Abstract

In this paper, we present a novel accelerometer based on the Sagnac interferometer configuration using a polarization-maintaining photonic crystal fiber (PM-PCF), which has a sensitivity of ~8 pm/G, and a resonant frequency exceeding 2.5 kHz. The proposed accelerometer is capable of functioning with a constant sensitivity in a large frequency range from 0 to 1 kHz which is much wider than many FBG-based accelerometers. Experimental results obtained from a field test in railway monitoring, demonstrate a broader frequency range for the proposed accelerometer compared to that of the FBG based accelerometer and is comparable to the conventional piezoelectric sensor. The abrupt change in the acceleration measured by the sensor aids in locating any defect or crack present on the railway track. To the best of our knowledge, this is the first demonstration of an accelerometer based on a fiber interferometer aimed for the railway industry. The proposed accelerometer operating at high accelerations (>40 G) and capable of functioning at a broad frequency range, shows significant potential in being used in applications which require detection of strong and fast vibrations, especially in structural health monitoring of trains and railway tracks in real time.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two-dimensional vector accelerometer based on Bragg gratings inscribed in a multi-core fiber

Jingxian Cui, Zhengyong Liu, Dinusha Serandi Gunawardena, Zhiyong Zhao, and Hwa-Yaw Tam
Opt. Express 27(15) 20848-20856 (2019)

Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer

H. Y. Fu, H. Y. Tam, Li-Yang Shao, Xinyong Dong, P. K. A. Wai, C. Lu, and Sunil K. Khijwania
Appl. Opt. 47(15) 2835-2839 (2008)

Medium-high frequency FBG accelerometer with integrative matrix structure

Yutang Dai, Guanglin Yin, Bin Liu, Gang Xu, and Joseph Muna Karanja
Appl. Opt. 54(11) 3115-3121 (2015)

References

  • View by:
  • |
  • |
  • |

  1. X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
    [Crossref]
  2. W. J. Bock, “High-Pressure Polarimetric Sensor Using Birefringent Optical Fibers,” IEEE Trans. Instrum. Meas. 39(1), 233–237 (1990).
    [Crossref]
  3. P. Zu, C. C. Chan, Y. Jin, Y. Zhang, and X. Dong, “Fabrication of a temperature-insensitive transverse mechanical load sensor by using a photonic crystal fiber-based Sagnac loop,” Meas. Sci. Technol. 22(2), 025204 (2011).
    [Crossref]
  4. F. Zhang, S. Liu, Y. Wang, Y. Huang, X. Xu, C. Fu, T. Wu, C. Liao, and Y. Wang, “Highly sensitive torsion sensor based on directional coupling in twisted photonic crystal fiber,” Appl. Phys. Express 11(4), 042501 (2018).
    [Crossref]
  5. K. Chah, N. Linze, C. Caucheteur, P. Mégret, P. Tihon, O. Verlinden, S. Sulejmani, T. Geernaert, F. Berghmans, H. Thienpont, and M. Wuilpart, “Temperature-insensitive polarimetric vibration sensor based on HiBi microstructured optical fiber,” Appl. Opt. 51(25), 6130–6138 (2012).
    [Crossref] [PubMed]
  6. H. Y. Tam, S. Y. Liu, S. L. Ho, and T. K. Ho, “Fiber Bragg Grating Sensors for Railway Systems,” in Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation, A. Cusano and A. Cutolo, eds. (BENTHAM SCIENCE PUBLISHERS, 2012), pp. 197–217.
  7. Q. Rong, X. Qiao, T. Guo, W. Bao, D. Su, and H. Yang, “Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding,” Opt. Lett. 39(23), 6616–6619 (2014).
    [Crossref] [PubMed]
  8. Y. Dai, G. Yin, B. Liu, G. Xu, and J. M. Karanja, “Medium-high frequency FBG accelerometer with integrative matrix structure,” Appl. Opt. 54(11), 3115–3121 (2015).
    [Crossref] [PubMed]
  9. N. Basumallick, I. Chatterjee, P. Biswas, K. Dasgupta, and S. Bandyopadhyay, “Fiber Bragg grating accelerometer with enhanced sensitivity,” Sens. Actuators A Phys. 173(1), 108–115 (2012).
    [Crossref]
  10. M. S. Muller, T. C. Buck, and A. W. Koch, “Fiber Bragg grating-based acceleration sensor,” in 2009 International Symposium on Optomechatronic Technologies (IEEE, 2009), pp. 127–132.
    [Crossref]
  11. N. Basumallick, P. Biswas, K. Dasgupta, and S. Bandyopadhyay, “Design optimization of fiber Bragg grating accelerometer for maximum sensitivity,” Sens. Actuators A Phys. 194, 31–39 (2013).
    [Crossref]
  12. J. Wang, Y. Zeng, C. Lin, Z. Hu, G. Peng, and Y. Hu, “A Miniaturized FBG Accelerometer Based on a Thin Polyurethane Shell,” IEEE Sens. J. 16(5), 1210–1216 (2016).
    [Crossref]
  13. Q. P. Liu, X. G. Qiao, J. L. Zhao, Z. A. Jia, H. Gao, and M. Shao, “Novel fiber bragg grating accelerometer based on diaphragm,” IEEE Sens. J. 12(10), 3000–3004 (2012).
    [Crossref]
  14. Y. Duo, H. Xiangge, L. Fei, G. Lijuan, Z. Min, Q. Xiaokang, and Y. Han, “Self-suppression of common-mode noises of the different fiber optic interferometric accelerometers,” Opt. Express 26(12), 15384–15397 (2018).
    [Crossref] [PubMed]
  15. T. Ke, T. Zhu, Y. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Pérot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52(11), 2531–2535 (2010).
    [Crossref]
  16. S. Liu, H. Tam, and K. Lee, “Optical fibre networks facilitate shift to predictive maintenance,” Int. Railw. J. 57, 38–40 (2018).
  17. S. J. Buggy, S. James, S. Staines, R. Carroll, P. Kitson, D. Farrington, L. Drewett, J. Jaiswal, and R. P. Tatam, “Railway track component condition monitoring using optical fibre Bragg grating sensors,” Meas. Sci. Technol. 27(5), 055201 (2016).
    [Crossref]
  18. D. Kinet, C. Caucheteur, G. Kouroussis, V. Moeyaert, and K. Yüksel, “Railway monitoring system using optical fiber grating accelerometers,” Smart Mater. Struct. 27(10), 105033 (2018).
    [Crossref]
  19. A. Amini, M. Entezami, and M. Papaelias, “Onboard detection of railway axle bearing defects using envelope analysis of high frequency acoustic emission signals,” Case Stud. Nondestruct. Test. Eval. 6, 8–16 (2016).
    [Crossref]
  20. “ http://www.micronoptics.com/product/accelerometer-os7100/ ,”.
  21. X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed Fiber-Optic Sensors for Vibration Detection,” Sensors (Basel) 16(8), 1164 (2016).
    [Crossref] [PubMed]
  22. S. Wu, L. Wang, X. Chen, and B. Zhou, “Flexible Optical Fiber Fabry-Perot Interferometer based Acoustic and Mechanical Vibration Sensor,” J. Lit. Technol. 36(11), 2216–2221 (2018).
    [Crossref]
  23. J. Villatoro, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Interferometer based on strongly coupled multi-core optical fiber for accurate vibration sensing,” Opt. Express 25(21), 25734–25740 (2017).
    [Crossref] [PubMed]
  24. Q. Rong, T. Guo, W. Bao, Z. Shao, G. D. Peng, and X. Qiao, “Highly sensitive fiber-optic accelerometer by grating inscription in specific core dip fiber,” Sci. Rep. 7(1), 11856 (2017).
    [Crossref] [PubMed]
  25. Z. Liu, M.-L. V. Tse, C. Wu, D. Chen, C. Lu, and H.-Y. Tam, “Intermodal coupling of supermodes in a twin-core photonic crystal fiber and its application as a pressure sensor,” Opt. Express 20(19), 21749–21757 (2012).
    [Crossref] [PubMed]
  26. Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt. 44(12), 2382–2390 (2005).
    [Crossref] [PubMed]
  27. Z. Liu, H.-Y. Tam, L. Htein, M.-L. V. Tse, and C. Lu, “Microstructured Optical Fiber Sensors,” J. Lit. Technol. 35(16), 3425–3439 (2017).
    [Crossref]
  28. Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2012).
    [Crossref]
  29. K. Li, T. H. T. Chan, M. H. Yau, T. Nguyen, D. P. Thambiratnam, and H. Y. Tam, “Very sensitive fiber Bragg grating accelerometer using transverse forces with an easy over-range protection and low cross axial sensitivity,” Appl. Opt. 52(25), 6401–6410 (2013).
    [Crossref] [PubMed]
  30. J. Wang, G. Peng, Z. Hu, H. Yang, and Y. Hu, “Design and analysis of a high sensitivity FBG accelerometer based on local strain amplification,” IEEE Sens. J. 15(10), 5442–5449 (2015).
    [Crossref]
  31. H. Y. Fu, H. Y. Tam, L.-Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47(15), 2835–2839 (2008).
    [Crossref] [PubMed]
  32. S. L. Grassie, “Characteristics, causes, and treatments,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 223(6), 581–596 (2009).
    [Crossref]

2018 (5)

F. Zhang, S. Liu, Y. Wang, Y. Huang, X. Xu, C. Fu, T. Wu, C. Liao, and Y. Wang, “Highly sensitive torsion sensor based on directional coupling in twisted photonic crystal fiber,” Appl. Phys. Express 11(4), 042501 (2018).
[Crossref]

Y. Duo, H. Xiangge, L. Fei, G. Lijuan, Z. Min, Q. Xiaokang, and Y. Han, “Self-suppression of common-mode noises of the different fiber optic interferometric accelerometers,” Opt. Express 26(12), 15384–15397 (2018).
[Crossref] [PubMed]

S. Liu, H. Tam, and K. Lee, “Optical fibre networks facilitate shift to predictive maintenance,” Int. Railw. J. 57, 38–40 (2018).

D. Kinet, C. Caucheteur, G. Kouroussis, V. Moeyaert, and K. Yüksel, “Railway monitoring system using optical fiber grating accelerometers,” Smart Mater. Struct. 27(10), 105033 (2018).
[Crossref]

S. Wu, L. Wang, X. Chen, and B. Zhou, “Flexible Optical Fiber Fabry-Perot Interferometer based Acoustic and Mechanical Vibration Sensor,” J. Lit. Technol. 36(11), 2216–2221 (2018).
[Crossref]

2017 (3)

J. Villatoro, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Interferometer based on strongly coupled multi-core optical fiber for accurate vibration sensing,” Opt. Express 25(21), 25734–25740 (2017).
[Crossref] [PubMed]

Q. Rong, T. Guo, W. Bao, Z. Shao, G. D. Peng, and X. Qiao, “Highly sensitive fiber-optic accelerometer by grating inscription in specific core dip fiber,” Sci. Rep. 7(1), 11856 (2017).
[Crossref] [PubMed]

Z. Liu, H.-Y. Tam, L. Htein, M.-L. V. Tse, and C. Lu, “Microstructured Optical Fiber Sensors,” J. Lit. Technol. 35(16), 3425–3439 (2017).
[Crossref]

2016 (4)

A. Amini, M. Entezami, and M. Papaelias, “Onboard detection of railway axle bearing defects using envelope analysis of high frequency acoustic emission signals,” Case Stud. Nondestruct. Test. Eval. 6, 8–16 (2016).
[Crossref]

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed Fiber-Optic Sensors for Vibration Detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

S. J. Buggy, S. James, S. Staines, R. Carroll, P. Kitson, D. Farrington, L. Drewett, J. Jaiswal, and R. P. Tatam, “Railway track component condition monitoring using optical fibre Bragg grating sensors,” Meas. Sci. Technol. 27(5), 055201 (2016).
[Crossref]

J. Wang, Y. Zeng, C. Lin, Z. Hu, G. Peng, and Y. Hu, “A Miniaturized FBG Accelerometer Based on a Thin Polyurethane Shell,” IEEE Sens. J. 16(5), 1210–1216 (2016).
[Crossref]

2015 (2)

Y. Dai, G. Yin, B. Liu, G. Xu, and J. M. Karanja, “Medium-high frequency FBG accelerometer with integrative matrix structure,” Appl. Opt. 54(11), 3115–3121 (2015).
[Crossref] [PubMed]

J. Wang, G. Peng, Z. Hu, H. Yang, and Y. Hu, “Design and analysis of a high sensitivity FBG accelerometer based on local strain amplification,” IEEE Sens. J. 15(10), 5442–5449 (2015).
[Crossref]

2014 (1)

2013 (2)

N. Basumallick, P. Biswas, K. Dasgupta, and S. Bandyopadhyay, “Design optimization of fiber Bragg grating accelerometer for maximum sensitivity,” Sens. Actuators A Phys. 194, 31–39 (2013).
[Crossref]

K. Li, T. H. T. Chan, M. H. Yau, T. Nguyen, D. P. Thambiratnam, and H. Y. Tam, “Very sensitive fiber Bragg grating accelerometer using transverse forces with an easy over-range protection and low cross axial sensitivity,” Appl. Opt. 52(25), 6401–6410 (2013).
[Crossref] [PubMed]

2012 (5)

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2012).
[Crossref]

Z. Liu, M.-L. V. Tse, C. Wu, D. Chen, C. Lu, and H.-Y. Tam, “Intermodal coupling of supermodes in a twin-core photonic crystal fiber and its application as a pressure sensor,” Opt. Express 20(19), 21749–21757 (2012).
[Crossref] [PubMed]

N. Basumallick, I. Chatterjee, P. Biswas, K. Dasgupta, and S. Bandyopadhyay, “Fiber Bragg grating accelerometer with enhanced sensitivity,” Sens. Actuators A Phys. 173(1), 108–115 (2012).
[Crossref]

K. Chah, N. Linze, C. Caucheteur, P. Mégret, P. Tihon, O. Verlinden, S. Sulejmani, T. Geernaert, F. Berghmans, H. Thienpont, and M. Wuilpart, “Temperature-insensitive polarimetric vibration sensor based on HiBi microstructured optical fiber,” Appl. Opt. 51(25), 6130–6138 (2012).
[Crossref] [PubMed]

Q. P. Liu, X. G. Qiao, J. L. Zhao, Z. A. Jia, H. Gao, and M. Shao, “Novel fiber bragg grating accelerometer based on diaphragm,” IEEE Sens. J. 12(10), 3000–3004 (2012).
[Crossref]

2011 (1)

P. Zu, C. C. Chan, Y. Jin, Y. Zhang, and X. Dong, “Fabrication of a temperature-insensitive transverse mechanical load sensor by using a photonic crystal fiber-based Sagnac loop,” Meas. Sci. Technol. 22(2), 025204 (2011).
[Crossref]

2010 (1)

T. Ke, T. Zhu, Y. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Pérot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52(11), 2531–2535 (2010).
[Crossref]

2009 (1)

S. L. Grassie, “Characteristics, causes, and treatments,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 223(6), 581–596 (2009).
[Crossref]

2008 (1)

2007 (1)

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

2005 (1)

1990 (1)

W. J. Bock, “High-Pressure Polarimetric Sensor Using Birefringent Optical Fibers,” IEEE Trans. Instrum. Meas. 39(1), 233–237 (1990).
[Crossref]

Amezcua-Correa, R.

Amini, A.

A. Amini, M. Entezami, and M. Papaelias, “Onboard detection of railway axle bearing defects using envelope analysis of high frequency acoustic emission signals,” Case Stud. Nondestruct. Test. Eval. 6, 8–16 (2016).
[Crossref]

Antonio-Lopez, E.

Bai, Q.

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed Fiber-Optic Sensors for Vibration Detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

Bandyopadhyay, S.

N. Basumallick, P. Biswas, K. Dasgupta, and S. Bandyopadhyay, “Design optimization of fiber Bragg grating accelerometer for maximum sensitivity,” Sens. Actuators A Phys. 194, 31–39 (2013).
[Crossref]

N. Basumallick, I. Chatterjee, P. Biswas, K. Dasgupta, and S. Bandyopadhyay, “Fiber Bragg grating accelerometer with enhanced sensitivity,” Sens. Actuators A Phys. 173(1), 108–115 (2012).
[Crossref]

Bao, W.

Q. Rong, T. Guo, W. Bao, Z. Shao, G. D. Peng, and X. Qiao, “Highly sensitive fiber-optic accelerometer by grating inscription in specific core dip fiber,” Sci. Rep. 7(1), 11856 (2017).
[Crossref] [PubMed]

Q. Rong, X. Qiao, T. Guo, W. Bao, D. Su, and H. Yang, “Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding,” Opt. Lett. 39(23), 6616–6619 (2014).
[Crossref] [PubMed]

Basumallick, N.

N. Basumallick, P. Biswas, K. Dasgupta, and S. Bandyopadhyay, “Design optimization of fiber Bragg grating accelerometer for maximum sensitivity,” Sens. Actuators A Phys. 194, 31–39 (2013).
[Crossref]

N. Basumallick, I. Chatterjee, P. Biswas, K. Dasgupta, and S. Bandyopadhyay, “Fiber Bragg grating accelerometer with enhanced sensitivity,” Sens. Actuators A Phys. 173(1), 108–115 (2012).
[Crossref]

Berghmans, F.

Biswas, P.

N. Basumallick, P. Biswas, K. Dasgupta, and S. Bandyopadhyay, “Design optimization of fiber Bragg grating accelerometer for maximum sensitivity,” Sens. Actuators A Phys. 194, 31–39 (2013).
[Crossref]

N. Basumallick, I. Chatterjee, P. Biswas, K. Dasgupta, and S. Bandyopadhyay, “Fiber Bragg grating accelerometer with enhanced sensitivity,” Sens. Actuators A Phys. 173(1), 108–115 (2012).
[Crossref]

Bock, W. J.

W. J. Bock, “High-Pressure Polarimetric Sensor Using Birefringent Optical Fibers,” IEEE Trans. Instrum. Meas. 39(1), 233–237 (1990).
[Crossref]

Buck, T. C.

M. S. Muller, T. C. Buck, and A. W. Koch, “Fiber Bragg grating-based acceleration sensor,” in 2009 International Symposium on Optomechatronic Technologies (IEEE, 2009), pp. 127–132.
[Crossref]

Buggy, S. J.

S. J. Buggy, S. James, S. Staines, R. Carroll, P. Kitson, D. Farrington, L. Drewett, J. Jaiswal, and R. P. Tatam, “Railway track component condition monitoring using optical fibre Bragg grating sensors,” Meas. Sci. Technol. 27(5), 055201 (2016).
[Crossref]

Carroll, R.

S. J. Buggy, S. James, S. Staines, R. Carroll, P. Kitson, D. Farrington, L. Drewett, J. Jaiswal, and R. P. Tatam, “Railway track component condition monitoring using optical fibre Bragg grating sensors,” Meas. Sci. Technol. 27(5), 055201 (2016).
[Crossref]

Caucheteur, C.

Chah, K.

Chan, C. C.

P. Zu, C. C. Chan, Y. Jin, Y. Zhang, and X. Dong, “Fabrication of a temperature-insensitive transverse mechanical load sensor by using a photonic crystal fiber-based Sagnac loop,” Meas. Sci. Technol. 22(2), 025204 (2011).
[Crossref]

Chan, T. H. T.

Chatterjee, I.

N. Basumallick, I. Chatterjee, P. Biswas, K. Dasgupta, and S. Bandyopadhyay, “Fiber Bragg grating accelerometer with enhanced sensitivity,” Sens. Actuators A Phys. 173(1), 108–115 (2012).
[Crossref]

Chen, D.

Chen, X.

S. Wu, L. Wang, X. Chen, and B. Zhou, “Flexible Optical Fiber Fabry-Perot Interferometer based Acoustic and Mechanical Vibration Sensor,” J. Lit. Technol. 36(11), 2216–2221 (2018).
[Crossref]

Dai, Y.

Dasgupta, K.

N. Basumallick, P. Biswas, K. Dasgupta, and S. Bandyopadhyay, “Design optimization of fiber Bragg grating accelerometer for maximum sensitivity,” Sens. Actuators A Phys. 194, 31–39 (2013).
[Crossref]

N. Basumallick, I. Chatterjee, P. Biswas, K. Dasgupta, and S. Bandyopadhyay, “Fiber Bragg grating accelerometer with enhanced sensitivity,” Sens. Actuators A Phys. 173(1), 108–115 (2012).
[Crossref]

Deng, M.

T. Ke, T. Zhu, Y. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Pérot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52(11), 2531–2535 (2010).
[Crossref]

Dong, X.

P. Zu, C. C. Chan, Y. Jin, Y. Zhang, and X. Dong, “Fabrication of a temperature-insensitive transverse mechanical load sensor by using a photonic crystal fiber-based Sagnac loop,” Meas. Sci. Technol. 22(2), 025204 (2011).
[Crossref]

H. Y. Fu, H. Y. Tam, L.-Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47(15), 2835–2839 (2008).
[Crossref] [PubMed]

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt. 44(12), 2382–2390 (2005).
[Crossref] [PubMed]

Drewett, L.

S. J. Buggy, S. James, S. Staines, R. Carroll, P. Kitson, D. Farrington, L. Drewett, J. Jaiswal, and R. P. Tatam, “Railway track component condition monitoring using optical fibre Bragg grating sensors,” Meas. Sci. Technol. 27(5), 055201 (2016).
[Crossref]

Duo, Y.

Entezami, M.

A. Amini, M. Entezami, and M. Papaelias, “Onboard detection of railway axle bearing defects using envelope analysis of high frequency acoustic emission signals,” Case Stud. Nondestruct. Test. Eval. 6, 8–16 (2016).
[Crossref]

Farrington, D.

S. J. Buggy, S. James, S. Staines, R. Carroll, P. Kitson, D. Farrington, L. Drewett, J. Jaiswal, and R. P. Tatam, “Railway track component condition monitoring using optical fibre Bragg grating sensors,” Meas. Sci. Technol. 27(5), 055201 (2016).
[Crossref]

Fei, L.

Feng, X.

Feng, Z.

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2012).
[Crossref]

Fu, C.

F. Zhang, S. Liu, Y. Wang, Y. Huang, X. Xu, C. Fu, T. Wu, C. Liao, and Y. Wang, “Highly sensitive torsion sensor based on directional coupling in twisted photonic crystal fiber,” Appl. Phys. Express 11(4), 042501 (2018).
[Crossref]

Fu, H. Y.

Gao, H.

Q. P. Liu, X. G. Qiao, J. L. Zhao, Z. A. Jia, H. Gao, and M. Shao, “Novel fiber bragg grating accelerometer based on diaphragm,” IEEE Sens. J. 12(10), 3000–3004 (2012).
[Crossref]

Geernaert, T.

Grassie, S. L.

S. L. Grassie, “Characteristics, causes, and treatments,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 223(6), 581–596 (2009).
[Crossref]

Guo, T.

Q. Rong, T. Guo, W. Bao, Z. Shao, G. D. Peng, and X. Qiao, “Highly sensitive fiber-optic accelerometer by grating inscription in specific core dip fiber,” Sci. Rep. 7(1), 11856 (2017).
[Crossref] [PubMed]

Q. Rong, X. Qiao, T. Guo, W. Bao, D. Su, and H. Yang, “Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding,” Opt. Lett. 39(23), 6616–6619 (2014).
[Crossref] [PubMed]

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2012).
[Crossref]

Han, Y.

Htein, L.

Z. Liu, H.-Y. Tam, L. Htein, M.-L. V. Tse, and C. Lu, “Microstructured Optical Fiber Sensors,” J. Lit. Technol. 35(16), 3425–3439 (2017).
[Crossref]

Hu, M.

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2012).
[Crossref]

Hu, Y.

J. Wang, Y. Zeng, C. Lin, Z. Hu, G. Peng, and Y. Hu, “A Miniaturized FBG Accelerometer Based on a Thin Polyurethane Shell,” IEEE Sens. J. 16(5), 1210–1216 (2016).
[Crossref]

J. Wang, G. Peng, Z. Hu, H. Yang, and Y. Hu, “Design and analysis of a high sensitivity FBG accelerometer based on local strain amplification,” IEEE Sens. J. 15(10), 5442–5449 (2015).
[Crossref]

Hu, Z.

J. Wang, Y. Zeng, C. Lin, Z. Hu, G. Peng, and Y. Hu, “A Miniaturized FBG Accelerometer Based on a Thin Polyurethane Shell,” IEEE Sens. J. 16(5), 1210–1216 (2016).
[Crossref]

J. Wang, G. Peng, Z. Hu, H. Yang, and Y. Hu, “Design and analysis of a high sensitivity FBG accelerometer based on local strain amplification,” IEEE Sens. J. 15(10), 5442–5449 (2015).
[Crossref]

Huang, Y.

F. Zhang, S. Liu, Y. Wang, Y. Huang, X. Xu, C. Fu, T. Wu, C. Liao, and Y. Wang, “Highly sensitive torsion sensor based on directional coupling in twisted photonic crystal fiber,” Appl. Phys. Express 11(4), 042501 (2018).
[Crossref]

Jaiswal, J.

S. J. Buggy, S. James, S. Staines, R. Carroll, P. Kitson, D. Farrington, L. Drewett, J. Jaiswal, and R. P. Tatam, “Railway track component condition monitoring using optical fibre Bragg grating sensors,” Meas. Sci. Technol. 27(5), 055201 (2016).
[Crossref]

James, S.

S. J. Buggy, S. James, S. Staines, R. Carroll, P. Kitson, D. Farrington, L. Drewett, J. Jaiswal, and R. P. Tatam, “Railway track component condition monitoring using optical fibre Bragg grating sensors,” Meas. Sci. Technol. 27(5), 055201 (2016).
[Crossref]

Jia, Z. A.

Q. P. Liu, X. G. Qiao, J. L. Zhao, Z. A. Jia, H. Gao, and M. Shao, “Novel fiber bragg grating accelerometer based on diaphragm,” IEEE Sens. J. 12(10), 3000–3004 (2012).
[Crossref]

Jin, B.

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed Fiber-Optic Sensors for Vibration Detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

Jin, Y.

P. Zu, C. C. Chan, Y. Jin, Y. Zhang, and X. Dong, “Fabrication of a temperature-insensitive transverse mechanical load sensor by using a photonic crystal fiber-based Sagnac loop,” Meas. Sci. Technol. 22(2), 025204 (2011).
[Crossref]

Kai, G.

Karanja, J. M.

Ke, T.

T. Ke, T. Zhu, Y. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Pérot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52(11), 2531–2535 (2010).
[Crossref]

Khijwania, S. K.

Kinet, D.

D. Kinet, C. Caucheteur, G. Kouroussis, V. Moeyaert, and K. Yüksel, “Railway monitoring system using optical fiber grating accelerometers,” Smart Mater. Struct. 27(10), 105033 (2018).
[Crossref]

Kitson, P.

S. J. Buggy, S. James, S. Staines, R. Carroll, P. Kitson, D. Farrington, L. Drewett, J. Jaiswal, and R. P. Tatam, “Railway track component condition monitoring using optical fibre Bragg grating sensors,” Meas. Sci. Technol. 27(5), 055201 (2016).
[Crossref]

Koch, A. W.

M. S. Muller, T. C. Buck, and A. W. Koch, “Fiber Bragg grating-based acceleration sensor,” in 2009 International Symposium on Optomechatronic Technologies (IEEE, 2009), pp. 127–132.
[Crossref]

Kouroussis, G.

D. Kinet, C. Caucheteur, G. Kouroussis, V. Moeyaert, and K. Yüksel, “Railway monitoring system using optical fiber grating accelerometers,” Smart Mater. Struct. 27(10), 105033 (2018).
[Crossref]

Lee, K.

S. Liu, H. Tam, and K. Lee, “Optical fibre networks facilitate shift to predictive maintenance,” Int. Railw. J. 57, 38–40 (2018).

Li, K.

Liao, C.

F. Zhang, S. Liu, Y. Wang, Y. Huang, X. Xu, C. Fu, T. Wu, C. Liao, and Y. Wang, “Highly sensitive torsion sensor based on directional coupling in twisted photonic crystal fiber,” Appl. Phys. Express 11(4), 042501 (2018).
[Crossref]

Lijuan, G.

Lin, C.

J. Wang, Y. Zeng, C. Lin, Z. Hu, G. Peng, and Y. Hu, “A Miniaturized FBG Accelerometer Based on a Thin Polyurethane Shell,” IEEE Sens. J. 16(5), 1210–1216 (2016).
[Crossref]

Linze, N.

Liu, B.

Liu, Q. P.

Q. P. Liu, X. G. Qiao, J. L. Zhao, Z. A. Jia, H. Gao, and M. Shao, “Novel fiber bragg grating accelerometer based on diaphragm,” IEEE Sens. J. 12(10), 3000–3004 (2012).
[Crossref]

Liu, S.

F. Zhang, S. Liu, Y. Wang, Y. Huang, X. Xu, C. Fu, T. Wu, C. Liao, and Y. Wang, “Highly sensitive torsion sensor based on directional coupling in twisted photonic crystal fiber,” Appl. Phys. Express 11(4), 042501 (2018).
[Crossref]

S. Liu, H. Tam, and K. Lee, “Optical fibre networks facilitate shift to predictive maintenance,” Int. Railw. J. 57, 38–40 (2018).

Liu, X.

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed Fiber-Optic Sensors for Vibration Detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

Liu, Y.

Liu, Z.

Lu, C.

Mégret, P.

Min, Z.

Moeyaert, V.

D. Kinet, C. Caucheteur, G. Kouroussis, V. Moeyaert, and K. Yüksel, “Railway monitoring system using optical fiber grating accelerometers,” Smart Mater. Struct. 27(10), 105033 (2018).
[Crossref]

Muller, M. S.

M. S. Muller, T. C. Buck, and A. W. Koch, “Fiber Bragg grating-based acceleration sensor,” in 2009 International Symposium on Optomechatronic Technologies (IEEE, 2009), pp. 127–132.
[Crossref]

Nguyen, T.

Papaelias, M.

A. Amini, M. Entezami, and M. Papaelias, “Onboard detection of railway axle bearing defects using envelope analysis of high frequency acoustic emission signals,” Case Stud. Nondestruct. Test. Eval. 6, 8–16 (2016).
[Crossref]

Peng, G.

J. Wang, Y. Zeng, C. Lin, Z. Hu, G. Peng, and Y. Hu, “A Miniaturized FBG Accelerometer Based on a Thin Polyurethane Shell,” IEEE Sens. J. 16(5), 1210–1216 (2016).
[Crossref]

J. Wang, G. Peng, Z. Hu, H. Yang, and Y. Hu, “Design and analysis of a high sensitivity FBG accelerometer based on local strain amplification,” IEEE Sens. J. 15(10), 5442–5449 (2015).
[Crossref]

Peng, G. D.

Q. Rong, T. Guo, W. Bao, Z. Shao, G. D. Peng, and X. Qiao, “Highly sensitive fiber-optic accelerometer by grating inscription in specific core dip fiber,” Sci. Rep. 7(1), 11856 (2017).
[Crossref] [PubMed]

Qiao, X.

Q. Rong, T. Guo, W. Bao, Z. Shao, G. D. Peng, and X. Qiao, “Highly sensitive fiber-optic accelerometer by grating inscription in specific core dip fiber,” Sci. Rep. 7(1), 11856 (2017).
[Crossref] [PubMed]

Q. Rong, X. Qiao, T. Guo, W. Bao, D. Su, and H. Yang, “Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding,” Opt. Lett. 39(23), 6616–6619 (2014).
[Crossref] [PubMed]

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2012).
[Crossref]

Qiao, X. G.

Q. P. Liu, X. G. Qiao, J. L. Zhao, Z. A. Jia, H. Gao, and M. Shao, “Novel fiber bragg grating accelerometer based on diaphragm,” IEEE Sens. J. 12(10), 3000–3004 (2012).
[Crossref]

Rao, Y.

T. Ke, T. Zhu, Y. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Pérot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52(11), 2531–2535 (2010).
[Crossref]

Rong, Q.

Q. Rong, T. Guo, W. Bao, Z. Shao, G. D. Peng, and X. Qiao, “Highly sensitive fiber-optic accelerometer by grating inscription in specific core dip fiber,” Sci. Rep. 7(1), 11856 (2017).
[Crossref] [PubMed]

Q. Rong, X. Qiao, T. Guo, W. Bao, D. Su, and H. Yang, “Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding,” Opt. Lett. 39(23), 6616–6619 (2014).
[Crossref] [PubMed]

Schülzgen, A.

Shao, L.-Y.

Shao, M.

Q. P. Liu, X. G. Qiao, J. L. Zhao, Z. A. Jia, H. Gao, and M. Shao, “Novel fiber bragg grating accelerometer based on diaphragm,” IEEE Sens. J. 12(10), 3000–3004 (2012).
[Crossref]

Shao, Z.

Q. Rong, T. Guo, W. Bao, Z. Shao, G. D. Peng, and X. Qiao, “Highly sensitive fiber-optic accelerometer by grating inscription in specific core dip fiber,” Sci. Rep. 7(1), 11856 (2017).
[Crossref] [PubMed]

Shum, P.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Staines, S.

S. J. Buggy, S. James, S. Staines, R. Carroll, P. Kitson, D. Farrington, L. Drewett, J. Jaiswal, and R. P. Tatam, “Railway track component condition monitoring using optical fibre Bragg grating sensors,” Meas. Sci. Technol. 27(5), 055201 (2016).
[Crossref]

Su, D.

Sulejmani, S.

Tam, H.

S. Liu, H. Tam, and K. Lee, “Optical fibre networks facilitate shift to predictive maintenance,” Int. Railw. J. 57, 38–40 (2018).

Tam, H. Y.

Tam, H.-Y.

Tatam, R. P.

S. J. Buggy, S. James, S. Staines, R. Carroll, P. Kitson, D. Farrington, L. Drewett, J. Jaiswal, and R. P. Tatam, “Railway track component condition monitoring using optical fibre Bragg grating sensors,” Meas. Sci. Technol. 27(5), 055201 (2016).
[Crossref]

Thambiratnam, D. P.

Thienpont, H.

Tihon, P.

Tse, M.-L. V.

Verlinden, O.

Villatoro, J.

Wai, P. K. A.

Wang, D.

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed Fiber-Optic Sensors for Vibration Detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

Wang, J.

J. Wang, Y. Zeng, C. Lin, Z. Hu, G. Peng, and Y. Hu, “A Miniaturized FBG Accelerometer Based on a Thin Polyurethane Shell,” IEEE Sens. J. 16(5), 1210–1216 (2016).
[Crossref]

J. Wang, G. Peng, Z. Hu, H. Yang, and Y. Hu, “Design and analysis of a high sensitivity FBG accelerometer based on local strain amplification,” IEEE Sens. J. 15(10), 5442–5449 (2015).
[Crossref]

Wang, L.

S. Wu, L. Wang, X. Chen, and B. Zhou, “Flexible Optical Fiber Fabry-Perot Interferometer based Acoustic and Mechanical Vibration Sensor,” J. Lit. Technol. 36(11), 2216–2221 (2018).
[Crossref]

Wang, R.

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2012).
[Crossref]

Wang, Y.

F. Zhang, S. Liu, Y. Wang, Y. Huang, X. Xu, C. Fu, T. Wu, C. Liao, and Y. Wang, “Highly sensitive torsion sensor based on directional coupling in twisted photonic crystal fiber,” Appl. Phys. Express 11(4), 042501 (2018).
[Crossref]

F. Zhang, S. Liu, Y. Wang, Y. Huang, X. Xu, C. Fu, T. Wu, C. Liao, and Y. Wang, “Highly sensitive torsion sensor based on directional coupling in twisted photonic crystal fiber,” Appl. Phys. Express 11(4), 042501 (2018).
[Crossref]

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed Fiber-Optic Sensors for Vibration Detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed Fiber-Optic Sensors for Vibration Detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

Weng, Y.

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2012).
[Crossref]

Wu, C.

Wu, S.

S. Wu, L. Wang, X. Chen, and B. Zhou, “Flexible Optical Fiber Fabry-Perot Interferometer based Acoustic and Mechanical Vibration Sensor,” J. Lit. Technol. 36(11), 2216–2221 (2018).
[Crossref]

Wu, T.

F. Zhang, S. Liu, Y. Wang, Y. Huang, X. Xu, C. Fu, T. Wu, C. Liao, and Y. Wang, “Highly sensitive torsion sensor based on directional coupling in twisted photonic crystal fiber,” Appl. Phys. Express 11(4), 042501 (2018).
[Crossref]

Wuilpart, M.

Xiangge, H.

Xiaokang, Q.

Xu, G.

Xu, X.

F. Zhang, S. Liu, Y. Wang, Y. Huang, X. Xu, C. Fu, T. Wu, C. Liao, and Y. Wang, “Highly sensitive torsion sensor based on directional coupling in twisted photonic crystal fiber,” Appl. Phys. Express 11(4), 042501 (2018).
[Crossref]

Yang, H.

J. Wang, G. Peng, Z. Hu, H. Yang, and Y. Hu, “Design and analysis of a high sensitivity FBG accelerometer based on local strain amplification,” IEEE Sens. J. 15(10), 5442–5449 (2015).
[Crossref]

Q. Rong, X. Qiao, T. Guo, W. Bao, D. Su, and H. Yang, “Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding,” Opt. Lett. 39(23), 6616–6619 (2014).
[Crossref] [PubMed]

Yau, M. H.

Yin, G.

Yuan, S.

Yüksel, K.

D. Kinet, C. Caucheteur, G. Kouroussis, V. Moeyaert, and K. Yüksel, “Railway monitoring system using optical fiber grating accelerometers,” Smart Mater. Struct. 27(10), 105033 (2018).
[Crossref]

Zeng, Y.

J. Wang, Y. Zeng, C. Lin, Z. Hu, G. Peng, and Y. Hu, “A Miniaturized FBG Accelerometer Based on a Thin Polyurethane Shell,” IEEE Sens. J. 16(5), 1210–1216 (2016).
[Crossref]

Zhang, F.

F. Zhang, S. Liu, Y. Wang, Y. Huang, X. Xu, C. Fu, T. Wu, C. Liao, and Y. Wang, “Highly sensitive torsion sensor based on directional coupling in twisted photonic crystal fiber,” Appl. Phys. Express 11(4), 042501 (2018).
[Crossref]

Zhang, J.

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2012).
[Crossref]

Zhang, W.

Zhang, Y.

P. Zu, C. C. Chan, Y. Jin, Y. Zhang, and X. Dong, “Fabrication of a temperature-insensitive transverse mechanical load sensor by using a photonic crystal fiber-based Sagnac loop,” Meas. Sci. Technol. 22(2), 025204 (2011).
[Crossref]

Zhao, J. L.

Q. P. Liu, X. G. Qiao, J. L. Zhao, Z. A. Jia, H. Gao, and M. Shao, “Novel fiber bragg grating accelerometer based on diaphragm,” IEEE Sens. J. 12(10), 3000–3004 (2012).
[Crossref]

Zhou, B.

S. Wu, L. Wang, X. Chen, and B. Zhou, “Flexible Optical Fiber Fabry-Perot Interferometer based Acoustic and Mechanical Vibration Sensor,” J. Lit. Technol. 36(11), 2216–2221 (2018).
[Crossref]

Zhou, G.

Zhu, T.

T. Ke, T. Zhu, Y. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Pérot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52(11), 2531–2535 (2010).
[Crossref]

Zu, P.

P. Zu, C. C. Chan, Y. Jin, Y. Zhang, and X. Dong, “Fabrication of a temperature-insensitive transverse mechanical load sensor by using a photonic crystal fiber-based Sagnac loop,” Meas. Sci. Technol. 22(2), 025204 (2011).
[Crossref]

Zubia, J.

Appl. Opt. (5)

Appl. Phys. Express (1)

F. Zhang, S. Liu, Y. Wang, Y. Huang, X. Xu, C. Fu, T. Wu, C. Liao, and Y. Wang, “Highly sensitive torsion sensor based on directional coupling in twisted photonic crystal fiber,” Appl. Phys. Express 11(4), 042501 (2018).
[Crossref]

Appl. Phys. Lett. (1)

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Case Stud. Nondestruct. Test. Eval. (1)

A. Amini, M. Entezami, and M. Papaelias, “Onboard detection of railway axle bearing defects using envelope analysis of high frequency acoustic emission signals,” Case Stud. Nondestruct. Test. Eval. 6, 8–16 (2016).
[Crossref]

IEEE Sens. J. (4)

J. Wang, Y. Zeng, C. Lin, Z. Hu, G. Peng, and Y. Hu, “A Miniaturized FBG Accelerometer Based on a Thin Polyurethane Shell,” IEEE Sens. J. 16(5), 1210–1216 (2016).
[Crossref]

Q. P. Liu, X. G. Qiao, J. L. Zhao, Z. A. Jia, H. Gao, and M. Shao, “Novel fiber bragg grating accelerometer based on diaphragm,” IEEE Sens. J. 12(10), 3000–3004 (2012).
[Crossref]

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2012).
[Crossref]

J. Wang, G. Peng, Z. Hu, H. Yang, and Y. Hu, “Design and analysis of a high sensitivity FBG accelerometer based on local strain amplification,” IEEE Sens. J. 15(10), 5442–5449 (2015).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

W. J. Bock, “High-Pressure Polarimetric Sensor Using Birefringent Optical Fibers,” IEEE Trans. Instrum. Meas. 39(1), 233–237 (1990).
[Crossref]

Int. Railw. J. (1)

S. Liu, H. Tam, and K. Lee, “Optical fibre networks facilitate shift to predictive maintenance,” Int. Railw. J. 57, 38–40 (2018).

J. Lit. Technol. (2)

Z. Liu, H.-Y. Tam, L. Htein, M.-L. V. Tse, and C. Lu, “Microstructured Optical Fiber Sensors,” J. Lit. Technol. 35(16), 3425–3439 (2017).
[Crossref]

S. Wu, L. Wang, X. Chen, and B. Zhou, “Flexible Optical Fiber Fabry-Perot Interferometer based Acoustic and Mechanical Vibration Sensor,” J. Lit. Technol. 36(11), 2216–2221 (2018).
[Crossref]

Meas. Sci. Technol. (2)

S. J. Buggy, S. James, S. Staines, R. Carroll, P. Kitson, D. Farrington, L. Drewett, J. Jaiswal, and R. P. Tatam, “Railway track component condition monitoring using optical fibre Bragg grating sensors,” Meas. Sci. Technol. 27(5), 055201 (2016).
[Crossref]

P. Zu, C. C. Chan, Y. Jin, Y. Zhang, and X. Dong, “Fabrication of a temperature-insensitive transverse mechanical load sensor by using a photonic crystal fiber-based Sagnac loop,” Meas. Sci. Technol. 22(2), 025204 (2011).
[Crossref]

Microw. Opt. Technol. Lett. (1)

T. Ke, T. Zhu, Y. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Pérot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52(11), 2531–2535 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit (1)

S. L. Grassie, “Characteristics, causes, and treatments,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 223(6), 581–596 (2009).
[Crossref]

Sci. Rep. (1)

Q. Rong, T. Guo, W. Bao, Z. Shao, G. D. Peng, and X. Qiao, “Highly sensitive fiber-optic accelerometer by grating inscription in specific core dip fiber,” Sci. Rep. 7(1), 11856 (2017).
[Crossref] [PubMed]

Sens. Actuators A Phys. (2)

N. Basumallick, I. Chatterjee, P. Biswas, K. Dasgupta, and S. Bandyopadhyay, “Fiber Bragg grating accelerometer with enhanced sensitivity,” Sens. Actuators A Phys. 173(1), 108–115 (2012).
[Crossref]

N. Basumallick, P. Biswas, K. Dasgupta, and S. Bandyopadhyay, “Design optimization of fiber Bragg grating accelerometer for maximum sensitivity,” Sens. Actuators A Phys. 194, 31–39 (2013).
[Crossref]

Sensors (Basel) (1)

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed Fiber-Optic Sensors for Vibration Detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

Smart Mater. Struct. (1)

D. Kinet, C. Caucheteur, G. Kouroussis, V. Moeyaert, and K. Yüksel, “Railway monitoring system using optical fiber grating accelerometers,” Smart Mater. Struct. 27(10), 105033 (2018).
[Crossref]

Other (3)

“ http://www.micronoptics.com/product/accelerometer-os7100/ ,”.

M. S. Muller, T. C. Buck, and A. W. Koch, “Fiber Bragg grating-based acceleration sensor,” in 2009 International Symposium on Optomechatronic Technologies (IEEE, 2009), pp. 127–132.
[Crossref]

H. Y. Tam, S. Y. Liu, S. L. Ho, and T. K. Ho, “Fiber Bragg Grating Sensors for Railway Systems,” in Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation, A. Cusano and A. Cutolo, eds. (BENTHAM SCIENCE PUBLISHERS, 2012), pp. 197–217.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic figure of the accelerometer based on a Sagnac interferometer using a polarization-maintaining photonic crystal fiber (PM-PCF), and (b) the measured interference spectrum of the sensor using a fiber length of ~0.35 m.
Fig. 2
Fig. 2 Simulation results of the phase birefringence of PM-PCF when applying the lateral force along the (a) fast axis and (b) slow axis, and the experimental results of the wavelength shift with respect to the applied force directed towards (c) fast axis and (d) slow axis.
Fig. 3
Fig. 3 (a) Calculated wavelength shift of the accelerometer for a vibration of 20 G at a frequency of 500 Hz (η = 1) and (b) the corresponding fast Fourier transform spectrum of the time domain signal.
Fig. 4
Fig. 4 Experimental setup used to characterize the performance of the proposed accelerometer.
Fig. 5
Fig. 5 (a) Experimentally measured wavelength shifts of the accelerometer during vibration at a frequency of 500 Hz and accelerations of 8, 12 and 16 G (b) the fast Fourier transform spectrum of the time-domain signal at frequencies of 100, 400, 700, and 1000 Hz.
Fig. 6
Fig. 6 (a) Measured responses of the accelerometer for a frequency range of 100-800 Hz with sensitivities varying from 7.8 pm/G to 8.5 pm/G, and (b) the measured sensitivity (dB ref 8 pm/G) with respect to the frequency, where the resonant frequency is beyond 2.5 kHz. Inset shows the simulated total displacement at eigenfrequency of 3216 Hz as a reference.
Fig. 7
Fig. 7 Schematic figure of the PM-PCF, FBG and piezo based accelerometers installed on the train, insets show the exact location.
Fig. 8
Fig. 8 Measured acceleration using the FBG, PM-PCF and piezo based accelerometers between stations.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R 1+cosδ 2 ,
Δλ= λ G(F) ΔB(F),

Metrics