Abstract

In the context of industry 4.0, building data clouds in manufacturing technologies is the fundamental step to approach intelligent automatic process. This new technology has proved to efficiently and effectively monitor five important responses (removal rate, texture, surface accuracy, edge-profiles and mid-spatial frequencies) with more than 95% repeatability in real time. This faster and inexpensive process can serve for the nowadays high-quality segmented telescopes. We illustrate the underlying problem by reference to a case-study – the challenge of an average manufacturing rate of 11.4 segments per month for the 39.3m optical/infrared European Extremely Large Telescope (E-ELT) project.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Insight into aspheric misfit with hard tools: mapping the island of low mid-spatial frequencies

David Walker, Wu Hsing-Yu, Guoyu Yu, Hongyu Li, Wang Zhang, and Chunlian Lu
Appl. Opt. 56(36) 9925-9931 (2017)

Implementing a grolishing process in Zeeko IRP machines

Guoyu Yu, David Walker, and Hongyu Li
Appl. Opt. 51(27) 6637-6640 (2012)

Edges in CNC polishing: from mirror-segments towards semiconductors, paper 1: edges on processing the global surface

David Walker, Guoyu Yu, Hongyu Li, Wilhelmus Messelink, Rob Evans, and Anthony Beaucamp
Opt. Express 20(18) 19787-19798 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. D. Walker, G. Davies, T. Fox-Leonard, C. Gray, J. Mitchell, P. Rees, H.-Y. Wu, A. Volkov, and G. Yu, “Advanced abrasive processes for manufacturing prototype mirror segments for the world’s largest telescope,” Adv. Mat. Res. 1017, 532–538 (2014).
    [Crossref]
  2. D. Walker, D. Brooks, A. King, R. Freeman, R. Morton, G. McCavana, and S.-W. Kim, “The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces,” Opt. Express 11(8), 958–964 (2003).
    [Crossref] [PubMed]
  3. G. Yu, H. Li, and D. D. Walker, “Removal of mid spatial-frequency features in mirror segment,” Journal of the European Optical Society 6, 11044 (2011).
    [Crossref]
  4. G. Yu, H.-Y. Wu, D. D. Walker, X. Zheng, H. Li, C. Dunn, and C. Gray, “Optimisation of grolishing freeform surfaces with rigid and semi-rigid tools,” Proc. SPIE 9912, 99123Q (2016).
    [Crossref]
  5. D. D. Walker, H.-Y. Wu, G. Yu, H. Li, Z. Wang, and C. Lu, “Insight into aspheric misfit with hard tools: mapping the island of low mid-spatial frequencies,” Appl. Opt. 56(36), 9925–9931 (2017).
    [Crossref]
  6. D. D. Walker, A. Baldwin, R. Evans, R. Freeman, S. Hamidi, P. Shore, X. Tonnellier, S. Wei, C. Williams, and G. Yu, “A quantitative comparison of three grolishing techniques for the Precessions process,” Proc. SPIE 6671, 66711H (2007).
    [Crossref]
  7. G. Yu, D. Walker, and H. Li, “Implementing a grolishing process in Zeeko IRP machines,” Appl. Opt. 51(27), 6637–6640 (2012).
    [Crossref] [PubMed]
  8. D. Walker, G. Yu, H. Li, W. Messelink, R. Evans, and A. Beaucamp, “Edges in CNC polishing: from mirror-segments towards semiconductors, paper 1: edges on processing the global surface,” Opt. Express 20(18), 19787–19798 (2012).
    [Crossref] [PubMed]
  9. D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H.-Y. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).
  10. D. D. Walker, G. Yu, M. Bibby, C. Dunn, H. Li, H.-Y. Wu, X. Zheng, and P. Zhang, “Robotic automation in computer controlled polishing,” Journal of the European Opt,” Society 11, 16005 (2016).
  11. X. Tonnellier, P. Morantz, P. Shore, and P. Comley, “Precision grinding for rapid fabrication of segments for extremely large telescopes using the Cranfield BoX,” Proc. SPIE 7739, 773905 (2010).
    [Crossref]
  12. P. Comley, P. Morantz, P. Shore, and X. Tonnellier, “Grinding metre scale mirror segments for the E-ELT ground based telescope,” CIRP Ann. 60(1), 379–382 (2011).
    [Crossref]
  13. M. Cayrel, “E-ELT optomechanics: overview,” Proc. SPIE 8444, 84441X (2012).
    [Crossref]
  14. “The E-ELT Construction Proposal,” ESO, 1–263 (2011).
  15. D. D. Walker, G. Yu, A. Beaucamp, M. Bibby, H. Li, L. McCluskey, S. Petrovic, and C. Reynolds, “More steps towards process automation for optical fabrication,” Proc. SPIE 10326, 103260S (2017).
    [Crossref]
  16. X. Tonnellier, P. Shore, P. Morantz, and D. Orton, “Surface quality of a 1m zerodur part using an effective grinding mode,” Proc. SPIE 7102, 71020B (2008).
    [Crossref]
  17. A. Beaucamp and Y. Namba, “Super-smooth finishing of diamond turned hard x-ray molding dies by combined fluid jet and bonnet polishing,” CIRP Ann. 62(1), 315–318 (2013).
    [Crossref]
  18. F. Tinker and K. Xin, “Fabrication of SiC aspheric mirrors with low mid-spatial error,” Proc. SPIE 8837, 88370M (2013).
    [Crossref]
  19. J. Franse, “Manufacturing techniques for complex shapes with submicron accuracy,” Rep. Prog. Phys. 53(8), 1049–1094 (1990).
    [Crossref]
  20. C. F. Cheung and W. B. Lee, “Modelling and simulation of surface topography in ultra-precision diamond turning,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 214(6), 463–480 (2000).
    [Crossref]
  21. S. Takasu, M. Masuda, T. Nishiguchi, and A. Kobayashi, “Influence of study vibration with small amplitude upon surface roughness in diamond machining,” CIRP Annals, 34, 1), 463–467 (1985).
  22. T. Sata, M. Li, S. Takata, H. Hiraoka, C. Q. Li, X. Z. Xing, and X. G. Xiao, “Analysis of surface roughness generation in turning operation and its applications,” CIRP Ann. 34(1), 473–476 (1985).
    [Crossref]
  23. X. Tonnellier, “Precision Grinding for Rapid Manufacturing of Large Optics,” PhD Thesis (2009).
  24. C. R. Dunn and D. D. Walker, “Pseudo-random tool paths for CNC sub-aperture polishing and other applications,” Opt. Express 16(23), 18942–18949 (2008).
    [Crossref] [PubMed]
  25. C. Song, D. D. Walker, and G. Yu, “Misfit of rigid tools and interferometer subapertures on off-axis aspheric mirror segments,” Opt. Eng. 50(7), 073401 (2011).
    [Crossref]

2017 (2)

D. D. Walker, H.-Y. Wu, G. Yu, H. Li, Z. Wang, and C. Lu, “Insight into aspheric misfit with hard tools: mapping the island of low mid-spatial frequencies,” Appl. Opt. 56(36), 9925–9931 (2017).
[Crossref]

D. D. Walker, G. Yu, A. Beaucamp, M. Bibby, H. Li, L. McCluskey, S. Petrovic, and C. Reynolds, “More steps towards process automation for optical fabrication,” Proc. SPIE 10326, 103260S (2017).
[Crossref]

2016 (2)

D. D. Walker, G. Yu, M. Bibby, C. Dunn, H. Li, H.-Y. Wu, X. Zheng, and P. Zhang, “Robotic automation in computer controlled polishing,” Journal of the European Opt,” Society 11, 16005 (2016).

G. Yu, H.-Y. Wu, D. D. Walker, X. Zheng, H. Li, C. Dunn, and C. Gray, “Optimisation of grolishing freeform surfaces with rigid and semi-rigid tools,” Proc. SPIE 9912, 99123Q (2016).
[Crossref]

2015 (1)

D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H.-Y. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).

2014 (1)

D. D. Walker, G. Davies, T. Fox-Leonard, C. Gray, J. Mitchell, P. Rees, H.-Y. Wu, A. Volkov, and G. Yu, “Advanced abrasive processes for manufacturing prototype mirror segments for the world’s largest telescope,” Adv. Mat. Res. 1017, 532–538 (2014).
[Crossref]

2013 (2)

A. Beaucamp and Y. Namba, “Super-smooth finishing of diamond turned hard x-ray molding dies by combined fluid jet and bonnet polishing,” CIRP Ann. 62(1), 315–318 (2013).
[Crossref]

F. Tinker and K. Xin, “Fabrication of SiC aspheric mirrors with low mid-spatial error,” Proc. SPIE 8837, 88370M (2013).
[Crossref]

2012 (3)

2011 (3)

C. Song, D. D. Walker, and G. Yu, “Misfit of rigid tools and interferometer subapertures on off-axis aspheric mirror segments,” Opt. Eng. 50(7), 073401 (2011).
[Crossref]

G. Yu, H. Li, and D. D. Walker, “Removal of mid spatial-frequency features in mirror segment,” Journal of the European Optical Society 6, 11044 (2011).
[Crossref]

P. Comley, P. Morantz, P. Shore, and X. Tonnellier, “Grinding metre scale mirror segments for the E-ELT ground based telescope,” CIRP Ann. 60(1), 379–382 (2011).
[Crossref]

2010 (1)

X. Tonnellier, P. Morantz, P. Shore, and P. Comley, “Precision grinding for rapid fabrication of segments for extremely large telescopes using the Cranfield BoX,” Proc. SPIE 7739, 773905 (2010).
[Crossref]

2008 (2)

X. Tonnellier, P. Shore, P. Morantz, and D. Orton, “Surface quality of a 1m zerodur part using an effective grinding mode,” Proc. SPIE 7102, 71020B (2008).
[Crossref]

C. R. Dunn and D. D. Walker, “Pseudo-random tool paths for CNC sub-aperture polishing and other applications,” Opt. Express 16(23), 18942–18949 (2008).
[Crossref] [PubMed]

2007 (1)

D. D. Walker, A. Baldwin, R. Evans, R. Freeman, S. Hamidi, P. Shore, X. Tonnellier, S. Wei, C. Williams, and G. Yu, “A quantitative comparison of three grolishing techniques for the Precessions process,” Proc. SPIE 6671, 66711H (2007).
[Crossref]

2003 (1)

2000 (1)

C. F. Cheung and W. B. Lee, “Modelling and simulation of surface topography in ultra-precision diamond turning,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 214(6), 463–480 (2000).
[Crossref]

1990 (1)

J. Franse, “Manufacturing techniques for complex shapes with submicron accuracy,” Rep. Prog. Phys. 53(8), 1049–1094 (1990).
[Crossref]

1985 (1)

T. Sata, M. Li, S. Takata, H. Hiraoka, C. Q. Li, X. Z. Xing, and X. G. Xiao, “Analysis of surface roughness generation in turning operation and its applications,” CIRP Ann. 34(1), 473–476 (1985).
[Crossref]

Baldwin, A.

D. D. Walker, A. Baldwin, R. Evans, R. Freeman, S. Hamidi, P. Shore, X. Tonnellier, S. Wei, C. Williams, and G. Yu, “A quantitative comparison of three grolishing techniques for the Precessions process,” Proc. SPIE 6671, 66711H (2007).
[Crossref]

Beaucamp, A.

D. D. Walker, G. Yu, A. Beaucamp, M. Bibby, H. Li, L. McCluskey, S. Petrovic, and C. Reynolds, “More steps towards process automation for optical fabrication,” Proc. SPIE 10326, 103260S (2017).
[Crossref]

A. Beaucamp and Y. Namba, “Super-smooth finishing of diamond turned hard x-ray molding dies by combined fluid jet and bonnet polishing,” CIRP Ann. 62(1), 315–318 (2013).
[Crossref]

D. Walker, G. Yu, H. Li, W. Messelink, R. Evans, and A. Beaucamp, “Edges in CNC polishing: from mirror-segments towards semiconductors, paper 1: edges on processing the global surface,” Opt. Express 20(18), 19787–19798 (2012).
[Crossref] [PubMed]

Bibby, M.

D. D. Walker, G. Yu, A. Beaucamp, M. Bibby, H. Li, L. McCluskey, S. Petrovic, and C. Reynolds, “More steps towards process automation for optical fabrication,” Proc. SPIE 10326, 103260S (2017).
[Crossref]

D. D. Walker, G. Yu, M. Bibby, C. Dunn, H. Li, H.-Y. Wu, X. Zheng, and P. Zhang, “Robotic automation in computer controlled polishing,” Journal of the European Opt,” Society 11, 16005 (2016).

D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H.-Y. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).

Brooks, D.

Cayrel, M.

M. Cayrel, “E-ELT optomechanics: overview,” Proc. SPIE 8444, 84441X (2012).
[Crossref]

Cheung, C. F.

C. F. Cheung and W. B. Lee, “Modelling and simulation of surface topography in ultra-precision diamond turning,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 214(6), 463–480 (2000).
[Crossref]

Comley, P.

P. Comley, P. Morantz, P. Shore, and X. Tonnellier, “Grinding metre scale mirror segments for the E-ELT ground based telescope,” CIRP Ann. 60(1), 379–382 (2011).
[Crossref]

X. Tonnellier, P. Morantz, P. Shore, and P. Comley, “Precision grinding for rapid fabrication of segments for extremely large telescopes using the Cranfield BoX,” Proc. SPIE 7739, 773905 (2010).
[Crossref]

Davies, G.

D. D. Walker, G. Davies, T. Fox-Leonard, C. Gray, J. Mitchell, P. Rees, H.-Y. Wu, A. Volkov, and G. Yu, “Advanced abrasive processes for manufacturing prototype mirror segments for the world’s largest telescope,” Adv. Mat. Res. 1017, 532–538 (2014).
[Crossref]

Dunn, C.

G. Yu, H.-Y. Wu, D. D. Walker, X. Zheng, H. Li, C. Dunn, and C. Gray, “Optimisation of grolishing freeform surfaces with rigid and semi-rigid tools,” Proc. SPIE 9912, 99123Q (2016).
[Crossref]

D. D. Walker, G. Yu, M. Bibby, C. Dunn, H. Li, H.-Y. Wu, X. Zheng, and P. Zhang, “Robotic automation in computer controlled polishing,” Journal of the European Opt,” Society 11, 16005 (2016).

D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H.-Y. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).

Dunn, C. R.

Evans, R.

D. Walker, G. Yu, H. Li, W. Messelink, R. Evans, and A. Beaucamp, “Edges in CNC polishing: from mirror-segments towards semiconductors, paper 1: edges on processing the global surface,” Opt. Express 20(18), 19787–19798 (2012).
[Crossref] [PubMed]

D. D. Walker, A. Baldwin, R. Evans, R. Freeman, S. Hamidi, P. Shore, X. Tonnellier, S. Wei, C. Williams, and G. Yu, “A quantitative comparison of three grolishing techniques for the Precessions process,” Proc. SPIE 6671, 66711H (2007).
[Crossref]

Fox-Leonard, T.

D. D. Walker, G. Davies, T. Fox-Leonard, C. Gray, J. Mitchell, P. Rees, H.-Y. Wu, A. Volkov, and G. Yu, “Advanced abrasive processes for manufacturing prototype mirror segments for the world’s largest telescope,” Adv. Mat. Res. 1017, 532–538 (2014).
[Crossref]

Franse, J.

J. Franse, “Manufacturing techniques for complex shapes with submicron accuracy,” Rep. Prog. Phys. 53(8), 1049–1094 (1990).
[Crossref]

Freeman, R.

D. D. Walker, A. Baldwin, R. Evans, R. Freeman, S. Hamidi, P. Shore, X. Tonnellier, S. Wei, C. Williams, and G. Yu, “A quantitative comparison of three grolishing techniques for the Precessions process,” Proc. SPIE 6671, 66711H (2007).
[Crossref]

D. Walker, D. Brooks, A. King, R. Freeman, R. Morton, G. McCavana, and S.-W. Kim, “The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces,” Opt. Express 11(8), 958–964 (2003).
[Crossref] [PubMed]

Gray, C.

G. Yu, H.-Y. Wu, D. D. Walker, X. Zheng, H. Li, C. Dunn, and C. Gray, “Optimisation of grolishing freeform surfaces with rigid and semi-rigid tools,” Proc. SPIE 9912, 99123Q (2016).
[Crossref]

D. D. Walker, G. Davies, T. Fox-Leonard, C. Gray, J. Mitchell, P. Rees, H.-Y. Wu, A. Volkov, and G. Yu, “Advanced abrasive processes for manufacturing prototype mirror segments for the world’s largest telescope,” Adv. Mat. Res. 1017, 532–538 (2014).
[Crossref]

Hamidi, S.

D. D. Walker, A. Baldwin, R. Evans, R. Freeman, S. Hamidi, P. Shore, X. Tonnellier, S. Wei, C. Williams, and G. Yu, “A quantitative comparison of three grolishing techniques for the Precessions process,” Proc. SPIE 6671, 66711H (2007).
[Crossref]

Hiraoka, H.

T. Sata, M. Li, S. Takata, H. Hiraoka, C. Q. Li, X. Z. Xing, and X. G. Xiao, “Analysis of surface roughness generation in turning operation and its applications,” CIRP Ann. 34(1), 473–476 (1985).
[Crossref]

Kim, S.-W.

King, A.

Lee, W. B.

C. F. Cheung and W. B. Lee, “Modelling and simulation of surface topography in ultra-precision diamond turning,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 214(6), 463–480 (2000).
[Crossref]

Li, C. Q.

T. Sata, M. Li, S. Takata, H. Hiraoka, C. Q. Li, X. Z. Xing, and X. G. Xiao, “Analysis of surface roughness generation in turning operation and its applications,” CIRP Ann. 34(1), 473–476 (1985).
[Crossref]

Li, H.

D. D. Walker, G. Yu, A. Beaucamp, M. Bibby, H. Li, L. McCluskey, S. Petrovic, and C. Reynolds, “More steps towards process automation for optical fabrication,” Proc. SPIE 10326, 103260S (2017).
[Crossref]

D. D. Walker, H.-Y. Wu, G. Yu, H. Li, Z. Wang, and C. Lu, “Insight into aspheric misfit with hard tools: mapping the island of low mid-spatial frequencies,” Appl. Opt. 56(36), 9925–9931 (2017).
[Crossref]

G. Yu, H.-Y. Wu, D. D. Walker, X. Zheng, H. Li, C. Dunn, and C. Gray, “Optimisation of grolishing freeform surfaces with rigid and semi-rigid tools,” Proc. SPIE 9912, 99123Q (2016).
[Crossref]

D. D. Walker, G. Yu, M. Bibby, C. Dunn, H. Li, H.-Y. Wu, X. Zheng, and P. Zhang, “Robotic automation in computer controlled polishing,” Journal of the European Opt,” Society 11, 16005 (2016).

D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H.-Y. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).

G. Yu, D. Walker, and H. Li, “Implementing a grolishing process in Zeeko IRP machines,” Appl. Opt. 51(27), 6637–6640 (2012).
[Crossref] [PubMed]

D. Walker, G. Yu, H. Li, W. Messelink, R. Evans, and A. Beaucamp, “Edges in CNC polishing: from mirror-segments towards semiconductors, paper 1: edges on processing the global surface,” Opt. Express 20(18), 19787–19798 (2012).
[Crossref] [PubMed]

G. Yu, H. Li, and D. D. Walker, “Removal of mid spatial-frequency features in mirror segment,” Journal of the European Optical Society 6, 11044 (2011).
[Crossref]

Li, M.

T. Sata, M. Li, S. Takata, H. Hiraoka, C. Q. Li, X. Z. Xing, and X. G. Xiao, “Analysis of surface roughness generation in turning operation and its applications,” CIRP Ann. 34(1), 473–476 (1985).
[Crossref]

Lu, C.

D. D. Walker, H.-Y. Wu, G. Yu, H. Li, Z. Wang, and C. Lu, “Insight into aspheric misfit with hard tools: mapping the island of low mid-spatial frequencies,” Appl. Opt. 56(36), 9925–9931 (2017).
[Crossref]

D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H.-Y. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).

McCavana, G.

McCluskey, L.

D. D. Walker, G. Yu, A. Beaucamp, M. Bibby, H. Li, L. McCluskey, S. Petrovic, and C. Reynolds, “More steps towards process automation for optical fabrication,” Proc. SPIE 10326, 103260S (2017).
[Crossref]

Messelink, W.

Mitchell, J.

D. D. Walker, G. Davies, T. Fox-Leonard, C. Gray, J. Mitchell, P. Rees, H.-Y. Wu, A. Volkov, and G. Yu, “Advanced abrasive processes for manufacturing prototype mirror segments for the world’s largest telescope,” Adv. Mat. Res. 1017, 532–538 (2014).
[Crossref]

Morantz, P.

P. Comley, P. Morantz, P. Shore, and X. Tonnellier, “Grinding metre scale mirror segments for the E-ELT ground based telescope,” CIRP Ann. 60(1), 379–382 (2011).
[Crossref]

X. Tonnellier, P. Morantz, P. Shore, and P. Comley, “Precision grinding for rapid fabrication of segments for extremely large telescopes using the Cranfield BoX,” Proc. SPIE 7739, 773905 (2010).
[Crossref]

X. Tonnellier, P. Shore, P. Morantz, and D. Orton, “Surface quality of a 1m zerodur part using an effective grinding mode,” Proc. SPIE 7102, 71020B (2008).
[Crossref]

Morton, R.

Namba, Y.

A. Beaucamp and Y. Namba, “Super-smooth finishing of diamond turned hard x-ray molding dies by combined fluid jet and bonnet polishing,” CIRP Ann. 62(1), 315–318 (2013).
[Crossref]

Orton, D.

X. Tonnellier, P. Shore, P. Morantz, and D. Orton, “Surface quality of a 1m zerodur part using an effective grinding mode,” Proc. SPIE 7102, 71020B (2008).
[Crossref]

Petrovic, S.

D. D. Walker, G. Yu, A. Beaucamp, M. Bibby, H. Li, L. McCluskey, S. Petrovic, and C. Reynolds, “More steps towards process automation for optical fabrication,” Proc. SPIE 10326, 103260S (2017).
[Crossref]

Rees, P.

D. D. Walker, G. Davies, T. Fox-Leonard, C. Gray, J. Mitchell, P. Rees, H.-Y. Wu, A. Volkov, and G. Yu, “Advanced abrasive processes for manufacturing prototype mirror segments for the world’s largest telescope,” Adv. Mat. Res. 1017, 532–538 (2014).
[Crossref]

Reynolds, C.

D. D. Walker, G. Yu, A. Beaucamp, M. Bibby, H. Li, L. McCluskey, S. Petrovic, and C. Reynolds, “More steps towards process automation for optical fabrication,” Proc. SPIE 10326, 103260S (2017).
[Crossref]

Sata, T.

T. Sata, M. Li, S. Takata, H. Hiraoka, C. Q. Li, X. Z. Xing, and X. G. Xiao, “Analysis of surface roughness generation in turning operation and its applications,” CIRP Ann. 34(1), 473–476 (1985).
[Crossref]

Shore, P.

P. Comley, P. Morantz, P. Shore, and X. Tonnellier, “Grinding metre scale mirror segments for the E-ELT ground based telescope,” CIRP Ann. 60(1), 379–382 (2011).
[Crossref]

X. Tonnellier, P. Morantz, P. Shore, and P. Comley, “Precision grinding for rapid fabrication of segments for extremely large telescopes using the Cranfield BoX,” Proc. SPIE 7739, 773905 (2010).
[Crossref]

X. Tonnellier, P. Shore, P. Morantz, and D. Orton, “Surface quality of a 1m zerodur part using an effective grinding mode,” Proc. SPIE 7102, 71020B (2008).
[Crossref]

D. D. Walker, A. Baldwin, R. Evans, R. Freeman, S. Hamidi, P. Shore, X. Tonnellier, S. Wei, C. Williams, and G. Yu, “A quantitative comparison of three grolishing techniques for the Precessions process,” Proc. SPIE 6671, 66711H (2007).
[Crossref]

Song, C.

C. Song, D. D. Walker, and G. Yu, “Misfit of rigid tools and interferometer subapertures on off-axis aspheric mirror segments,” Opt. Eng. 50(7), 073401 (2011).
[Crossref]

Takata, S.

T. Sata, M. Li, S. Takata, H. Hiraoka, C. Q. Li, X. Z. Xing, and X. G. Xiao, “Analysis of surface roughness generation in turning operation and its applications,” CIRP Ann. 34(1), 473–476 (1985).
[Crossref]

Tinker, F.

F. Tinker and K. Xin, “Fabrication of SiC aspheric mirrors with low mid-spatial error,” Proc. SPIE 8837, 88370M (2013).
[Crossref]

Tonnellier, X.

P. Comley, P. Morantz, P. Shore, and X. Tonnellier, “Grinding metre scale mirror segments for the E-ELT ground based telescope,” CIRP Ann. 60(1), 379–382 (2011).
[Crossref]

X. Tonnellier, P. Morantz, P. Shore, and P. Comley, “Precision grinding for rapid fabrication of segments for extremely large telescopes using the Cranfield BoX,” Proc. SPIE 7739, 773905 (2010).
[Crossref]

X. Tonnellier, P. Shore, P. Morantz, and D. Orton, “Surface quality of a 1m zerodur part using an effective grinding mode,” Proc. SPIE 7102, 71020B (2008).
[Crossref]

D. D. Walker, A. Baldwin, R. Evans, R. Freeman, S. Hamidi, P. Shore, X. Tonnellier, S. Wei, C. Williams, and G. Yu, “A quantitative comparison of three grolishing techniques for the Precessions process,” Proc. SPIE 6671, 66711H (2007).
[Crossref]

Volkov, A.

D. D. Walker, G. Davies, T. Fox-Leonard, C. Gray, J. Mitchell, P. Rees, H.-Y. Wu, A. Volkov, and G. Yu, “Advanced abrasive processes for manufacturing prototype mirror segments for the world’s largest telescope,” Adv. Mat. Res. 1017, 532–538 (2014).
[Crossref]

Walker, D.

Walker, D. D.

D. D. Walker, H.-Y. Wu, G. Yu, H. Li, Z. Wang, and C. Lu, “Insight into aspheric misfit with hard tools: mapping the island of low mid-spatial frequencies,” Appl. Opt. 56(36), 9925–9931 (2017).
[Crossref]

D. D. Walker, G. Yu, A. Beaucamp, M. Bibby, H. Li, L. McCluskey, S. Petrovic, and C. Reynolds, “More steps towards process automation for optical fabrication,” Proc. SPIE 10326, 103260S (2017).
[Crossref]

G. Yu, H.-Y. Wu, D. D. Walker, X. Zheng, H. Li, C. Dunn, and C. Gray, “Optimisation of grolishing freeform surfaces with rigid and semi-rigid tools,” Proc. SPIE 9912, 99123Q (2016).
[Crossref]

D. D. Walker, G. Yu, M. Bibby, C. Dunn, H. Li, H.-Y. Wu, X. Zheng, and P. Zhang, “Robotic automation in computer controlled polishing,” Journal of the European Opt,” Society 11, 16005 (2016).

D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H.-Y. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).

D. D. Walker, G. Davies, T. Fox-Leonard, C. Gray, J. Mitchell, P. Rees, H.-Y. Wu, A. Volkov, and G. Yu, “Advanced abrasive processes for manufacturing prototype mirror segments for the world’s largest telescope,” Adv. Mat. Res. 1017, 532–538 (2014).
[Crossref]

G. Yu, H. Li, and D. D. Walker, “Removal of mid spatial-frequency features in mirror segment,” Journal of the European Optical Society 6, 11044 (2011).
[Crossref]

C. Song, D. D. Walker, and G. Yu, “Misfit of rigid tools and interferometer subapertures on off-axis aspheric mirror segments,” Opt. Eng. 50(7), 073401 (2011).
[Crossref]

C. R. Dunn and D. D. Walker, “Pseudo-random tool paths for CNC sub-aperture polishing and other applications,” Opt. Express 16(23), 18942–18949 (2008).
[Crossref] [PubMed]

D. D. Walker, A. Baldwin, R. Evans, R. Freeman, S. Hamidi, P. Shore, X. Tonnellier, S. Wei, C. Williams, and G. Yu, “A quantitative comparison of three grolishing techniques for the Precessions process,” Proc. SPIE 6671, 66711H (2007).
[Crossref]

Wang, Z.

Wei, S.

D. D. Walker, A. Baldwin, R. Evans, R. Freeman, S. Hamidi, P. Shore, X. Tonnellier, S. Wei, C. Williams, and G. Yu, “A quantitative comparison of three grolishing techniques for the Precessions process,” Proc. SPIE 6671, 66711H (2007).
[Crossref]

Williams, C.

D. D. Walker, A. Baldwin, R. Evans, R. Freeman, S. Hamidi, P. Shore, X. Tonnellier, S. Wei, C. Williams, and G. Yu, “A quantitative comparison of three grolishing techniques for the Precessions process,” Proc. SPIE 6671, 66711H (2007).
[Crossref]

Wu, H.-Y.

D. D. Walker, H.-Y. Wu, G. Yu, H. Li, Z. Wang, and C. Lu, “Insight into aspheric misfit with hard tools: mapping the island of low mid-spatial frequencies,” Appl. Opt. 56(36), 9925–9931 (2017).
[Crossref]

G. Yu, H.-Y. Wu, D. D. Walker, X. Zheng, H. Li, C. Dunn, and C. Gray, “Optimisation of grolishing freeform surfaces with rigid and semi-rigid tools,” Proc. SPIE 9912, 99123Q (2016).
[Crossref]

D. D. Walker, G. Yu, M. Bibby, C. Dunn, H. Li, H.-Y. Wu, X. Zheng, and P. Zhang, “Robotic automation in computer controlled polishing,” Journal of the European Opt,” Society 11, 16005 (2016).

D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H.-Y. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).

D. D. Walker, G. Davies, T. Fox-Leonard, C. Gray, J. Mitchell, P. Rees, H.-Y. Wu, A. Volkov, and G. Yu, “Advanced abrasive processes for manufacturing prototype mirror segments for the world’s largest telescope,” Adv. Mat. Res. 1017, 532–538 (2014).
[Crossref]

Xiao, X. G.

T. Sata, M. Li, S. Takata, H. Hiraoka, C. Q. Li, X. Z. Xing, and X. G. Xiao, “Analysis of surface roughness generation in turning operation and its applications,” CIRP Ann. 34(1), 473–476 (1985).
[Crossref]

Xin, K.

F. Tinker and K. Xin, “Fabrication of SiC aspheric mirrors with low mid-spatial error,” Proc. SPIE 8837, 88370M (2013).
[Crossref]

Xing, X. Z.

T. Sata, M. Li, S. Takata, H. Hiraoka, C. Q. Li, X. Z. Xing, and X. G. Xiao, “Analysis of surface roughness generation in turning operation and its applications,” CIRP Ann. 34(1), 473–476 (1985).
[Crossref]

Yu, G.

D. D. Walker, G. Yu, A. Beaucamp, M. Bibby, H. Li, L. McCluskey, S. Petrovic, and C. Reynolds, “More steps towards process automation for optical fabrication,” Proc. SPIE 10326, 103260S (2017).
[Crossref]

D. D. Walker, H.-Y. Wu, G. Yu, H. Li, Z. Wang, and C. Lu, “Insight into aspheric misfit with hard tools: mapping the island of low mid-spatial frequencies,” Appl. Opt. 56(36), 9925–9931 (2017).
[Crossref]

G. Yu, H.-Y. Wu, D. D. Walker, X. Zheng, H. Li, C. Dunn, and C. Gray, “Optimisation of grolishing freeform surfaces with rigid and semi-rigid tools,” Proc. SPIE 9912, 99123Q (2016).
[Crossref]

D. D. Walker, G. Yu, M. Bibby, C. Dunn, H. Li, H.-Y. Wu, X. Zheng, and P. Zhang, “Robotic automation in computer controlled polishing,” Journal of the European Opt,” Society 11, 16005 (2016).

D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H.-Y. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).

D. D. Walker, G. Davies, T. Fox-Leonard, C. Gray, J. Mitchell, P. Rees, H.-Y. Wu, A. Volkov, and G. Yu, “Advanced abrasive processes for manufacturing prototype mirror segments for the world’s largest telescope,” Adv. Mat. Res. 1017, 532–538 (2014).
[Crossref]

D. Walker, G. Yu, H. Li, W. Messelink, R. Evans, and A. Beaucamp, “Edges in CNC polishing: from mirror-segments towards semiconductors, paper 1: edges on processing the global surface,” Opt. Express 20(18), 19787–19798 (2012).
[Crossref] [PubMed]

G. Yu, D. Walker, and H. Li, “Implementing a grolishing process in Zeeko IRP machines,” Appl. Opt. 51(27), 6637–6640 (2012).
[Crossref] [PubMed]

G. Yu, H. Li, and D. D. Walker, “Removal of mid spatial-frequency features in mirror segment,” Journal of the European Optical Society 6, 11044 (2011).
[Crossref]

C. Song, D. D. Walker, and G. Yu, “Misfit of rigid tools and interferometer subapertures on off-axis aspheric mirror segments,” Opt. Eng. 50(7), 073401 (2011).
[Crossref]

D. D. Walker, A. Baldwin, R. Evans, R. Freeman, S. Hamidi, P. Shore, X. Tonnellier, S. Wei, C. Williams, and G. Yu, “A quantitative comparison of three grolishing techniques for the Precessions process,” Proc. SPIE 6671, 66711H (2007).
[Crossref]

Zhang, P.

D. D. Walker, G. Yu, M. Bibby, C. Dunn, H. Li, H.-Y. Wu, X. Zheng, and P. Zhang, “Robotic automation in computer controlled polishing,” Journal of the European Opt,” Society 11, 16005 (2016).

Zheng, X.

D. D. Walker, G. Yu, M. Bibby, C. Dunn, H. Li, H.-Y. Wu, X. Zheng, and P. Zhang, “Robotic automation in computer controlled polishing,” Journal of the European Opt,” Society 11, 16005 (2016).

G. Yu, H.-Y. Wu, D. D. Walker, X. Zheng, H. Li, C. Dunn, and C. Gray, “Optimisation of grolishing freeform surfaces with rigid and semi-rigid tools,” Proc. SPIE 9912, 99123Q (2016).
[Crossref]

D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H.-Y. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).

Adv. Mat. Res. (1)

D. D. Walker, G. Davies, T. Fox-Leonard, C. Gray, J. Mitchell, P. Rees, H.-Y. Wu, A. Volkov, and G. Yu, “Advanced abrasive processes for manufacturing prototype mirror segments for the world’s largest telescope,” Adv. Mat. Res. 1017, 532–538 (2014).
[Crossref]

Appl. Opt. (2)

CIRP Ann. (3)

P. Comley, P. Morantz, P. Shore, and X. Tonnellier, “Grinding metre scale mirror segments for the E-ELT ground based telescope,” CIRP Ann. 60(1), 379–382 (2011).
[Crossref]

A. Beaucamp and Y. Namba, “Super-smooth finishing of diamond turned hard x-ray molding dies by combined fluid jet and bonnet polishing,” CIRP Ann. 62(1), 315–318 (2013).
[Crossref]

T. Sata, M. Li, S. Takata, H. Hiraoka, C. Q. Li, X. Z. Xing, and X. G. Xiao, “Analysis of surface roughness generation in turning operation and its applications,” CIRP Ann. 34(1), 473–476 (1985).
[Crossref]

Journal of the European Optical Society (1)

G. Yu, H. Li, and D. D. Walker, “Removal of mid spatial-frequency features in mirror segment,” Journal of the European Optical Society 6, 11044 (2011).
[Crossref]

Opt. Eng. (1)

C. Song, D. D. Walker, and G. Yu, “Misfit of rigid tools and interferometer subapertures on off-axis aspheric mirror segments,” Opt. Eng. 50(7), 073401 (2011).
[Crossref]

Opt. Express (3)

Proc. Inst. Mech. Eng., B J. Eng. Manuf. (1)

C. F. Cheung and W. B. Lee, “Modelling and simulation of surface topography in ultra-precision diamond turning,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 214(6), 463–480 (2000).
[Crossref]

Proc. SPIE (8)

F. Tinker and K. Xin, “Fabrication of SiC aspheric mirrors with low mid-spatial error,” Proc. SPIE 8837, 88370M (2013).
[Crossref]

G. Yu, H.-Y. Wu, D. D. Walker, X. Zheng, H. Li, C. Dunn, and C. Gray, “Optimisation of grolishing freeform surfaces with rigid and semi-rigid tools,” Proc. SPIE 9912, 99123Q (2016).
[Crossref]

D. D. Walker, A. Baldwin, R. Evans, R. Freeman, S. Hamidi, P. Shore, X. Tonnellier, S. Wei, C. Williams, and G. Yu, “A quantitative comparison of three grolishing techniques for the Precessions process,” Proc. SPIE 6671, 66711H (2007).
[Crossref]

D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H.-Y. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).

M. Cayrel, “E-ELT optomechanics: overview,” Proc. SPIE 8444, 84441X (2012).
[Crossref]

D. D. Walker, G. Yu, A. Beaucamp, M. Bibby, H. Li, L. McCluskey, S. Petrovic, and C. Reynolds, “More steps towards process automation for optical fabrication,” Proc. SPIE 10326, 103260S (2017).
[Crossref]

X. Tonnellier, P. Shore, P. Morantz, and D. Orton, “Surface quality of a 1m zerodur part using an effective grinding mode,” Proc. SPIE 7102, 71020B (2008).
[Crossref]

X. Tonnellier, P. Morantz, P. Shore, and P. Comley, “Precision grinding for rapid fabrication of segments for extremely large telescopes using the Cranfield BoX,” Proc. SPIE 7739, 773905 (2010).
[Crossref]

Rep. Prog. Phys. (1)

J. Franse, “Manufacturing techniques for complex shapes with submicron accuracy,” Rep. Prog. Phys. 53(8), 1049–1094 (1990).
[Crossref]

Society (1)

D. D. Walker, G. Yu, M. Bibby, C. Dunn, H. Li, H.-Y. Wu, X. Zheng, and P. Zhang, “Robotic automation in computer controlled polishing,” Journal of the European Opt,” Society 11, 16005 (2016).

Other (3)

“The E-ELT Construction Proposal,” ESO, 1–263 (2011).

S. Takasu, M. Masuda, T. Nishiguchi, and A. Kobayashi, “Influence of study vibration with small amplitude upon surface roughness in diamond machining,” CIRP Annals, 34, 1), 463–467 (1985).

X. Tonnellier, “Precision Grinding for Rapid Manufacturing of Large Optics,” PhD Thesis (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Potential role of grolishing in a process-chain.
Fig. 2
Fig. 2 Definition of edge and bulk areas for a 1.45m segment.
Fig. 3
Fig. 3 To demonstrate MSFs PV < 40nm is diffraction limit. (a) Two different input surfaces with their respective MSFs. (b) The respective outputs surface by using PSF. (c) The MTF from the PV = 40nm surface.
Fig. 4
Fig. 4 Mechanism of the grolishing tool.
Fig. 5
Fig. 5 (a) The hard grolishing tool used to process 400mm hexagonal segment. (b) Bonnet pre-polishing on a Zeeko machine.
Fig. 6
Fig. 6 Process for removal measurement.
Fig. 7
Fig. 7 Measurement equipment (a) extended range Talysurf for measuring surface profile; (b) white light interferometer for texture; (c) 4D interferometer for MSFs measurement.
Fig. 8
Fig. 8 A tool has a constant speed at the edge but decelerates and then accelerates at the corner when changing processing direction.
Fig. 9
Fig. 9 The 400mm hexagon with two orthogonal directions measurement.
Fig. 10
Fig. 10 Evaluating the 3 variables (data were offset for comparison). (a) testing: abrasive size (1175g load and 800rpm spindle speed); (b) testing: spindle speed (1175g load and 9μm abrasive; (c) testing: load (1175g load and 800rpm spindle speed).
Fig. 11
Fig. 11 Evaluating the method of overhang for edge control with 9μm abrasive, 800rpm spindle speed and 1150g load (data were offset for comparison. (a) 5 levels of testing variables: OH; (b) further testing the OH between 11.6mm and 9.6mm.
Fig. 12
Fig. 12 Resolutions spaces from Eqs. (1) and (2) respectively. (a) resolution space of VRR; (b) resolution space of MSFs.
Fig. 13
Fig. 13 Optimization experiments. (a) removal depth; (b) one example of texture; (c) edge zone and bulk area; (d) one example of MSFs examination. There were 3 supports underneath the segment for interferometry.
Fig. 14
Fig. 14 Error map of a grolishing surface by using the optimized parameters in section 5. The software can calculate the error of the grolished surface was PV = 0.81μm and RMS = 0.17μm.

Tables (6)

Tables Icon

Table 1 The L8 of the Taguchi method for screening experiment to determine significant variables. Note that edge and MSFs were scaled by their respective removal depths to merit the comparison of each variable effect.

Tables Icon

Table 2 Summary of significant variables from ANOVA.

Tables Icon

Table 3 23 full factorial design to evaluate significant variables for VRR and texture.

Tables Icon

Table 4 Comparison of the predicted data and experimental data.

Tables Icon

Table 5 L9 experimental design to control MSFs.

Tables Icon

Table 6 Optimization experiment-statistics for each response; repeatability R > 95%.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

VRR=-16.7+2.84×AS-0.0181×L+0.0113×S+0.00122×AS×L+0.000025×L×S+ 0.00000017×AS×L×S
Texture=7.34+34.8×AS+0.133×L+0.191×S0.00444×L×S
MSF=16.3+0.0675× S0.0173×TF+0.0259×L

Metrics