Abstract

A concept to mitigate parasitic lasing in mid-IR fiber amplifiers using a single long period fiber grating is shown. Using tightly confined ultrashort laser pulses at 800 nm, a grating was directly inscribed into the core of an erbium doped fluoride glass fiber showing a strong attenuation down to −27 dB at desired wavelength. The concept reveals great potential to improve the average output power and attainable spectral range of low repetition rate in-amplifier supercontinuum generation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system

Jacek Swiderski, Maria Michalska, and Gwenael Maze
Opt. Express 21(7) 7851-7857 (2013)

Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 µm

Chen Wei, Xiushan Zhu, Robert A. Norwood, Feng Song, and N. Peyghambarian
Opt. Express 21(24) 29488-29504 (2013)

High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power

Kun Liu, Jiang Liu, Hongxing Shi, Fangzhou Tan, and Pu Wang
Opt. Express 22(20) 24384-24391 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  2. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  3. J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
    [Crossref]
  4. S. Lambert-Girard, M. Allard, M. Piché, and F. Babin, “Differential optical absorption spectroscopy lidar for mid-infrared gaseous measurements,” Appl. Opt. 54(7), 1647–1656 (2015).
    [Crossref]
  5. M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51(15), 2794–2807 (2012).
    [Crossref] [PubMed]
  6. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
    [Crossref]
  7. K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “24.3 W Mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier,” Advanced Solid State Lasers, OSA Technical Digest, AM3A.6 (2014).
  8. K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22(20), 24384–24391 (2014).
    [Crossref] [PubMed]
  9. R. A. Martinez, G. Plant, K. Guo, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, O. Alvarez, F. Chenard, R. Bedford, R. Gibson, and A. I. Ifarraguerri, “Mid-infrared supercontinuum generation from 1.6 to >11 μm using concatenated step-index fluoride and chalcogenide fibers,” Opt. Lett. 43(2), 296–299 (2018).
    [Crossref] [PubMed]
  10. K. Yin, B. Zhang, L. Yang, and J. Hou, “15.2 W spectrally flat all-fiber supercontinuum laser source with >1 W power beyond 3.8 μm,” Opt. Lett. 42(12), 2334–2337 (2017).
    [Crossref] [PubMed]
  11. T. Wu, L. Yang, Z. Dou, K. Yin, X. He, B. Zhang, and J. Hou, “Ultra-efficient, 10-watt-level mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 44(9), 2378–2381 (2019).
    [Crossref] [PubMed]
  12. J. C. Gauthier, V. Fortin, S. Duval, R. Vallée, and M. Bernier, “In-amplifier mid-infrared supercontinuum generation,” Opt. Lett. 40(22), 5247–5250 (2015).
    [Crossref] [PubMed]
  13. J. C. Gauthier, V. Fortin, J. Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756–1759 (2016).
    [Crossref] [PubMed]
  14. J. Geng, Q. Wang, and S. Jiang, “High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier,” Appl. Opt. 51(7), 834–840 (2012).
    [Crossref] [PubMed]
  15. M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6(1), 23759 (2016).
    [Crossref] [PubMed]
  16. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14(8), 1760–1773 (1997).
    [Crossref]
  17. M. Heck, G. Schwartz, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Tünnermann, and S. Nolte, “Control of higher-order cladding mode excitation with tailored femtosecond-written long period fiber gratings,” Opt. Express 27(4), 4292–4303 (2019).
    [Crossref] [PubMed]
  18. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  19. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
    [Crossref]
  20. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32(5), 454–456 (2007).
    [Crossref] [PubMed]
  21. G. Bharathan, R. I. Woodward, M. Ams, D. D. Hudson, S. D. Jackson, and A. Fuerbach, “Direct inscription of Bragg gratings into coated fluoride fibers for widely tunable and robust mid-infrared lasers,” Opt. Express 25(24), 30013–30019 (2017).
    [Crossref] [PubMed]
  22. J. P. Bérubé, M. Bernier, and R. Vallée, “Femtosecond laser-induced refractive index modifications in fluoride glass,” Opt. Mater. Express 3(5), 598–611 (2013).
    [Crossref]
  23. M. Heck, S. Nolte, A. Tünnermann, R. Vallée, and M. Bernier, “Femtosecond-written long-period gratings in fluoride fibers,” Opt. Lett. 43(9), 1994–1997 (2018).
    [Crossref] [PubMed]
  24. G. Bharathan, T. T. Fernandez, M. Ams, R. I. Woodward, D. D. Hudson, and A. Fuerbach, “Optimized laser-written ZBLAN fiber Bragg gratings with high reflectivity and low loss,” Opt. Lett. 44(2), 423–426 (2019).
    [Crossref] [PubMed]
  25. J. C. Gauthier, L. R. Robichaud, V. Fortin, R. Vallée, and M. Bernier, “Mid-infrared supercontinuum generation in fluoride fiber amplifiers: current status and future perspectives,” Appl. Phys. B 124(6), 122–136 (2018).
    [Crossref]
  26. S. Duval, M. Olivier, L. R. Robichaud, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “Numerical modeling of mid-infrared ultrashort pulse propagation in Er3+: fluoride fiber amplifiers,” J. Opt. Soc. Am. B 35(6), 1450–1462 (2018).
    [Crossref]
  27. M. Yan, S. Luo, L. Zhan, Y. Wang, Y. Xia, and Z. Zhang, “Step-changed period chirped long-period fiber gratings fabricated by CO2 laser,” Opt. Commun. 281(10), 2784–2788 (2008).
    [Crossref]

2019 (3)

2018 (4)

2017 (2)

2016 (2)

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6(1), 23759 (2016).
[Crossref] [PubMed]

J. C. Gauthier, V. Fortin, J. Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756–1759 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (2)

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22(20), 24384–24391 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

2013 (1)

2012 (3)

2010 (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

2009 (1)

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

2008 (2)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

M. Yan, S. Luo, L. Zhan, Y. Wang, Y. Xia, and Z. Zhang, “Step-changed period chirped long-period fiber gratings fabricated by CO2 laser,” Opt. Commun. 281(10), 2784–2788 (2008).
[Crossref]

2007 (1)

2003 (1)

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

1997 (1)

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Allard, M.

Alvarez, O.

Ams, M.

Androz, G.

Babin, F.

Bang, O.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Bedford, R.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Bernier, M.

J. C. Gauthier, L. R. Robichaud, V. Fortin, R. Vallée, and M. Bernier, “Mid-infrared supercontinuum generation in fluoride fiber amplifiers: current status and future perspectives,” Appl. Phys. B 124(6), 122–136 (2018).
[Crossref]

M. Heck, S. Nolte, A. Tünnermann, R. Vallée, and M. Bernier, “Femtosecond-written long-period gratings in fluoride fibers,” Opt. Lett. 43(9), 1994–1997 (2018).
[Crossref] [PubMed]

S. Duval, M. Olivier, L. R. Robichaud, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “Numerical modeling of mid-infrared ultrashort pulse propagation in Er3+: fluoride fiber amplifiers,” J. Opt. Soc. Am. B 35(6), 1450–1462 (2018).
[Crossref]

J. C. Gauthier, V. Fortin, J. Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756–1759 (2016).
[Crossref] [PubMed]

J. C. Gauthier, V. Fortin, S. Duval, R. Vallée, and M. Bernier, “In-amplifier mid-infrared supercontinuum generation,” Opt. Lett. 40(22), 5247–5250 (2015).
[Crossref] [PubMed]

J. P. Bérubé, M. Bernier, and R. Vallée, “Femtosecond laser-induced refractive index modifications in fluoride glass,” Opt. Mater. Express 3(5), 598–611 (2013).
[Crossref]

M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32(5), 454–456 (2007).
[Crossref] [PubMed]

Bérubé, J. P.

Bharathan, G.

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

Carrée, J. Y.

Chan, A.

Chen, H.

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6(1), 23759 (2016).
[Crossref] [PubMed]

Chenard, F.

Chin, S. L.

Dou, Z.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Duval, S.

Erdogan, T.

Faucher, D.

Feng, G.

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6(1), 23759 (2016).
[Crossref] [PubMed]

Fernandez, T. T.

Fortin, V.

Freeman, M. J.

Fuerbach, A.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gauthier, J. C.

Geng, J.

Gibson, R.

Goebel, T. A.

Guelachvili, G.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Guo, K.

He, X.

Heck, M.

Hou, J.

Hudson, D. D.

Ifarraguerri, A. I.

Islam, M. N.

Jackson, S. D.

Janiszewski, B.

Jiang, S.

Krämer, R. G.

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Kumar, M.

Lambert-Girard, S.

Liu, J.

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22(20), 24384–24391 (2014).
[Crossref] [PubMed]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “24.3 W Mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier,” Advanced Solid State Lasers, OSA Technical Digest, AM3A.6 (2014).

Liu, K.

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22(20), 24384–24391 (2014).
[Crossref] [PubMed]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “24.3 W Mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier,” Advanced Solid State Lasers, OSA Technical Digest, AM3A.6 (2014).

Luo, S.

M. Yan, S. Luo, L. Zhan, Y. Wang, Y. Xia, and Z. Zhang, “Step-changed period chirped long-period fiber gratings fabricated by CO2 laser,” Opt. Commun. 281(10), 2784–2788 (2008).
[Crossref]

Mandon, J.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Manzur, T.

Martinez, R. A.

Matzdorf, C.

Maynard, R. L.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Neelakandan, M.

Nolte, S.

Olivier, M.

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Peyghambarian, N.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Piché, M.

Picqué, N.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Plant, G.

Poulain, M.

Poulain, S.

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Richter, D.

Robichaud, L. R.

S. Duval, M. Olivier, L. R. Robichaud, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “Numerical modeling of mid-infrared ultrashort pulse propagation in Er3+: fluoride fiber amplifiers,” J. Opt. Soc. Am. B 35(6), 1450–1462 (2018).
[Crossref]

J. C. Gauthier, L. R. Robichaud, V. Fortin, R. Vallée, and M. Bernier, “Mid-infrared supercontinuum generation in fluoride fiber amplifiers: current status and future perspectives,” Appl. Phys. B 124(6), 122–136 (2018).
[Crossref]

Saliminia, A.

Schwartz, G.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Shen, Y.

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6(1), 23759 (2016).
[Crossref] [PubMed]

Sheng, Y.

Shi, H.

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22(20), 24384–24391 (2014).
[Crossref] [PubMed]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “24.3 W Mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier,” Advanced Solid State Lasers, OSA Technical Digest, AM3A.6 (2014).

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Tan, F.

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22(20), 24384–24391 (2014).
[Crossref] [PubMed]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “24.3 W Mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier,” Advanced Solid State Lasers, OSA Technical Digest, AM3A.6 (2014).

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Tao, M.

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6(1), 23759 (2016).
[Crossref] [PubMed]

Terry, F. L.

Tünnermann, A.

Vallée, R.

J. C. Gauthier, L. R. Robichaud, V. Fortin, R. Vallée, and M. Bernier, “Mid-infrared supercontinuum generation in fluoride fiber amplifiers: current status and future perspectives,” Appl. Phys. B 124(6), 122–136 (2018).
[Crossref]

M. Heck, S. Nolte, A. Tünnermann, R. Vallée, and M. Bernier, “Femtosecond-written long-period gratings in fluoride fibers,” Opt. Lett. 43(9), 1994–1997 (2018).
[Crossref] [PubMed]

S. Duval, M. Olivier, L. R. Robichaud, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “Numerical modeling of mid-infrared ultrashort pulse propagation in Er3+: fluoride fiber amplifiers,” J. Opt. Soc. Am. B 35(6), 1450–1462 (2018).
[Crossref]

J. C. Gauthier, V. Fortin, J. Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756–1759 (2016).
[Crossref] [PubMed]

J. C. Gauthier, V. Fortin, S. Duval, R. Vallée, and M. Bernier, “In-amplifier mid-infrared supercontinuum generation,” Opt. Lett. 40(22), 5247–5250 (2015).
[Crossref] [PubMed]

J. P. Bérubé, M. Bernier, and R. Vallée, “Femtosecond laser-induced refractive index modifications in fluoride glass,” Opt. Mater. Express 3(5), 598–611 (2013).
[Crossref]

M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32(5), 454–456 (2007).
[Crossref] [PubMed]

Wang, P.

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22(20), 24384–24391 (2014).
[Crossref] [PubMed]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “24.3 W Mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier,” Advanced Solid State Lasers, OSA Technical Digest, AM3A.6 (2014).

Wang, Q.

Wang, Y.

M. Yan, S. Luo, L. Zhan, Y. Wang, Y. Xia, and Z. Zhang, “Step-changed period chirped long-period fiber gratings fabricated by CO2 laser,” Opt. Commun. 281(10), 2784–2788 (2008).
[Crossref]

Wang, Z.

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6(1), 23759 (2016).
[Crossref] [PubMed]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

Woodward, R. I.

Wu, T.

Xia, Y.

M. Yan, S. Luo, L. Zhan, Y. Wang, Y. Xia, and Z. Zhang, “Step-changed period chirped long-period fiber gratings fabricated by CO2 laser,” Opt. Commun. 281(10), 2784–2788 (2008).
[Crossref]

Yan, M.

M. Yan, S. Luo, L. Zhan, Y. Wang, Y. Xia, and Z. Zhang, “Step-changed period chirped long-period fiber gratings fabricated by CO2 laser,” Opt. Commun. 281(10), 2784–2788 (2008).
[Crossref]

Yang, L.

Ye, X.

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6(1), 23759 (2016).
[Crossref] [PubMed]

Yin, K.

Yu, T.

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6(1), 23759 (2016).
[Crossref] [PubMed]

Zhan, L.

M. Yan, S. Luo, L. Zhan, Y. Wang, Y. Xia, and Z. Zhang, “Step-changed period chirped long-period fiber gratings fabricated by CO2 laser,” Opt. Commun. 281(10), 2784–2788 (2008).
[Crossref]

Zhang, B.

Zhang, Z.

M. Yan, S. Luo, L. Zhan, Y. Wang, Y. Xia, and Z. Zhang, “Step-changed period chirped long-period fiber gratings fabricated by CO2 laser,” Opt. Commun. 281(10), 2784–2788 (2008).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Zhu, X.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Adv. Optoelectron. (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

J. C. Gauthier, L. R. Robichaud, V. Fortin, R. Vallée, and M. Bernier, “Mid-infrared supercontinuum generation in fluoride fiber amplifiers: current status and future perspectives,” Appl. Phys. B 124(6), 122–136 (2018).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (4)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Opt. Commun. (1)

M. Yan, S. Luo, L. Zhan, Y. Wang, Y. Xia, and Z. Zhang, “Step-changed period chirped long-period fiber gratings fabricated by CO2 laser,” Opt. Commun. 281(10), 2784–2788 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (8)

M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32(5), 454–456 (2007).
[Crossref] [PubMed]

R. A. Martinez, G. Plant, K. Guo, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, O. Alvarez, F. Chenard, R. Bedford, R. Gibson, and A. I. Ifarraguerri, “Mid-infrared supercontinuum generation from 1.6 to >11 μm using concatenated step-index fluoride and chalcogenide fibers,” Opt. Lett. 43(2), 296–299 (2018).
[Crossref] [PubMed]

K. Yin, B. Zhang, L. Yang, and J. Hou, “15.2 W spectrally flat all-fiber supercontinuum laser source with >1 W power beyond 3.8 μm,” Opt. Lett. 42(12), 2334–2337 (2017).
[Crossref] [PubMed]

T. Wu, L. Yang, Z. Dou, K. Yin, X. He, B. Zhang, and J. Hou, “Ultra-efficient, 10-watt-level mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 44(9), 2378–2381 (2019).
[Crossref] [PubMed]

J. C. Gauthier, V. Fortin, S. Duval, R. Vallée, and M. Bernier, “In-amplifier mid-infrared supercontinuum generation,” Opt. Lett. 40(22), 5247–5250 (2015).
[Crossref] [PubMed]

J. C. Gauthier, V. Fortin, J. Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756–1759 (2016).
[Crossref] [PubMed]

M. Heck, S. Nolte, A. Tünnermann, R. Vallée, and M. Bernier, “Femtosecond-written long-period gratings in fluoride fibers,” Opt. Lett. 43(9), 1994–1997 (2018).
[Crossref] [PubMed]

G. Bharathan, T. T. Fernandez, M. Ams, R. I. Woodward, D. D. Hudson, and A. Fuerbach, “Optimized laser-written ZBLAN fiber Bragg gratings with high reflectivity and low loss,” Opt. Lett. 44(2), 423–426 (2019).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Sci. Rep. (1)

M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, and X. Ye, “Super-flat supercontinuum generation from a Tm-doped fiber amplifier,” Sci. Rep. 6(1), 23759 (2016).
[Crossref] [PubMed]

Other (1)

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “24.3 W Mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier,” Advanced Solid State Lasers, OSA Technical Digest, AM3A.6 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Transmission spectrum of the LPFG with Λ = 490 µm over a length of approximately 65 mm. The blue curve represents the grating after inscription with the resonance at 2810 nm. The red curve with the resonance at 2799 nm is the final spectrum after post-treatment used for the mitigation experiments.
Fig. 2
Fig. 2 Illustration of the In-amplifier SC source with a LPFG at the end of the active erbium-doped fiber to increase the parasitic lasing threshold. DM: Dichroic mirror, L1: Silica Lens 1, L2: ZnSe Lens 2, CMS: Cladding mode stripper, LPFG: Long period fiber grating.
Fig. 3
Fig. 3 SC evolution with corresponding output power for increasing pump power (values in parenthesis) for the 4m fiber amplifier without LPFG. Launched seed power was ~3 mW. The parasitic lasing appears at a pump power of 1.59 W and wavelength of 2800 nm.
Fig. 4
Fig. 4 SC evolution with corresponding output power for increasing pump power (values in parenthesis) for the 4m fiber amplifier with LPFG with peak attenuation around 2800 nm. Launched seed power was ~3 mW. The parasitic lasing appears at a pump power of 1.59 W and wavelength of 2785 nm.
Fig. 5
Fig. 5 Comparison of the LPFG spectral losses for unamplified seed signal at 25°C without LPFG (black dashed curve), at 25°C with LPFG (blue curve) and at 48°C with LPFG (red curve). The resonance shifted from 2800 nm to approximately 2785 nm.
Fig. 6
Fig. 6 SC evolution with corresponding output power with increasing pump power (values in parenthesis) for the fiber amplifier with LPFG shifted to 2785 nm. Parasitic lasing appears at 2770 nm.
Fig. 7
Fig. 7 Comparison of SC spectra obtained without LPFG at 25°C (black dashed), with LPFG at 25°C (blue) and with LPFG at 48°C (red) with corresponding output and pump power (in parenthesis). It can be clearly seen form this graph that the induced attenuation improved both, spectral power density and spectral coverage, respectively.
Fig. 8
Fig. 8 Calculated absorption (blue), emission (red) cross-section of erbium around 2800 nm. The black curve shows the difference of both were the data is taken from [26]. The green box indicates the attenuation bandwidth (full width half maximum) of the blue shifted spectrum from Fig. 1.

Tables (1)

Tables Icon

Table 1 Overview of notable high-power fiber-based SC sources in the mid-IR.

Metrics