Abstract

We proposed a refractive index (RI) sensing method with temperature compensation by using an optical frequency comb (OFC) sensing cavity including a multimode-interference (MMI) fiber, namely, the MMI-OFC sensing cavity. The MMI-OFC sensing cavity enables simultaneous measurement of material-dependent RI and sample temperature by decoding from the comb spacing frequency shift and the wavelength shift of the OFC. We realized the simultaneous and continuous measurement of RI-related concentration of a liquid sample and its temperature with precisions of 1.6 × 10−4 RIU and 0.08 °C. The proposed method would be a useful means for the various applications based on RI sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

18 July 2019: Typographical corrections were made to the body text.


OSA Recommended Articles
Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor

Ryo Oe, Shuji Taue, Takeo Minamikawa, Kosuke Nagai, Kyuki Shibuya, Takahiko Mizuno, Masatomo Yamagiwa, Yasuhiro Mizutani, Hirotsugu Yamamoto, Tetsuo Iwata, Hideki Fukano, Yoshiaki Nakajima, Kaoru Minoshima, and Takeshi Yasui
Opt. Express 26(15) 19694-19706 (2018)

Strain sensing based on strain to radio-frequency conversion of optical frequency comb

Takeo Minamikawa, Takashi Ogura, Yoshiaki Nakajima, Eiji Hase, Yasuhiro Mizutani, Hirotsugu Yamamoto, Kaoru Minoshima, and Takeshi Yasui
Opt. Express 26(8) 9484-9491 (2018)

Dual parameter fiber-integrated sensor for refractive index and temperature measurement based on Fabry–Perot micro-resonators

Sergiy Suntsov, Christian E. Rüter, and Detlef Kip
Appl. Opt. 58(8) 2076-2080 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. Budwig, “Refractive index matching methods for liquid flow investigations,” Exp. Fluids 17(5), 350–355 (1994).
    [Crossref]
  2. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
    [Crossref] [PubMed]
  3. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [Crossref] [PubMed]
  4. S. K. Chauhan, N. Punjabi, D. K. Sharma, and S. Mukherji, “A silicon nitride coated LSPR based fiber-optic probe for possible continuous monitoring of sucrose content in fruit juices,” Sens. Actuators B Chem. 222, 1240–1250 (2016).
    [Crossref]
  5. B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
    [Crossref]
  6. J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express 16(25), 20834–20847 (2008).
    [Crossref] [PubMed]
  7. D. Monzón-Hernández and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B Chem. 115(1), 227–231 (2006).
    [Crossref]
  8. G. Yin, S. Lou, and H. Zou, “Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section,” Opt. Laser Technol. 45, 294–300 (2013).
    [Crossref]
  9. H. Fukano, T. Aiga, and S. Taue, “High-sensitivity fiber-optic refractive index sensor based on multimode interference using small-core single-mode fiber for biosensing,” Jpn. J. Appl. Phys. 53(4S), 04EL08 (2014).
    [Crossref]
  10. Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, Q. Ding, and S. Jian, “Refractive index and temperature sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 6800309 (2018).
    [Crossref]
  11. J. Zhang, Q. Sun, R. Liang, J. Wo, D. Liu, and P. Shum, “Microfiber Fabry-Perot interferometer fabricated by taper-drawing technique and its application as a radio frequency interrogated refractive index sensor,” Opt. Lett. 37(14), 2925–2927 (2012).
    [Crossref] [PubMed]
  12. L. Stern, A. Naiman, G. Keinan, N. Mazurski, M. Grajower, and U. Levy, “Ultra-precise optical to radio frequency based chip-scale refractive index and temperature sensor,” Optica 4(1), 1–7 (2017).
    [Crossref]
  13. R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
    [Crossref] [PubMed]
  14. R. Oe, T. Minamikawa, S. Taue, T. Nakahara, H. Koresawa, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, Y. Nakajima, K. Minoshima, and T. Yasui, “Improvement of dynamic range and repeatability in a refractive-index-sensing optical comb by combining saturable-absorber-mirror mode-locking with an intracavity multimode interference fiber sensor,” Jpn. J. Appl. Phys. 58(6), 060912 (2019).
    [Crossref]
  15. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
    [Crossref] [PubMed]
  16. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  17. M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
    [Crossref] [PubMed]
  18. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
    [Crossref] [PubMed]
  19. A. Asahara, A. Nishiyama, S. Yoshida, K. I. Kondo, Y. Nakajima, and K. Minoshima, “Dual-comb spectroscopy for rapid characterization of complex optical properties of solids,” Opt. Lett. 41(21), 4971–4974 (2016).
    [Crossref] [PubMed]
  20. T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
    [Crossref] [PubMed]
  21. N. Kuse, A. Ozawa, and Y. Kobayashi, “Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy,” Opt. Express 21(9), 11141–11149 (2013).
    [Crossref] [PubMed]
  22. T. Minamikawa, T. Ogura, Y. Nakajima, E. Hase, Y. Mizutani, H. Yamamoto, K. Minoshima, and T. Yasui, “Strain sensing based on strain to radio-frequency conversion of optical frequency comb,” Opt. Express 26(8), 9484–9491 (2018).
    [Crossref] [PubMed]
  23. T. Minamikawa, T. Masuoka, T. Ogura, K. Shibuya, R. Oe, E. Hase, Y. Nakajima, Y. Yamaoka, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, K. Minoshima, and T. Yasui, “Ultrasonic wave sensing using an optical-frequency-comb sensing cavity for photoacoustic imaging,” OSA Continuum 2(2), 439–449 (2019).
    [Crossref]
  24. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
    [Crossref] [PubMed]
  25. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  26. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
    [Crossref] [PubMed]
  27. E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5(5), 634–643 (2018).
    [Crossref]
  28. E. Hase, T. Minamikawa, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-Less, Kilo-Pixel, Line-Field Confocal Phase Imaging with Spectrally Encoded Dual-Comb Microscopy,” IEEE J. Sel. Top. Quant. 25(1), 2879017 (2019).
    [Crossref]
  29. K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
    [Crossref] [PubMed]
  30. T. Kato, M. Uchida, and K. Minoshima, “No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb,” Sci. Rep. 7(1), 3670 (2017).
    [Crossref] [PubMed]
  31. J. V. Herráez and R. Belda, “Refractive indices, densities and excess molar volumes of monoalcohols + water,” J. Solution Chem. 35(9), 1315–1328 (2006).
    [Crossref]
  32. A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003).
    [Crossref]

2019 (3)

E. Hase, T. Minamikawa, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-Less, Kilo-Pixel, Line-Field Confocal Phase Imaging with Spectrally Encoded Dual-Comb Microscopy,” IEEE J. Sel. Top. Quant. 25(1), 2879017 (2019).
[Crossref]

R. Oe, T. Minamikawa, S. Taue, T. Nakahara, H. Koresawa, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, Y. Nakajima, K. Minoshima, and T. Yasui, “Improvement of dynamic range and repeatability in a refractive-index-sensing optical comb by combining saturable-absorber-mirror mode-locking with an intracavity multimode interference fiber sensor,” Jpn. J. Appl. Phys. 58(6), 060912 (2019).
[Crossref]

T. Minamikawa, T. Masuoka, T. Ogura, K. Shibuya, R. Oe, E. Hase, Y. Nakajima, Y. Yamaoka, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, K. Minoshima, and T. Yasui, “Ultrasonic wave sensing using an optical-frequency-comb sensing cavity for photoacoustic imaging,” OSA Continuum 2(2), 439–449 (2019).
[Crossref]

2018 (4)

2017 (4)

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

T. Kato, M. Uchida, and K. Minoshima, “No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb,” Sci. Rep. 7(1), 3670 (2017).
[Crossref] [PubMed]

L. Stern, A. Naiman, G. Keinan, N. Mazurski, M. Grajower, and U. Levy, “Ultra-precise optical to radio frequency based chip-scale refractive index and temperature sensor,” Optica 4(1), 1–7 (2017).
[Crossref]

K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
[Crossref] [PubMed]

2016 (2)

A. Asahara, A. Nishiyama, S. Yoshida, K. I. Kondo, Y. Nakajima, and K. Minoshima, “Dual-comb spectroscopy for rapid characterization of complex optical properties of solids,” Opt. Lett. 41(21), 4971–4974 (2016).
[Crossref] [PubMed]

S. K. Chauhan, N. Punjabi, D. K. Sharma, and S. Mukherji, “A silicon nitride coated LSPR based fiber-optic probe for possible continuous monitoring of sucrose content in fruit juices,” Sens. Actuators B Chem. 222, 1240–1250 (2016).
[Crossref]

2014 (1)

H. Fukano, T. Aiga, and S. Taue, “High-sensitivity fiber-optic refractive index sensor based on multimode interference using small-core single-mode fiber for biosensing,” Jpn. J. Appl. Phys. 53(4S), 04EL08 (2014).
[Crossref]

2013 (3)

G. Yin, S. Lou, and H. Zou, “Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section,” Opt. Laser Technol. 45, 294–300 (2013).
[Crossref]

N. Kuse, A. Ozawa, and Y. Kobayashi, “Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy,” Opt. Express 21(9), 11141–11149 (2013).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

2009 (2)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

2008 (1)

2007 (1)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

2006 (2)

J. V. Herráez and R. Belda, “Refractive indices, densities and excess molar volumes of monoalcohols + water,” J. Solution Chem. 35(9), 1315–1328 (2006).
[Crossref]

D. Monzón-Hernández and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B Chem. 115(1), 227–231 (2006).
[Crossref]

2003 (1)

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003).
[Crossref]

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

2000 (2)

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
[Crossref] [PubMed]

1999 (2)

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
[Crossref] [PubMed]

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
[Crossref]

1994 (1)

R. Budwig, “Refractive index matching methods for liquid flow investigations,” Exp. Fluids 17(5), 350–355 (1994).
[Crossref]

Abgrall, M.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Agger, C.

Aiga, T.

H. Fukano, T. Aiga, and S. Taue, “High-sensitivity fiber-optic refractive index sensor based on multimode interference using small-core single-mode fiber for biosensing,” Jpn. J. Appl. Phys. 53(4S), 04EL08 (2014).
[Crossref]

Altug, H.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Asahara, A.

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Bang, O.

Bashkatov, A. N.

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003).
[Crossref]

Belda, R.

J. V. Herráez and R. Belda, “Refractive indices, densities and excess molar volumes of monoalcohols + water,” J. Solution Chem. 35(9), 1315–1328 (2006).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Budwig, R.

R. Budwig, “Refractive index matching methods for liquid flow investigations,” Exp. Fluids 17(5), 350–355 (1994).
[Crossref]

Chauhan, S. K.

S. K. Chauhan, N. Punjabi, D. K. Sharma, and S. Mukherji, “A silicon nitride coated LSPR based fiber-optic probe for possible continuous monitoring of sucrose content in fruit juices,” Sens. Actuators B Chem. 222, 1240–1250 (2016).
[Crossref]

Clairon, A.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Coddington, I.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Diddams, S. A.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Ding, Q.

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, Q. Ding, and S. Jian, “Refractive index and temperature sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 6800309 (2018).
[Crossref]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Fukano, H.

Genina, E. A.

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003).
[Crossref]

Grajower, M.

Guelachvili, G.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Hänsch, T. W.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
[Crossref] [PubMed]

Hase, E.

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Herráez, J. V.

J. V. Herráez and R. Belda, “Refractive indices, densities and excess molar volumes of monoalcohols + water,” J. Solution Chem. 35(9), 1315–1328 (2006).
[Crossref]

Heuck, M.

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
[Crossref] [PubMed]

Hsieh, Y.-D.

E. Hase, T. Minamikawa, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-Less, Kilo-Pixel, Line-Field Confocal Phase Imaging with Spectrally Encoded Dual-Comb Microscopy,” IEEE J. Sel. Top. Quant. 25(1), 2879017 (2019).
[Crossref]

E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5(5), 634–643 (2018).
[Crossref]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Ichikawa, R.

E. Hase, T. Minamikawa, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-Less, Kilo-Pixel, Line-Field Confocal Phase Imaging with Spectrally Encoded Dual-Comb Microscopy,” IEEE J. Sel. Top. Quant. 25(1), 2879017 (2019).
[Crossref]

E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5(5), 634–643 (2018).
[Crossref]

Ideguchi, T.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Inaba, H.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Iwata, T.

R. Oe, T. Minamikawa, S. Taue, T. Nakahara, H. Koresawa, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, Y. Nakajima, K. Minoshima, and T. Yasui, “Improvement of dynamic range and repeatability in a refractive-index-sensing optical comb by combining saturable-absorber-mirror mode-locking with an intracavity multimode interference fiber sensor,” Jpn. J. Appl. Phys. 58(6), 060912 (2019).
[Crossref]

E. Hase, T. Minamikawa, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-Less, Kilo-Pixel, Line-Field Confocal Phase Imaging with Spectrally Encoded Dual-Comb Microscopy,” IEEE J. Sel. Top. Quant. 25(1), 2879017 (2019).
[Crossref]

T. Minamikawa, T. Masuoka, T. Ogura, K. Shibuya, R. Oe, E. Hase, Y. Nakajima, Y. Yamaoka, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, K. Minoshima, and T. Yasui, “Ultrasonic wave sensing using an optical-frequency-comb sensing cavity for photoacoustic imaging,” OSA Continuum 2(2), 439–449 (2019).
[Crossref]

E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5(5), 634–643 (2018).
[Crossref]

R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref] [PubMed]

K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
[Crossref] [PubMed]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Jian, S.

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, Q. Ding, and S. Jian, “Refractive index and temperature sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 6800309 (2018).
[Crossref]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Kaneoka, Y.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Kato, T.

T. Kato, M. Uchida, and K. Minoshima, “No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb,” Sci. Rep. 7(1), 3670 (2017).
[Crossref] [PubMed]

Kazemi, A.

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
[Crossref]

Keinan, G.

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Kobayashi, Y.

Kondo, K. I.

Koresawa, H.

R. Oe, T. Minamikawa, S. Taue, T. Nakahara, H. Koresawa, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, Y. Nakajima, K. Minoshima, and T. Yasui, “Improvement of dynamic range and repeatability in a refractive-index-sensing optical comb by combining saturable-absorber-mirror mode-locking with an intracavity multimode interference fiber sensor,” Jpn. J. Appl. Phys. 58(6), 060912 (2019).
[Crossref]

Kuse, N.

Laurent, P.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Lemonde, P.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Levy, U.

Liang, R.

Liu, D.

Liu, J.

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, Q. Ding, and S. Jian, “Refractive index and temperature sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 6800309 (2018).
[Crossref]

Lou, S.

G. Yin, S. Lou, and H. Zou, “Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section,” Opt. Laser Technol. 45, 294–300 (2013).
[Crossref]

Masuoka, T.

Matsumoto, H.

Mazurski, N.

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Minamikawa, T.

E. Hase, T. Minamikawa, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-Less, Kilo-Pixel, Line-Field Confocal Phase Imaging with Spectrally Encoded Dual-Comb Microscopy,” IEEE J. Sel. Top. Quant. 25(1), 2879017 (2019).
[Crossref]

R. Oe, T. Minamikawa, S. Taue, T. Nakahara, H. Koresawa, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, Y. Nakajima, K. Minoshima, and T. Yasui, “Improvement of dynamic range and repeatability in a refractive-index-sensing optical comb by combining saturable-absorber-mirror mode-locking with an intracavity multimode interference fiber sensor,” Jpn. J. Appl. Phys. 58(6), 060912 (2019).
[Crossref]

T. Minamikawa, T. Masuoka, T. Ogura, K. Shibuya, R. Oe, E. Hase, Y. Nakajima, Y. Yamaoka, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, K. Minoshima, and T. Yasui, “Ultrasonic wave sensing using an optical-frequency-comb sensing cavity for photoacoustic imaging,” OSA Continuum 2(2), 439–449 (2019).
[Crossref]

T. Minamikawa, T. Ogura, Y. Nakajima, E. Hase, Y. Mizutani, H. Yamamoto, K. Minoshima, and T. Yasui, “Strain sensing based on strain to radio-frequency conversion of optical frequency comb,” Opt. Express 26(8), 9484–9491 (2018).
[Crossref] [PubMed]

E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5(5), 634–643 (2018).
[Crossref]

R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref] [PubMed]

K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
[Crossref] [PubMed]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Minoshima, K.

R. Oe, T. Minamikawa, S. Taue, T. Nakahara, H. Koresawa, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, Y. Nakajima, K. Minoshima, and T. Yasui, “Improvement of dynamic range and repeatability in a refractive-index-sensing optical comb by combining saturable-absorber-mirror mode-locking with an intracavity multimode interference fiber sensor,” Jpn. J. Appl. Phys. 58(6), 060912 (2019).
[Crossref]

T. Minamikawa, T. Masuoka, T. Ogura, K. Shibuya, R. Oe, E. Hase, Y. Nakajima, Y. Yamaoka, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, K. Minoshima, and T. Yasui, “Ultrasonic wave sensing using an optical-frequency-comb sensing cavity for photoacoustic imaging,” OSA Continuum 2(2), 439–449 (2019).
[Crossref]

R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref] [PubMed]

T. Minamikawa, T. Ogura, Y. Nakajima, E. Hase, Y. Mizutani, H. Yamamoto, K. Minoshima, and T. Yasui, “Strain sensing based on strain to radio-frequency conversion of optical frequency comb,” Opt. Express 26(8), 9484–9491 (2018).
[Crossref] [PubMed]

E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5(5), 634–643 (2018).
[Crossref]

K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
[Crossref] [PubMed]

T. Kato, M. Uchida, and K. Minoshima, “No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb,” Sci. Rep. 7(1), 3670 (2017).
[Crossref] [PubMed]

A. Asahara, A. Nishiyama, S. Yoshida, K. I. Kondo, Y. Nakajima, and K. Minoshima, “Dual-comb spectroscopy for rapid characterization of complex optical properties of solids,” Opt. Lett. 41(21), 4971–4974 (2016).
[Crossref] [PubMed]

K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
[Crossref] [PubMed]

Miyamoto, S.

E. Hase, T. Minamikawa, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-Less, Kilo-Pixel, Line-Field Confocal Phase Imaging with Spectrally Encoded Dual-Comb Microscopy,” IEEE J. Sel. Top. Quant. 25(1), 2879017 (2019).
[Crossref]

E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5(5), 634–643 (2018).
[Crossref]

Mizuno, T.

Mizutani, Y.

T. Minamikawa, T. Masuoka, T. Ogura, K. Shibuya, R. Oe, E. Hase, Y. Nakajima, Y. Yamaoka, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, K. Minoshima, and T. Yasui, “Ultrasonic wave sensing using an optical-frequency-comb sensing cavity for photoacoustic imaging,” OSA Continuum 2(2), 439–449 (2019).
[Crossref]

R. Oe, T. Minamikawa, S. Taue, T. Nakahara, H. Koresawa, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, Y. Nakajima, K. Minoshima, and T. Yasui, “Improvement of dynamic range and repeatability in a refractive-index-sensing optical comb by combining saturable-absorber-mirror mode-locking with an intracavity multimode interference fiber sensor,” Jpn. J. Appl. Phys. 58(6), 060912 (2019).
[Crossref]

E. Hase, T. Minamikawa, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-Less, Kilo-Pixel, Line-Field Confocal Phase Imaging with Spectrally Encoded Dual-Comb Microscopy,” IEEE J. Sel. Top. Quant. 25(1), 2879017 (2019).
[Crossref]

R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref] [PubMed]

E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5(5), 634–643 (2018).
[Crossref]

T. Minamikawa, T. Ogura, Y. Nakajima, E. Hase, Y. Mizutani, H. Yamamoto, K. Minoshima, and T. Yasui, “Strain sensing based on strain to radio-frequency conversion of optical frequency comb,” Opt. Express 26(8), 9484–9491 (2018).
[Crossref] [PubMed]

K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
[Crossref] [PubMed]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Monzón-Hernández, D.

D. Monzón-Hernández and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B Chem. 115(1), 227–231 (2006).
[Crossref]

Mukherji, S.

S. K. Chauhan, N. Punjabi, D. K. Sharma, and S. Mukherji, “A silicon nitride coated LSPR based fiber-optic probe for possible continuous monitoring of sucrose content in fruit juices,” Sens. Actuators B Chem. 222, 1240–1250 (2016).
[Crossref]

Nagai, K.

Naiman, A.

Nakahara, T.

R. Oe, T. Minamikawa, S. Taue, T. Nakahara, H. Koresawa, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, Y. Nakajima, K. Minoshima, and T. Yasui, “Improvement of dynamic range and repeatability in a refractive-index-sensing optical comb by combining saturable-absorber-mirror mode-locking with an intracavity multimode interference fiber sensor,” Jpn. J. Appl. Phys. 58(6), 060912 (2019).
[Crossref]

Nakajima, Y.

R. Oe, T. Minamikawa, S. Taue, T. Nakahara, H. Koresawa, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, Y. Nakajima, K. Minoshima, and T. Yasui, “Improvement of dynamic range and repeatability in a refractive-index-sensing optical comb by combining saturable-absorber-mirror mode-locking with an intracavity multimode interference fiber sensor,” Jpn. J. Appl. Phys. 58(6), 060912 (2019).
[Crossref]

T. Minamikawa, T. Masuoka, T. Ogura, K. Shibuya, R. Oe, E. Hase, Y. Nakajima, Y. Yamaoka, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, K. Minoshima, and T. Yasui, “Ultrasonic wave sensing using an optical-frequency-comb sensing cavity for photoacoustic imaging,” OSA Continuum 2(2), 439–449 (2019).
[Crossref]

R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref] [PubMed]

E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5(5), 634–643 (2018).
[Crossref]

T. Minamikawa, T. Ogura, Y. Nakajima, E. Hase, Y. Mizutani, H. Yamamoto, K. Minoshima, and T. Yasui, “Strain sensing based on strain to radio-frequency conversion of optical frequency comb,” Opt. Express 26(8), 9484–9491 (2018).
[Crossref] [PubMed]

A. Asahara, A. Nishiyama, S. Yoshida, K. I. Kondo, Y. Nakajima, and K. Minoshima, “Dual-comb spectroscopy for rapid characterization of complex optical properties of solids,” Opt. Lett. 41(21), 4971–4974 (2016).
[Crossref] [PubMed]

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N. R.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Niering, M.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Nishiyama, A.

Oe, R.

Ogura, T.

Okubo, S.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Ott, J. R.

Ozawa, A.

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Picqué, N.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Pokasov, P.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Punjabi, N.

S. K. Chauhan, N. Punjabi, D. K. Sharma, and S. Mukherji, “A silicon nitride coated LSPR based fiber-optic probe for possible continuous monitoring of sucrose content in fruit juices,” Sens. Actuators B Chem. 222, 1240–1250 (2016).
[Crossref]

Rasmussen, P. D.

Reichert, J.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
[Crossref] [PubMed]

Salomon, C.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Santarelli, G.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Sato, K.

Sharma, D. K.

S. K. Chauhan, N. Punjabi, D. K. Sharma, and S. Mukherji, “A silicon nitride coated LSPR based fiber-optic probe for possible continuous monitoring of sucrose content in fruit juices,” Sens. Actuators B Chem. 222, 1240–1250 (2016).
[Crossref]

Shen, Y.

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, Q. Ding, and S. Jian, “Refractive index and temperature sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 6800309 (2018).
[Crossref]

Shibuya, K.

Shum, P.

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Stern, L.

Sun, Q.

Sutapun, B.

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
[Crossref]

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Tabib-Azar, M.

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
[Crossref]

Tang, Y.

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, Q. Ding, and S. Jian, “Refractive index and temperature sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 6800309 (2018).
[Crossref]

Taue, S.

R. Oe, T. Minamikawa, S. Taue, T. Nakahara, H. Koresawa, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, Y. Nakajima, K. Minoshima, and T. Yasui, “Improvement of dynamic range and repeatability in a refractive-index-sensing optical comb by combining saturable-absorber-mirror mode-locking with an intracavity multimode interference fiber sensor,” Jpn. J. Appl. Phys. 58(6), 060912 (2019).
[Crossref]

R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref] [PubMed]

H. Fukano, T. Aiga, and S. Taue, “High-sensitivity fiber-optic refractive index sensor based on multimode interference using small-core single-mode fiber for biosensing,” Jpn. J. Appl. Phys. 53(4S), 04EL08 (2014).
[Crossref]

Uchida, M.

T. Kato, M. Uchida, and K. Minoshima, “No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb,” Sci. Rep. 7(1), 3670 (2017).
[Crossref] [PubMed]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
[Crossref] [PubMed]

Villatoro, J.

D. Monzón-Hernández and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B Chem. 115(1), 227–231 (2006).
[Crossref]

Wang, M.

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, Q. Ding, and S. Jian, “Refractive index and temperature sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 6800309 (2018).
[Crossref]

Wei, B.

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, Q. Ding, and S. Jian, “Refractive index and temperature sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 6800309 (2018).
[Crossref]

Weitz, M.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Wo, J.

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Wu, Y.

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, Q. Ding, and S. Jian, “Refractive index and temperature sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 6800309 (2018).
[Crossref]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Xiao, S.

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, Q. Ding, and S. Jian, “Refractive index and temperature sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 6800309 (2018).
[Crossref]

Yamagiwa, M.

Yamamoto, H.

T. Minamikawa, T. Masuoka, T. Ogura, K. Shibuya, R. Oe, E. Hase, Y. Nakajima, Y. Yamaoka, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, K. Minoshima, and T. Yasui, “Ultrasonic wave sensing using an optical-frequency-comb sensing cavity for photoacoustic imaging,” OSA Continuum 2(2), 439–449 (2019).
[Crossref]

R. Oe, T. Minamikawa, S. Taue, T. Nakahara, H. Koresawa, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, Y. Nakajima, K. Minoshima, and T. Yasui, “Improvement of dynamic range and repeatability in a refractive-index-sensing optical comb by combining saturable-absorber-mirror mode-locking with an intracavity multimode interference fiber sensor,” Jpn. J. Appl. Phys. 58(6), 060912 (2019).
[Crossref]

E. Hase, T. Minamikawa, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-Less, Kilo-Pixel, Line-Field Confocal Phase Imaging with Spectrally Encoded Dual-Comb Microscopy,” IEEE J. Sel. Top. Quant. 25(1), 2879017 (2019).
[Crossref]

R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref] [PubMed]

E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5(5), 634–643 (2018).
[Crossref]

T. Minamikawa, T. Ogura, Y. Nakajima, E. Hase, Y. Mizutani, H. Yamamoto, K. Minoshima, and T. Yasui, “Strain sensing based on strain to radio-frequency conversion of optical frequency comb,” Opt. Express 26(8), 9484–9491 (2018).
[Crossref] [PubMed]

K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
[Crossref] [PubMed]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Yamaoka, Y.

Yang, Y.

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, Q. Ding, and S. Jian, “Refractive index and temperature sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 6800309 (2018).
[Crossref]

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Yasui, T.

R. Oe, T. Minamikawa, S. Taue, T. Nakahara, H. Koresawa, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, Y. Nakajima, K. Minoshima, and T. Yasui, “Improvement of dynamic range and repeatability in a refractive-index-sensing optical comb by combining saturable-absorber-mirror mode-locking with an intracavity multimode interference fiber sensor,” Jpn. J. Appl. Phys. 58(6), 060912 (2019).
[Crossref]

E. Hase, T. Minamikawa, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-Less, Kilo-Pixel, Line-Field Confocal Phase Imaging with Spectrally Encoded Dual-Comb Microscopy,” IEEE J. Sel. Top. Quant. 25(1), 2879017 (2019).
[Crossref]

T. Minamikawa, T. Masuoka, T. Ogura, K. Shibuya, R. Oe, E. Hase, Y. Nakajima, Y. Yamaoka, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, K. Minoshima, and T. Yasui, “Ultrasonic wave sensing using an optical-frequency-comb sensing cavity for photoacoustic imaging,” OSA Continuum 2(2), 439–449 (2019).
[Crossref]

R. Oe, S. Taue, T. Minamikawa, K. Nagai, K. Shibuya, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, H. Fukano, Y. Nakajima, K. Minoshima, and T. Yasui, “Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor,” Opt. Express 26(15), 19694–19706 (2018).
[Crossref] [PubMed]

T. Minamikawa, T. Ogura, Y. Nakajima, E. Hase, Y. Mizutani, H. Yamamoto, K. Minoshima, and T. Yasui, “Strain sensing based on strain to radio-frequency conversion of optical frequency comb,” Opt. Express 26(8), 9484–9491 (2018).
[Crossref] [PubMed]

E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5(5), 634–643 (2018).
[Crossref]

K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
[Crossref] [PubMed]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Yin, G.

G. Yin, S. Lou, and H. Zou, “Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section,” Opt. Laser Technol. 45, 294–300 (2013).
[Crossref]

Yoshida, S.

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Zhang, J.

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, Q. Ding, and S. Jian, “Refractive index and temperature sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 6800309 (2018).
[Crossref]

J. Zhang, Q. Sun, R. Liang, J. Wo, D. Liu, and P. Shum, “Microfiber Fabry-Perot interferometer fabricated by taper-drawing technique and its application as a radio frequency interrogated refractive index sensor,” Opt. Lett. 37(14), 2925–2927 (2012).
[Crossref] [PubMed]

Zou, H.

G. Yin, S. Lou, and H. Zou, “Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section,” Opt. Laser Technol. 45, 294–300 (2013).
[Crossref]

Appl. Opt. (1)

Exp. Fluids (1)

R. Budwig, “Refractive index matching methods for liquid flow investigations,” Exp. Fluids 17(5), 350–355 (1994).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

E. Hase, T. Minamikawa, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-Less, Kilo-Pixel, Line-Field Confocal Phase Imaging with Spectrally Encoded Dual-Comb Microscopy,” IEEE J. Sel. Top. Quant. 25(1), 2879017 (2019).
[Crossref]

IEEE Photonics J. (1)

Y. Yang, M. Wang, Y. Shen, Y. Tang, J. Zhang, Y. Wu, S. Xiao, J. Liu, B. Wei, Q. Ding, and S. Jian, “Refractive index and temperature sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 6800309 (2018).
[Crossref]

J. Solution Chem. (1)

J. V. Herráez and R. Belda, “Refractive indices, densities and excess molar volumes of monoalcohols + water,” J. Solution Chem. 35(9), 1315–1328 (2006).
[Crossref]

Jpn. J. Appl. Phys. (2)

R. Oe, T. Minamikawa, S. Taue, T. Nakahara, H. Koresawa, T. Mizuno, M. Yamagiwa, Y. Mizutani, H. Yamamoto, T. Iwata, Y. Nakajima, K. Minoshima, and T. Yasui, “Improvement of dynamic range and repeatability in a refractive-index-sensing optical comb by combining saturable-absorber-mirror mode-locking with an intracavity multimode interference fiber sensor,” Jpn. J. Appl. Phys. 58(6), 060912 (2019).
[Crossref]

H. Fukano, T. Aiga, and S. Taue, “High-sensitivity fiber-optic refractive index sensor based on multimode interference using small-core single-mode fiber for biosensing,” Jpn. J. Appl. Phys. 53(4S), 04EL08 (2014).
[Crossref]

Nat. Commun. (1)

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Nat. Mater. (2)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Nature (3)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Laser Technol. (1)

G. Yin, S. Lou, and H. Zou, “Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section,” Opt. Laser Technol. 45, 294–300 (2013).
[Crossref]

Opt. Lett. (3)

Optica (2)

OSA Continuum (1)

Phys. Rev. Lett. (1)

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Proc. SPIE (1)

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003).
[Crossref]

Sci. Rep. (1)

T. Kato, M. Uchida, and K. Minoshima, “No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb,” Sci. Rep. 7(1), 3670 (2017).
[Crossref] [PubMed]

Sens. Actuators B Chem. (3)

D. Monzón-Hernández and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B Chem. 115(1), 227–231 (2006).
[Crossref]

S. K. Chauhan, N. Punjabi, D. K. Sharma, and S. Mukherji, “A silicon nitride coated LSPR based fiber-optic probe for possible continuous monitoring of sucrose content in fruit juices,” Sens. Actuators B Chem. 222, 1240–1250 (2016).
[Crossref]

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the MMI-OFC. PC, polarization controller for mode-locking; EDF, Er-doped fiber; WDM, wavelength division multiplexer; ISO, polarization independent isolator; 70:30, branch coupler; LD, laser diode; PD, photo detector.
Fig. 2
Fig. 2 Temperature-dependent optical spectral shift and RF spectral shift. (a) Optical spectral shift with respect to temperature change. (b) Temperature sensitivity of optical spectrum with respect to different ethanol concentrations. (c) RF spectral shift with respect to temperature change. (d) Temperature sensitivity of RF spectrum with respect to different ethanol concentrations.
Fig. 3
Fig. 3 Concentration-dependent optical spectral shift and RF spectral shift. (a) Optical spectral shift with respect to sample ethanol-concentration change. (b) Ethanol-concentration sensitivity of optical spectrum with respect to different sample temperature. (c) RF spectral shift with respect to ethanol-concentration change. (d) Ethanol-concentration sensitivity of RF spectrum with respect to different sample temperature.
Fig. 4
Fig. 4 Simultaneous measurement of temperature and RI-related concentration of an ethanol/water solution under the variable temperature (26.5-29.0°C) and the constant ethanol concentration (0% v/v). (a) Temporal behavior of the λMMI shift. (b) Temporal behavior of frep shift. (c) Temporal behavior of the sample concentration change estimated by using only ∆frep (green line) and by using both the ∆frep and ∆λMMI via Eq. (3) (blue line). (d) Temporal behavior of the sample temperature change estimated by using both the ∆frep and ∆λMMI via Eq. (3) (blue line).The red line in Fig. 4(d) indicates the setting temperature of the ethanol/water solution. The arrows indicate the times at which the temperature was changed. The arrow heads indicate the times at which the sample was stirred.
Fig. 5
Fig. 5 Simultaneous measurement of temperature and RI-related concentration of an ethanol/water solution under the constant temperature (26.0°C) and the variable ethanol concentration (0-15% v/v). (a) Temporal behavior of the λMMI shift. (b) Temporal behavior of frep shift. (c) Temporal behavior of the estimated sample concentration change (blue line). The red line in Fig. 5(c) indicates the actual concentration of the ethanol/water solution. (d) Temporal behavior of the estimated sample temperature change. The arrows indicate the times at which the ethanol was applied. The arrow heads indicate the times at which the sample was stirred.
Fig. 6
Fig. 6 Simultaneous measurement of temperature and RI-related concentration of an ethanol/water solution under the variable temperature and the variable ethanol concentration. (a) Temporal behavior of the λMMI shift. (b) Temporal behavior of frep shift. (c) Temporal behavior of the estimated sample concentration change. (d) Temporal behavior of the estimated sample temperature change. The red line in Figs. 6(c) and 6(d) respectively indicate the actual concentration of the ethanol/water solution and the setting temperature of the ethanol/water solution. The arrows indicate the times at which the temperature was changed and/or the ethanol was applied. The arrow heads indicate the times at which the sample was stirred.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

λ M M I = n M M F m L M M F [ D M M F ( n s a m ) ] 2 ,
f r e p = c n L ,
[ Δ f r e p Δ λ M M I ] = [ f r e p C f r e p T λ M M I C λ M M I T ] [ Δ C Δ T ] ,
λ M M I C = λ M M I n s a m n s a m C ,
λ M M I T = λ M M I n s a m n s a m T + λ M M I n M M F n M M F T + λ M M I L M M F L M M F T + λ M M I D M M F D M M F T .
f r e p C = f r e p n s a m n s a m C ,
f r e p T = f r e p n s a m n s a m T + f r e p n M M F n M M F T + f r e p L M M F L M M F T + f r e p D M M F D M M F T .
D = f r e p C λ M M I T f r e p T λ M M I C = n s a m C [ ( f r e p n s a m λ M M I n M M F f r e p n M M F λ M M I n s a m ) n M M F T + ( f r e p n s a m λ M M I L M M F f r e p L M M F λ M M I n s a m ) L M M F T + ( f r e p n s a m λ M M I D M M F f r e p D M M F λ M M I n s a m ) D M M F T ] .

Metrics