukis, Tanner, B. David, D. Ebbets, and P. J. Kuzmenko, “Silicon immersion gratings and their spectroscopic applications,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 (International Society for Optics and Photonics, 2012), p. 84502U.
[Crossref]

Kuzmenko, P. J.

J. Ge, B. Zhao, S. Powell, A. Fletcher, X. Wan, L. Chang, H. Jakeman, D. Koukis, Tanner, B. David, D. Ebbets, and P. J. Kuzmenko, “Silicon immersion gratings and their spectroscopic applications,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 (International Society for Optics and Photonics, 2012), p. 84502U.
[Crossref]

Light, R.

H. I. Smith, M. E. Walsh, F. Zhang, J. Ferrara, G. Hourihan, D. Smith, R. Light, and M. Jaspan, “An innovative tool for fabricating computer-generated holograms,” J. Phys. Conf. Ser.415, 012037 (2013).

Loewen, E. G.

C. A. Palmer and E. G. Loewen, Diffraction grating handbook (Richardson Gratings, Newport Corp., 2014), 7th ed.

Ma, J. J.

Madden, B. C.

B. C. Madden, “Extended intensity range imaging,” Tech. Rep. MS-CIS-93-96, University of Pennsylvania (1993).

Malacara, J. Z.

J. Z. Malacara, “Angle, distance, curvature, and focal length measurements,” in Optical Shop Testing, D. Malacara, ed. (John Wiley & Sons, 1992), pp. 715–741, 2nd ed.

Malik, J.

P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, (ACM Press/Addison-Wesley Publishing Co., 1997), SIGGRAPH ’97, pp. 369–378.

Mann, S.

S. Mann and R. W. Picard, “Being ’undigital’ with digital cameras: Extending dynamic range by combining differently exposed pictures,” Tech. Rep. 323, M.I.T. Media Lab Perceptual Computing Section (1994).

Mar, D. J.

J. P. Marsh, D. J. Mar, and D. T. Jaffe, “Production and evaluation of silicon immersion gratings for infrared astronomy,” Appl. Opt. 46, 3400–3416 (2007).
[Crossref] [PubMed]

W. Wang, M. Gully-Santiago, C. Deen, D. J. Mar, and D. T. Jaffe, “Manuacturing of silicon immersion gratings for infrared spectrometers,” in Modern technologies in space- and ground-based telescopes, vol. 7739 (International Society for Optics and Photonics, 2010), p. 77394L.

Marsh, J. P.

Martínez, M. A.

Masodian, S.

McCann, J. J.

J. J. McCann and A. Rizzi, The art and science of HDR imaging(John Wiley and Sons, 2012).

Muller, R. E.

C. B. Brooks, B. T. Kidder, M. M. Grigas, U. Griesmann, D. W. Wilson, R. E. Muller, and D. T. Jaffe, “Process improvements in the production of silicon immersion gratings,” in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, vol. 9912 (International Society for Optics and Photonics, 2016), p. 99123Z.
[Crossref]

Muller, R. S.

K. Williams and R. S. Muller, “Etch rates for micromachining processing,” J. Microelectromechanical systems 5, 256–269 (1996).
[Crossref]

Nakagawa, T.

Nakanishi, K.

Neuhaus, H.

E. Hulthén and H. Neuhaus, “Diffraction gratings in immersion,” Nature 173, 442–443 (1954).
[Crossref]

Osten, W.

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
[Crossref]

Palmer, C. A.

C. A. Palmer and E. G. Loewen, Diffraction grating handbook (Richardson Gratings, Newport Corp., 2014), 7th ed.

Picard, R. W.

S. Mann and R. W. Picard, “Being ’undigital’ with digital cameras: Extending dynamic range by combining differently exposed pictures,” Tech. Rep. 323, M.I.T. Media Lab Perceptual Computing Section (1994).

Powell, S.

J. Ge, B. Zhao, S. Powell, A. Fletcher, X. Wan, L. Chang, H. Jakeman, D. Koukis, Tanner, B. David, D. Ebbets, and P. J. Kuzmenko, “Silicon immersion gratings and their spectroscopic applications,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 (International Society for Optics and Photonics, 2012), p. 84502U.
[Crossref]

Pruss, C.

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
[Crossref]

Reichelt, S.

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
[Crossref]

Rizzi, A.

J. J. McCann and A. Rizzi, The art and science of HDR imaging(John Wiley and Sons, 2012).

Sarugaku, Y.

Seemann, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Bernd, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft x-rays with photon sieves,” Nature 414, 184–188 (2001).
[Crossref] [PubMed]

Simonsen, H. R.

H. R. Simonsen and A. Zarka, “Iodine stabilized extended-cavity diode lasers at λ≈ 633 nm: result of an international comparison,” Metrologia 35, 197–202 (1998).
[Crossref]

Skibowski, M.

L. Kipp, M. Skibowski, R. L. Johnson, R. Bernd, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft x-rays with photon sieves,” Nature 414, 184–188 (2001).
[Crossref] [PubMed]

Smith, D.

H. I. Smith, M. E. Walsh, F. Zhang, J. Ferrara, G. Hourihan, D. Smith, R. Light, and M. Jaspan, “An innovative tool for fabricating computer-generated holograms,” J. Phys. Conf. Ser.415, 012037 (2013).

Smith, H. I.

H. I. Smith, M. E. Walsh, F. Zhang, J. Ferrara, G. Hourihan, D. Smith, R. Light, and M. Jaspan, “An innovative tool for fabricating computer-generated holograms,” J. Phys. Conf. Ser.415, 012037 (2013).

Soons, J. A.

U. Griesmann, Q. Wang, J. A. Soons, and L. Assoufid, “Figure metrology for x-ray focusing mirrors with fresnel holograms and photon sieves,” in Optical Fabrication and Testing, (2014), pp. OTu4A–5.

Starkey, D. A.

Sugiyama, S.

Sukegawa, T.

Tanner,

J. Ge, B. Zhao, S. Powell, A. Fletcher, X. Wan, L. Chang, H. Jakeman, D. Koukis, Tanner, B. David, D. Ebbets, and P. J. Kuzmenko, “Silicon immersion gratings and their spectroscopic applications,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 (International Society for Optics and Photonics, 2012), p. 84502U.
[Crossref]

Thomas, P.

J. Gray, P. Thomas, and X. D. Zhu, “Laser pointing stability measured by an oblique-incidence optical transmittance difference technique,” Rev. Sci. Instrum. 72, 3714–3717 (2001).
[Crossref]

Tiziani, H. J.

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
[Crossref]

Tsang, W.-T.

W.-T. Tsang and S. Wang, “Preferentially etched diffraction gratings in silicon,” J. Appl. Phys. 46, 2163–2166 (1975).
[Crossref]

Valero, E. M.

Vernold, C. L.

Walsh, M. E.

H. I. Smith, M. E. Walsh, F. Zhang, J. Ferrara, G. Hourihan, D. Smith, R. Light, and M. Jaspan, “An innovative tool for fabricating computer-generated holograms,” J. Phys. Conf. Ser.415, 012037 (2013).

Wan, X.

J. Ge, B. Zhao, S. Powell, A. Fletcher, X. Wan, L. Chang, H. Jakeman, D. Koukis, Tanner, B. David, D. Ebbets, and P. J. Kuzmenko, “Silicon immersion gratings and their spectroscopic applications,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 (International Society for Optics and Photonics, 2012), p. 84502U.
[Crossref]

Wang, Q.

U. Griesmann, Q. Wang, J. A. Soons, and L. Assoufid, “Figure metrology for x-ray focusing mirrors with fresnel holograms and photon sieves,” in Optical Fabrication and Testing, (2014), pp. OTu4A–5.

Wang, S.

W.-T. Tsang and S. Wang, “Preferentially etched diffraction gratings in silicon,” J. Appl. Phys. 46, 2163–2166 (1975).
[Crossref]

Wang, W.

W. Wang, M. Gully-Santiago, C. Deen, D. J. Mar, and D. T. Jaffe, “Manuacturing of silicon immersion gratings for infrared spectrometers,” in Modern technologies in space- and ground-based telescopes, vol. 7739 (International Society for Optics and Photonics, 2010), p. 77394L.

Wiedemann, G.

Williams, K.

K. Williams and R. S. Muller, “Etch rates for micromachining processing,” J. Microelectromechanical systems 5, 256–269 (1996).
[Crossref]

Wilson, D. W.

C. B. Brooks, B. T. Kidder, M. M. Grigas, U. Griesmann, D. W. Wilson, R. E. Muller, and D. T. Jaffe, “Process improvements in the production of silicon immersion gratings,” in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, vol. 9912 (International Society for Optics and Photonics, 2016), p. 99123Z.
[Crossref]

Yasui, C.

Zarka, A.

H. R. Simonsen and A. Zarka, “Iodine stabilized extended-cavity diode lasers at λ≈ 633 nm: result of an international comparison,” Metrologia 35, 197–202 (1998).
[Crossref]

Zeitner, U.-D.

M. Heusinger, T. Flügel-Paul, and U.-D. Zeitner, “Large-scale segmentation errors in optical gratings and their unique effect onto optical scattering spectra,” Appl. Phys. B 122, 222 (2016).
[Crossref]

M. Heusinger, M. Banasch, T. Flügel-Paul, and U.-D. Zeitner, “Investigation and optimization of rowland ghosts in high efficiency spectrometer gratings fabricated by e-beam lithography,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX, vol. 9759 (International Society for Optics and Photonics, 2016), p. 97590A.

Zhang, F.

H. I. Smith, M. E. Walsh, F. Zhang, J. Ferrara, G. Hourihan, D. Smith, R. Light, and M. Jaspan, “An innovative tool for fabricating computer-generated holograms,” J. Phys. Conf. Ser.415, 012037 (2013).

Zhao, B.

J. Ge, B. Zhao, S. Powell, A. Fletcher, X. Wan, L. Chang, H. Jakeman, D. Koukis, Tanner, B. David, D. Ebbets, and P. J. Kuzmenko, “Silicon immersion gratings and their spectroscopic applications,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 (International Society for Optics and Photonics, 2012), p. 84502U.
[Crossref]

Zhu, X. D.

J. Gray, P. Thomas, and X. D. Zhu, “Laser pointing stability measured by an oblique-incidence optical transmittance difference technique,” Rev. Sci. Instrum. 72, 3714–3717 (2001).
[Crossref]

Appl. Opt. (6)

Appl. Phys. B (1)

M. Heusinger, T. Flügel-Paul, and U.-D. Zeitner, “Large-scale segmentation errors in optical gratings and their unique effect onto optical scattering spectra,” Appl. Phys. B 122, 222 (2016).
[Crossref]

Ark. Fys. (1)

E. Hulthén, “Refraction gratings,” Ark. Fys. 2, 439–441 (1950).

J. Appl. Phys. (1)

W.-T. Tsang and S. Wang, “Preferentially etched diffraction gratings in silicon,” J. Appl. Phys. 46, 2163–2166 (1975).
[Crossref]

J. Microelectromechanical systems (1)

K. Williams and R. S. Muller, “Etch rates for micromachining processing,” J. Microelectromechanical systems 5, 256–269 (1996).
[Crossref]

J. Opt. Soc. Am. (1)

Metrologia (1)

H. R. Simonsen and A. Zarka, “Iodine stabilized extended-cavity diode lasers at λ≈ 633 nm: result of an international comparison,” Metrologia 35, 197–202 (1998).
[Crossref]

Nature (2)

L. Kipp, M. Skibowski, R. L. Johnson, R. Bernd, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft x-rays with photon sieves,” Nature 414, 184–188 (2001).
[Crossref] [PubMed]

E. Hulthén and H. Neuhaus, “Diffraction gratings in immersion,” Nature 173, 442–443 (1954).
[Crossref]

Opt. Acta (1)

A. F. Fercher, “Computer-generated holograms for testing optical elements: Error analysis and error compensation,” Opt. Acta 23, 347–365 (1976).
[Crossref]

Opt. Eng. (1)

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
[Crossref]

Optica (1)

Phys. Today (1)

G. R. Harrison, “The challenge of the ruled grating,” Phys. Today 3, 6–12 (1950).
[Crossref]

Rev. Sci. Instrum. (1)

J. Gray, P. Thomas, and X. D. Zhu, “Laser pointing stability measured by an oblique-incidence optical transmittance difference technique,” Rev. Sci. Instrum. 72, 3714–3717 (2001).
[Crossref]

Other (18)

H. I. Smith, M. E. Walsh, F. Zhang, J. Ferrara, G. Hourihan, D. Smith, R. Light, and M. Jaspan, “An innovative tool for fabricating computer-generated holograms,” J. Phys. Conf. Ser.415, 012037 (2013).

J. J. McCann and A. Rizzi, The art and science of HDR imaging(John Wiley and Sons, 2012).

B. C. Madden, “Extended intensity range imaging,” Tech. Rep. MS-CIS-93-96, University of Pennsylvania (1993).

S. Mann and R. W. Picard, “Being ’undigital’ with digital cameras: Extending dynamic range by combining differently exposed pictures,” Tech. Rep. 323, M.I.T. Media Lab Perceptual Computing Section (1994).

P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, (ACM Press/Addison-Wesley Publishing Co., 1997), SIGGRAPH ’97, pp. 369–378.

U. Griesmann, Q. Wang, J. A. Soons, and L. Assoufid, “Figure metrology for x-ray focusing mirrors with fresnel holograms and photon sieves,” in Optical Fabrication and Testing, (2014), pp. OTu4A–5.

M. I. Afzal, S. C. Corzo-Garcia, and U. Griesmann, “A focal plane imager with high dynamic range to identify fabrication errors in diffractive optics,” in Optical Fabrication and Testing, (Optical Society of America, 2017), pp. OW3B–2.

S. C. Corzo-Garcia, M. I. Afzal, B. T. Kidder, M. M. Grigas, and U. Griesmann, “A high dynamic range imaging method for the characterization of periodic errors in diffraction gratings,” in Reflection, Scattering, and Diffraction from Surfaces VI, vol. 10750 (International Society for Optics and Photonics, 2018), p. 1075009.

M. Heusinger, M. Banasch, T. Flügel-Paul, and U.-D. Zeitner, “Investigation and optimization of rowland ghosts in high efficiency spectrometer gratings fabricated by e-beam lithography,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX, vol. 9759 (International Society for Optics and Photonics, 2016), p. 97590A.

J. Z. Malacara, “Angle, distance, curvature, and focal length measurements,” in Optical Shop Testing, D. Malacara, ed. (John Wiley & Sons, 1992), pp. 715–741, 2nd ed.

H. Dekker, “An immersion grating for an astronomical spectrograph,” in Instrumentation for Ground-Based Optical Astronomy. Santa Cruz Summer Workshops in Astronomy and Astrophysics, L. B. Robinson, ed. (Springer, 1988), pp. 183–188.

C. A. Palmer and E. G. Loewen, Diffraction grating handbook (Richardson Gratings, Newport Corp., 2014), 7th ed.

C. B. Brooks, B. T. Kidder, M. M. Grigas, U. Griesmann, D. W. Wilson, R. E. Muller, and D. T. Jaffe, “Process improvements in the production of silicon immersion gratings,” in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, vol. 9912 (International Society for Optics and Photonics, 2016), p. 99123Z.
[Crossref]

C. B. Brooks, B. T. Kidder, M. M. Grigas, and D. T. Jaffe, “Process and metrology developments in the production of immersion gratings,” in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, vol. 10706 (2018), p. 1070654.

J. Fraunhofer, “Neue Modifikation des Lichtes durch gegenseitige Einwirkung und Beugung der Strahlen, und Gesetze derselben [A new method for modifying light through mutual influence and diffraction of rays, and its laws,],” in, Joseph von Fraunhofer’s Gesammelte Schriften, E. Lommel, ed. (Verlag der Königlichen Akademie, 1888), pp. 91–94.

W. Wang, M. Gully-Santiago, C. Deen, D. J. Mar, and D. T. Jaffe, “Manuacturing of silicon immersion gratings for infrared spectrometers,” in Modern technologies in space- and ground-based telescopes, vol. 7739 (International Society for Optics and Photonics, 2010), p. 77394L.

J. Ge, B. Zhao, S. Powell, A. Fletcher, X. Wan, L. Chang, H. Jakeman, D. Koukis, Tanner, B. David, D. Ebbets, and P. J. Kuzmenko, “Silicon immersion gratings and their spectroscopic applications,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 (International Society for Optics and Photonics, 2012), p. 84502U.
[Crossref]

B. T. Kidder, C. B. Brooks, M. M. Grigas, and D. T. Jaffe, “Manufacturing silicon immersion gratings on 150 mm material,” in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, vol. 10706 (International Society for Optics and Photonics, 2018), p. 1070626.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic and photographs of the measurement setup with the grating oriented to retro-reflect the incoming beam (Littrow). Numbers identify corresponding components of the setup in schematic and photographs. The inset camera image shows the vicinity of a well-focused beam on the camera sensor.
Fig. 2
Fig. 2 Laser power as function of beam stop (blade) position. Error bars have a length of two standard deviations.
Fig. 3
Fig. 3 Average over all pixels of the camera’s temporal dark noise in raw pixel values (a) and stray light caused by the camera sensor cover glass (b).
Fig. 4
Fig. 4 Stray light due to multiple reflections at optical element surfaces: secondary reflection at the beam splitter (a) and secondary reflection at the focusing lens (b).
Fig. 5
Fig. 5 Pixel values for two pixels, shown in red and blue, from an image sequence in a HDR measurement. Raw camera pixel values (a) and normalized irradiances (b). Values conforming to the linear camera model are indicated by circles, non-conforming vales are indicated by crosses.
Fig. 6
Fig. 6 Number of observations conforming to a linear camera model for the whole image sensor (a) and near the center of the sensor (b). The data are from the measurement described in section 4.1.
Fig. 7
Fig. 7 Confocal microscope image of echelle grating topography (a), HDR focal image (b), horizontal section of the HDR image through 0   (c), and vertical section of the HDR image through 0   (d). Red bars in (d) indicate the standard deviation of 6 measurements below and above the mean.
Fig. 8
Fig. 8 HDR focal image of the echelle grating with laser power variation (a) and vertical section of the HDR image through 0° with (red line) and without (black line) increases in the laser power. Note that (a) is plotted with a compressed irradiance scale that allots most of the colorbar range to the low end of the scale.
Fig. 9
Fig. 9 Micrograph of photon sieve hologram (a), HDR focal image (b), horizontal section in the HDR image through 0° (c), and vertical section in the HDR image through 0° (d). The scale bar in image (a) has a length of 10 μm. Red bars in (d) indicate the standard deviation of 6 measurements below and above the mean.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n ( sin  α + sin  β m ) = m G λ ,    m = 0 , ± 1 , ± 2 , ± 3
n ( sin  α 1 ) G λ m n ( sin  α + 1 ) G λ .
Ω k = g 1 τ 1 r 1 g k τ k r k   .
H i j = 1 n i j k = 1 n i j Ω k I k ; i j   .
I k ; i j = β E k ; i j g k τ k = β E k ; i j σ k   .
E ¯ = 1 n k = 1 n E k   .
log  ( E ^ k ) = log  ( I k ) log  ( σ ^ k ) log  ( I 1 pk )   .

Metrics