Abstract

Wind vector estimation method that provides more available data in low signal-to-noise ratio (SNR) regime improves the performance of pulsed coherent Doppler lidar. The adaptive iteratively reweighted sine wave fitting (airSWF) method proposed here reweights the contribution of each radial wind velocity adaptively and iteratively when estimating the wind vector. Based on the processing results of both the simulated and real-captured signal, the airSWF method provides more available wind vector estimates with little computational time increment, compared with the direct sine wave fitting (DSWF) and weighted DSWF methods. Specifically, the proportion of available wind vector estimates determined using the airSWF method increases by >20% when the detection height exceeds 1 km. Another significant advantage of the airSWF method over the filtered sine wave fitting (FSWF) method is that no prior knowledge is required. Moreover, the computational complexity of the airSWF method is lower than that of the FSWF and maximum of the function of accumulated spectra methods.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wind profiling for a coherent wind Doppler lidar by an auto-adaptive background subtraction approach

Yanwei Wu, Pan Guo, Siying Chen, He Chen, and Yinchao Zhang
Appl. Opt. 56(10) 2705-2713 (2017)

Analysis of weighted subspace fitting and subspace-based eigenvector techniques for frequency estimation for the coherent Doppler lidar

Yanwei Wu, Pan Guo, Siying Chen, He Chen, Yinchao Zhang, and Xunbao Rui
Appl. Opt. 56(33) 9268-9276 (2017)

Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar

I.N. Smalikho, V.A. Banakh, F. Holzäpfel, and S. Rahm
Opt. Express 23(19) A1194-A1207 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. J. Koch, J. Y. Beyon, E. A. Modlin, P. J. Petzar, S. Woll, M. Petros, J. Yu, and M. J. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sensing 6(1), 063562 (2012).
    [Crossref]
  2. G. J. Koch, J. Y. Beyon, L. J. Cowen, M. J. Kavaya, and M. S. Grant, “Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar,” J. Appl. Remote Sensing 8(1), 083662 (2014).
    [Crossref]
  3. R. Krishnamurthy, A. Choukulkar, R. Calhoun, J. Fine, A. Oliver, and K. S. Barr, “Coherent Doppler lidar for wind farm characterization,” Wind Energ. 16(2), 189–206 (2013).
    [Crossref]
  4. F. Köpp, S. Rahm, and I. Smalikho, “Characterization of aircraft wake vortices by 2-µm pulsed Doppler lidar,” J. Atmospheric Oceanic Technol. 21(2), 194–206 (2004).
    [Crossref]
  5. S. Rahm and I. Smalikho, “Aircraft wake vortex measurement with airborne coherent Doppler lidar,” J. Aircr. 45(4), 1148–1155 (2008).
    [Crossref]
  6. I. N. Smalikho and V. A. Banakh, “Estimation of aircraft wake vortex parameters from data measured with a 1.5 µm coherent Doppler lidar,” Opt. Lett. 40(14), 3408–3411 (2015).
    [Crossref]
  7. I. N. Smalikho, V. A. Banakh, F. Holzapfel, and S. Rahm, “Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar,” Opt. Express 23(19), A1194–1207 (2015).
    [Crossref]
  8. B. Gross, S. Wu, J. Yin, R. Li, X. Wang, B. Liu, J. Liu, F. Moshary, and M. Arend, “Observations and analysis of turbulent wake of wind turbine by coherent Doppler lidar,” EPJ Web Conf. 119, 11003 (2016).
    [Crossref]
  9. S. Wu, B. Liu, J. Liu, X. Zhai, C. Feng, G. Wang, H. Zhang, J. Yin, X. Wang, R. Li, and D. Gallacher, “Wind turbine wake visualization and characteristics analysis by Doppler lidar,” Opt. Express 24(10), A762–780 (2016).
    [Crossref]
  10. X. Zhai, S. Wu, and B. Liu, “Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness,” Opt. Express 25(12), A515–A529 (2017).
    [Crossref]
  11. V. A. Banakh, I. N. Smalikho, and S. Rahm, “Determination of the optical turbulence intensity from data measured by a coherent Doppler lidar,” in 20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, G. G. Matvienko and O. A. Romanovski, eds. (2014).
  12. R. Frehlich and N. Kelley, “Measurements of wind and turbulence profiles with scanning Doppler lidar for wind energy applications,” IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 1(1), 42–47 (2008).
    [Crossref]
  13. R. Frehlich, Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, “Measurements of boundary layer profiles in an urban environment,” J. Appl. Meteorology Climatology 45(6), 821–837 (2006).
    [Crossref]
  14. I. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2 µm Doppler lidar,” J. Atmospheric Oceanic Technol. 22(11), 1733–1747 (2005).
    [Crossref]
  15. J. Berg, J. Mann, and E. G. Patton, “Lidar-observed stress vectors and veer in the atmospheric boundary layer,” J. Atmospheric Oceanic Technol. 30(9), 1961–1969 (2013).
    [Crossref]
  16. V. A. Banakh and I. N. Smalikho, “Lidar observations of atmospheric internal waves in the boundary layer of the atmosphere on the coast of Lake Baikal,” Atmos. Meas. Tech. 9(10), 5239–5248 (2016).
    [Crossref]
  17. V. A. Banakh, I. N. Smalikho, and S. Rahm, “Estimation of the refractive index structure characteristic of air from coherent Doppler wind lidar data,” Opt. Lett. 39(15), 4321–4324 (2014).
    [Crossref]
  18. R. Hardesty, “Performance of a discrete spectral peak frequency estimator for Doppler wind velocity measurements,” IEEE Trans. Geosci. Electron. GE-24(5), 777–783 (1986).
    [Crossref]
  19. B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Electron. 31(1), 16–27 (1993).
    [Crossref]
  20. B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Electron. 31(1), 28–35 (1993).
    [Crossref]
  21. Y. Wu, P. Guo, S. Chen, H. Chen, Y. Zhang, and X. Rui, “Analysis of weighted subspace fitting and subspace-based eigenvector techniques for frequency estimation for the coherent Doppler lidar,” Appl. Opt. 56(33), 9268–9276 (2017).
    [Crossref]
  22. G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 µm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
    [Crossref]
  23. N. S. Prasad, A. Tracy, S. Vetorino, R. Higgins, and R. Sibell, “Innovative fiber-laser architecture-based compact wind lidar,” Proceedings of the Photonic Instrumentation Engineering III, 9754, 97540J (2016).
  24. J. Y. Beyon and G. J. Koch, “Novel nonlinear adaptive Doppler-shift estimation technique for the coherent Doppler validation lidar,” Opt. Eng. 46(1), 016002 (2007).
    [Crossref]
  25. R. G. Frehlich and M. J. Yadlowsky, “Performance of mean-frequency estimators for Doppler radar and lidar,” J. Atmospheric Oceanic Technol. 11(5), 1217–1230 (1994).
    [Crossref]
  26. P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström, “Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar,” Atmos. Meas. Tech. 8(11), 4993–5007 (2015).
    [Crossref]
  27. S. Kongara, R. Calhoun, A. Choukulkar, and M.-O. Boldi, “Velocity retrieval for coherent Doppler lidar,” Int. J. Remote Sensing 33(11), 3596–3613 (2012).
    [Crossref]
  28. E. Päschke, R. Leinweber, and V. Lehmann, “An assessment of the performance of a 1.5 µm Doppler lidar for operational vertical wind profiling based on a 1-year trial,” Atmos. Meas. Tech. 8(6), 2251–2266 (2015).
    [Crossref]
  29. I. Smalikho, “Techniques of wind vector estimation from data measured with a scanning coherent Doppler lidar,” J. Atmospheric Oceanic Technol. 20(2), 276–291 (2003).
    [Crossref]
  30. R. Newsom, C. Sivaraman, T. Shippert, and L. Riihimaki, “Doppler Lidar WIND Value Added Product” (2015.6), retrieved https://engineering.arm.gov/∼newsom/Doppler/doc/DLPROFWIND_DraftTechReport_20150617.pdf .
  31. S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
    [Crossref]
  32. Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst 135(5), 1138–1146 (2010).
    [Crossref]
  33. S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Performance of discrete-Fourier-transform-based velocity estimators for a wind-sensing coherent Doppler lidar system in the Kolmogorov turbulence regime,” IEEE Trans. Geosci. Electron. 47(10), 3560–3569 (2009).
    [Crossref]
  34. R. Frehlich, “Effects of wind turbulence on coherent Doppler lidar performance,” J. Atmospheric Oceanic Technol. 14(1), 54–75 (1997).
    [Crossref]
  35. X. Rui, P. Guo, H. Chen, S. Chen, Y. Zhang, M. Zhao, Y. Wu, and P. Zhao, “Portable coherent Doppler light detection and ranging for boundary-layer wind sensing,” Opt. Eng. 58(03), 1 (2019).
    [Crossref]

2019 (1)

X. Rui, P. Guo, H. Chen, S. Chen, Y. Zhang, M. Zhao, Y. Wu, and P. Zhao, “Portable coherent Doppler light detection and ranging for boundary-layer wind sensing,” Opt. Eng. 58(03), 1 (2019).
[Crossref]

2017 (2)

2016 (3)

V. A. Banakh and I. N. Smalikho, “Lidar observations of atmospheric internal waves in the boundary layer of the atmosphere on the coast of Lake Baikal,” Atmos. Meas. Tech. 9(10), 5239–5248 (2016).
[Crossref]

B. Gross, S. Wu, J. Yin, R. Li, X. Wang, B. Liu, J. Liu, F. Moshary, and M. Arend, “Observations and analysis of turbulent wake of wind turbine by coherent Doppler lidar,” EPJ Web Conf. 119, 11003 (2016).
[Crossref]

S. Wu, B. Liu, J. Liu, X. Zhai, C. Feng, G. Wang, H. Zhang, J. Yin, X. Wang, R. Li, and D. Gallacher, “Wind turbine wake visualization and characteristics analysis by Doppler lidar,” Opt. Express 24(10), A762–780 (2016).
[Crossref]

2015 (4)

I. N. Smalikho and V. A. Banakh, “Estimation of aircraft wake vortex parameters from data measured with a 1.5 µm coherent Doppler lidar,” Opt. Lett. 40(14), 3408–3411 (2015).
[Crossref]

I. N. Smalikho, V. A. Banakh, F. Holzapfel, and S. Rahm, “Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar,” Opt. Express 23(19), A1194–1207 (2015).
[Crossref]

P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström, “Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar,” Atmos. Meas. Tech. 8(11), 4993–5007 (2015).
[Crossref]

E. Päschke, R. Leinweber, and V. Lehmann, “An assessment of the performance of a 1.5 µm Doppler lidar for operational vertical wind profiling based on a 1-year trial,” Atmos. Meas. Tech. 8(6), 2251–2266 (2015).
[Crossref]

2014 (3)

S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
[Crossref]

G. J. Koch, J. Y. Beyon, L. J. Cowen, M. J. Kavaya, and M. S. Grant, “Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar,” J. Appl. Remote Sensing 8(1), 083662 (2014).
[Crossref]

V. A. Banakh, I. N. Smalikho, and S. Rahm, “Estimation of the refractive index structure characteristic of air from coherent Doppler wind lidar data,” Opt. Lett. 39(15), 4321–4324 (2014).
[Crossref]

2013 (2)

R. Krishnamurthy, A. Choukulkar, R. Calhoun, J. Fine, A. Oliver, and K. S. Barr, “Coherent Doppler lidar for wind farm characterization,” Wind Energ. 16(2), 189–206 (2013).
[Crossref]

J. Berg, J. Mann, and E. G. Patton, “Lidar-observed stress vectors and veer in the atmospheric boundary layer,” J. Atmospheric Oceanic Technol. 30(9), 1961–1969 (2013).
[Crossref]

2012 (2)

S. Kongara, R. Calhoun, A. Choukulkar, and M.-O. Boldi, “Velocity retrieval for coherent Doppler lidar,” Int. J. Remote Sensing 33(11), 3596–3613 (2012).
[Crossref]

G. J. Koch, J. Y. Beyon, E. A. Modlin, P. J. Petzar, S. Woll, M. Petros, J. Yu, and M. J. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sensing 6(1), 063562 (2012).
[Crossref]

2010 (1)

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst 135(5), 1138–1146 (2010).
[Crossref]

2009 (1)

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Performance of discrete-Fourier-transform-based velocity estimators for a wind-sensing coherent Doppler lidar system in the Kolmogorov turbulence regime,” IEEE Trans. Geosci. Electron. 47(10), 3560–3569 (2009).
[Crossref]

2008 (2)

S. Rahm and I. Smalikho, “Aircraft wake vortex measurement with airborne coherent Doppler lidar,” J. Aircr. 45(4), 1148–1155 (2008).
[Crossref]

R. Frehlich and N. Kelley, “Measurements of wind and turbulence profiles with scanning Doppler lidar for wind energy applications,” IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 1(1), 42–47 (2008).
[Crossref]

2007 (2)

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 µm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

J. Y. Beyon and G. J. Koch, “Novel nonlinear adaptive Doppler-shift estimation technique for the coherent Doppler validation lidar,” Opt. Eng. 46(1), 016002 (2007).
[Crossref]

2006 (1)

R. Frehlich, Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, “Measurements of boundary layer profiles in an urban environment,” J. Appl. Meteorology Climatology 45(6), 821–837 (2006).
[Crossref]

2005 (1)

I. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2 µm Doppler lidar,” J. Atmospheric Oceanic Technol. 22(11), 1733–1747 (2005).
[Crossref]

2004 (1)

F. Köpp, S. Rahm, and I. Smalikho, “Characterization of aircraft wake vortices by 2-µm pulsed Doppler lidar,” J. Atmospheric Oceanic Technol. 21(2), 194–206 (2004).
[Crossref]

2003 (1)

I. Smalikho, “Techniques of wind vector estimation from data measured with a scanning coherent Doppler lidar,” J. Atmospheric Oceanic Technol. 20(2), 276–291 (2003).
[Crossref]

1997 (1)

R. Frehlich, “Effects of wind turbulence on coherent Doppler lidar performance,” J. Atmospheric Oceanic Technol. 14(1), 54–75 (1997).
[Crossref]

1994 (1)

R. G. Frehlich and M. J. Yadlowsky, “Performance of mean-frequency estimators for Doppler radar and lidar,” J. Atmospheric Oceanic Technol. 11(5), 1217–1230 (1994).
[Crossref]

1993 (2)

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Electron. 31(1), 16–27 (1993).
[Crossref]

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Electron. 31(1), 28–35 (1993).
[Crossref]

1986 (1)

R. Hardesty, “Performance of a discrete spectral peak frequency estimator for Doppler wind velocity measurements,” IEEE Trans. Geosci. Electron. GE-24(5), 777–783 (1986).
[Crossref]

Achtert, P.

P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström, “Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar,” Atmos. Meas. Tech. 8(11), 4993–5007 (2015).
[Crossref]

Amzajerdian, F.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 µm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Ando, T.

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Performance of discrete-Fourier-transform-based velocity estimators for a wind-sensing coherent Doppler lidar system in the Kolmogorov turbulence regime,” IEEE Trans. Geosci. Electron. 47(10), 3560–3569 (2009).
[Crossref]

Arend, M.

B. Gross, S. Wu, J. Yin, R. Li, X. Wang, B. Liu, J. Liu, F. Moshary, and M. Arend, “Observations and analysis of turbulent wake of wind turbine by coherent Doppler lidar,” EPJ Web Conf. 119, 11003 (2016).
[Crossref]

Asaka, K.

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Performance of discrete-Fourier-transform-based velocity estimators for a wind-sensing coherent Doppler lidar system in the Kolmogorov turbulence regime,” IEEE Trans. Geosci. Electron. 47(10), 3560–3569 (2009).
[Crossref]

Balsley, B.

R. Frehlich, Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, “Measurements of boundary layer profiles in an urban environment,” J. Appl. Meteorology Climatology 45(6), 821–837 (2006).
[Crossref]

Banakh, V. A.

V. A. Banakh and I. N. Smalikho, “Lidar observations of atmospheric internal waves in the boundary layer of the atmosphere on the coast of Lake Baikal,” Atmos. Meas. Tech. 9(10), 5239–5248 (2016).
[Crossref]

I. N. Smalikho and V. A. Banakh, “Estimation of aircraft wake vortex parameters from data measured with a 1.5 µm coherent Doppler lidar,” Opt. Lett. 40(14), 3408–3411 (2015).
[Crossref]

I. N. Smalikho, V. A. Banakh, F. Holzapfel, and S. Rahm, “Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar,” Opt. Express 23(19), A1194–1207 (2015).
[Crossref]

V. A. Banakh, I. N. Smalikho, and S. Rahm, “Estimation of the refractive index structure characteristic of air from coherent Doppler wind lidar data,” Opt. Lett. 39(15), 4321–4324 (2014).
[Crossref]

V. A. Banakh, I. N. Smalikho, and S. Rahm, “Determination of the optical turbulence intensity from data measured by a coherent Doppler lidar,” in 20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, G. G. Matvienko and O. A. Romanovski, eds. (2014).

Barnes, B. W.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 µm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Barr, K. S.

R. Krishnamurthy, A. Choukulkar, R. Calhoun, J. Fine, A. Oliver, and K. S. Barr, “Coherent Doppler lidar for wind farm characterization,” Wind Energ. 16(2), 189–206 (2013).
[Crossref]

Berg, J.

J. Berg, J. Mann, and E. G. Patton, “Lidar-observed stress vectors and veer in the atmospheric boundary layer,” J. Atmospheric Oceanic Technol. 30(9), 1961–1969 (2013).
[Crossref]

Beyon, J. Y.

G. J. Koch, J. Y. Beyon, L. J. Cowen, M. J. Kavaya, and M. S. Grant, “Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar,” J. Appl. Remote Sensing 8(1), 083662 (2014).
[Crossref]

G. J. Koch, J. Y. Beyon, E. A. Modlin, P. J. Petzar, S. Woll, M. Petros, J. Yu, and M. J. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sensing 6(1), 063562 (2012).
[Crossref]

J. Y. Beyon and G. J. Koch, “Novel nonlinear adaptive Doppler-shift estimation technique for the coherent Doppler validation lidar,” Opt. Eng. 46(1), 016002 (2007).
[Crossref]

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 µm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Boldi, M.-O.

S. Kongara, R. Calhoun, A. Choukulkar, and M.-O. Boldi, “Velocity retrieval for coherent Doppler lidar,” Int. J. Remote Sensing 33(11), 3596–3613 (2012).
[Crossref]

Brooks, B. J.

P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström, “Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar,” Atmos. Meas. Tech. 8(11), 4993–5007 (2015).
[Crossref]

Brooks, I. M.

P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström, “Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar,” Atmos. Meas. Tech. 8(11), 4993–5007 (2015).
[Crossref]

Calhoun, R.

R. Krishnamurthy, A. Choukulkar, R. Calhoun, J. Fine, A. Oliver, and K. S. Barr, “Coherent Doppler lidar for wind farm characterization,” Wind Energ. 16(2), 189–206 (2013).
[Crossref]

S. Kongara, R. Calhoun, A. Choukulkar, and M.-O. Boldi, “Velocity retrieval for coherent Doppler lidar,” Int. J. Remote Sensing 33(11), 3596–3613 (2012).
[Crossref]

Chen, H.

X. Rui, P. Guo, H. Chen, S. Chen, Y. Zhang, M. Zhao, Y. Wu, and P. Zhao, “Portable coherent Doppler light detection and ranging for boundary-layer wind sensing,” Opt. Eng. 58(03), 1 (2019).
[Crossref]

Y. Wu, P. Guo, S. Chen, H. Chen, Y. Zhang, and X. Rui, “Analysis of weighted subspace fitting and subspace-based eigenvector techniques for frequency estimation for the coherent Doppler lidar,” Appl. Opt. 56(33), 9268–9276 (2017).
[Crossref]

Chen, S.

X. Rui, P. Guo, H. Chen, S. Chen, Y. Zhang, M. Zhao, Y. Wu, and P. Zhao, “Portable coherent Doppler light detection and ranging for boundary-layer wind sensing,” Opt. Eng. 58(03), 1 (2019).
[Crossref]

Y. Wu, P. Guo, S. Chen, H. Chen, Y. Zhang, and X. Rui, “Analysis of weighted subspace fitting and subspace-based eigenvector techniques for frequency estimation for the coherent Doppler lidar,” Appl. Opt. 56(33), 9268–9276 (2017).
[Crossref]

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst 135(5), 1138–1146 (2010).
[Crossref]

Choukulkar, A.

R. Krishnamurthy, A. Choukulkar, R. Calhoun, J. Fine, A. Oliver, and K. S. Barr, “Coherent Doppler lidar for wind farm characterization,” Wind Energ. 16(2), 189–206 (2013).
[Crossref]

S. Kongara, R. Calhoun, A. Choukulkar, and M.-O. Boldi, “Velocity retrieval for coherent Doppler lidar,” Int. J. Remote Sensing 33(11), 3596–3613 (2012).
[Crossref]

Cowen, L. J.

G. J. Koch, J. Y. Beyon, L. J. Cowen, M. J. Kavaya, and M. S. Grant, “Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar,” J. Appl. Remote Sensing 8(1), 083662 (2014).
[Crossref]

Du, C.

S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
[Crossref]

Feng, C.

Fine, J.

R. Krishnamurthy, A. Choukulkar, R. Calhoun, J. Fine, A. Oliver, and K. S. Barr, “Coherent Doppler lidar for wind farm characterization,” Wind Energ. 16(2), 189–206 (2013).
[Crossref]

Frehlich, R.

R. Frehlich and N. Kelley, “Measurements of wind and turbulence profiles with scanning Doppler lidar for wind energy applications,” IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 1(1), 42–47 (2008).
[Crossref]

R. Frehlich, Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, “Measurements of boundary layer profiles in an urban environment,” J. Appl. Meteorology Climatology 45(6), 821–837 (2006).
[Crossref]

R. Frehlich, “Effects of wind turbulence on coherent Doppler lidar performance,” J. Atmospheric Oceanic Technol. 14(1), 54–75 (1997).
[Crossref]

Frehlich, R. G.

R. G. Frehlich and M. J. Yadlowsky, “Performance of mean-frequency estimators for Doppler radar and lidar,” J. Atmospheric Oceanic Technol. 11(5), 1217–1230 (1994).
[Crossref]

Gallacher, D.

Grant, M. S.

G. J. Koch, J. Y. Beyon, L. J. Cowen, M. J. Kavaya, and M. S. Grant, “Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar,” J. Appl. Remote Sensing 8(1), 083662 (2014).
[Crossref]

Gross, B.

B. Gross, S. Wu, J. Yin, R. Li, X. Wang, B. Liu, J. Liu, F. Moshary, and M. Arend, “Observations and analysis of turbulent wake of wind turbine by coherent Doppler lidar,” EPJ Web Conf. 119, 11003 (2016).
[Crossref]

Guo, P.

X. Rui, P. Guo, H. Chen, S. Chen, Y. Zhang, M. Zhao, Y. Wu, and P. Zhao, “Portable coherent Doppler light detection and ranging for boundary-layer wind sensing,” Opt. Eng. 58(03), 1 (2019).
[Crossref]

Y. Wu, P. Guo, S. Chen, H. Chen, Y. Zhang, and X. Rui, “Analysis of weighted subspace fitting and subspace-based eigenvector techniques for frequency estimation for the coherent Doppler lidar,” Appl. Opt. 56(33), 9268–9276 (2017).
[Crossref]

Hardesty, R.

R. Hardesty, “Performance of a discrete spectral peak frequency estimator for Doppler wind velocity measurements,” IEEE Trans. Geosci. Electron. GE-24(5), 777–783 (1986).
[Crossref]

Hardesty, R. M.

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Electron. 31(1), 16–27 (1993).
[Crossref]

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Electron. 31(1), 28–35 (1993).
[Crossref]

He, J.

S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
[Crossref]

He, S.

S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
[Crossref]

Higgins, R.

N. S. Prasad, A. Tracy, S. Vetorino, R. Higgins, and R. Sibell, “Innovative fiber-laser architecture-based compact wind lidar,” Proceedings of the Photonic Instrumentation Engineering III, 9754, 97540J (2016).

Hirano, Y.

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Performance of discrete-Fourier-transform-based velocity estimators for a wind-sensing coherent Doppler lidar system in the Kolmogorov turbulence regime,” IEEE Trans. Geosci. Electron. 47(10), 3560–3569 (2009).
[Crossref]

Holzapfel, F.

Huang, Y.

S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
[Crossref]

Jensen, M. L.

R. Frehlich, Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, “Measurements of boundary layer profiles in an urban environment,” J. Appl. Meteorology Climatology 45(6), 821–837 (2006).
[Crossref]

Kameyama, S.

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Performance of discrete-Fourier-transform-based velocity estimators for a wind-sensing coherent Doppler lidar system in the Kolmogorov turbulence regime,” IEEE Trans. Geosci. Electron. 47(10), 3560–3569 (2009).
[Crossref]

Kavaya, M. J.

G. J. Koch, J. Y. Beyon, L. J. Cowen, M. J. Kavaya, and M. S. Grant, “Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar,” J. Appl. Remote Sensing 8(1), 083662 (2014).
[Crossref]

G. J. Koch, J. Y. Beyon, E. A. Modlin, P. J. Petzar, S. Woll, M. Petros, J. Yu, and M. J. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sensing 6(1), 063562 (2012).
[Crossref]

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 µm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Kelley, N.

R. Frehlich and N. Kelley, “Measurements of wind and turbulence profiles with scanning Doppler lidar for wind energy applications,” IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 1(1), 42–47 (2008).
[Crossref]

Koch, G. J.

G. J. Koch, J. Y. Beyon, L. J. Cowen, M. J. Kavaya, and M. S. Grant, “Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar,” J. Appl. Remote Sensing 8(1), 083662 (2014).
[Crossref]

G. J. Koch, J. Y. Beyon, E. A. Modlin, P. J. Petzar, S. Woll, M. Petros, J. Yu, and M. J. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sensing 6(1), 063562 (2012).
[Crossref]

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 µm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

J. Y. Beyon and G. J. Koch, “Novel nonlinear adaptive Doppler-shift estimation technique for the coherent Doppler validation lidar,” Opt. Eng. 46(1), 016002 (2007).
[Crossref]

Kongara, S.

S. Kongara, R. Calhoun, A. Choukulkar, and M.-O. Boldi, “Velocity retrieval for coherent Doppler lidar,” Int. J. Remote Sensing 33(11), 3596–3613 (2012).
[Crossref]

Köpp, F.

I. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2 µm Doppler lidar,” J. Atmospheric Oceanic Technol. 22(11), 1733–1747 (2005).
[Crossref]

F. Köpp, S. Rahm, and I. Smalikho, “Characterization of aircraft wake vortices by 2-µm pulsed Doppler lidar,” J. Atmospheric Oceanic Technol. 21(2), 194–206 (2004).
[Crossref]

Krishnamurthy, R.

R. Krishnamurthy, A. Choukulkar, R. Calhoun, J. Fine, A. Oliver, and K. S. Barr, “Coherent Doppler lidar for wind farm characterization,” Wind Energ. 16(2), 189–206 (2013).
[Crossref]

Lehmann, V.

E. Päschke, R. Leinweber, and V. Lehmann, “An assessment of the performance of a 1.5 µm Doppler lidar for operational vertical wind profiling based on a 1-year trial,” Atmos. Meas. Tech. 8(6), 2251–2266 (2015).
[Crossref]

Leinweber, R.

E. Päschke, R. Leinweber, and V. Lehmann, “An assessment of the performance of a 1.5 µm Doppler lidar for operational vertical wind profiling based on a 1-year trial,” Atmos. Meas. Tech. 8(6), 2251–2266 (2015).
[Crossref]

Li, R.

B. Gross, S. Wu, J. Yin, R. Li, X. Wang, B. Liu, J. Liu, F. Moshary, and M. Arend, “Observations and analysis of turbulent wake of wind turbine by coherent Doppler lidar,” EPJ Web Conf. 119, 11003 (2016).
[Crossref]

S. Wu, B. Liu, J. Liu, X. Zhai, C. Feng, G. Wang, H. Zhang, J. Yin, X. Wang, R. Li, and D. Gallacher, “Wind turbine wake visualization and characteristics analysis by Doppler lidar,” Opt. Express 24(10), A762–780 (2016).
[Crossref]

Liang, Y. Z.

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst 135(5), 1138–1146 (2010).
[Crossref]

Liu, B.

Liu, J.

B. Gross, S. Wu, J. Yin, R. Li, X. Wang, B. Liu, J. Liu, F. Moshary, and M. Arend, “Observations and analysis of turbulent wake of wind turbine by coherent Doppler lidar,” EPJ Web Conf. 119, 11003 (2016).
[Crossref]

S. Wu, B. Liu, J. Liu, X. Zhai, C. Feng, G. Wang, H. Zhang, J. Yin, X. Wang, R. Li, and D. Gallacher, “Wind turbine wake visualization and characteristics analysis by Doppler lidar,” Opt. Express 24(10), A762–780 (2016).
[Crossref]

Liu, L.

S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
[Crossref]

Mann, J.

J. Berg, J. Mann, and E. G. Patton, “Lidar-observed stress vectors and veer in the atmospheric boundary layer,” J. Atmospheric Oceanic Technol. 30(9), 1961–1969 (2013).
[Crossref]

Meillier, Y.

R. Frehlich, Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, “Measurements of boundary layer profiles in an urban environment,” J. Appl. Meteorology Climatology 45(6), 821–837 (2006).
[Crossref]

Moat, B. I.

P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström, “Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar,” Atmos. Meas. Tech. 8(11), 4993–5007 (2015).
[Crossref]

Modlin, E. A.

G. J. Koch, J. Y. Beyon, E. A. Modlin, P. J. Petzar, S. Woll, M. Petros, J. Yu, and M. J. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sensing 6(1), 063562 (2012).
[Crossref]

Moshary, F.

B. Gross, S. Wu, J. Yin, R. Li, X. Wang, B. Liu, J. Liu, F. Moshary, and M. Arend, “Observations and analysis of turbulent wake of wind turbine by coherent Doppler lidar,” EPJ Web Conf. 119, 11003 (2016).
[Crossref]

Newsom, R.

R. Newsom, C. Sivaraman, T. Shippert, and L. Riihimaki, “Doppler Lidar WIND Value Added Product” (2015.6), retrieved https://engineering.arm.gov/∼newsom/Doppler/doc/DLPROFWIND_DraftTechReport_20150617.pdf .

Oliver, A.

R. Krishnamurthy, A. Choukulkar, R. Calhoun, J. Fine, A. Oliver, and K. S. Barr, “Coherent Doppler lidar for wind farm characterization,” Wind Energ. 16(2), 189–206 (2013).
[Crossref]

Päschke, E.

E. Päschke, R. Leinweber, and V. Lehmann, “An assessment of the performance of a 1.5 µm Doppler lidar for operational vertical wind profiling based on a 1-year trial,” Atmos. Meas. Tech. 8(6), 2251–2266 (2015).
[Crossref]

Patton, E. G.

J. Berg, J. Mann, and E. G. Patton, “Lidar-observed stress vectors and veer in the atmospheric boundary layer,” J. Atmospheric Oceanic Technol. 30(9), 1961–1969 (2013).
[Crossref]

Persson, P. O. G.

P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström, “Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar,” Atmos. Meas. Tech. 8(11), 4993–5007 (2015).
[Crossref]

Petros, M.

G. J. Koch, J. Y. Beyon, E. A. Modlin, P. J. Petzar, S. Woll, M. Petros, J. Yu, and M. J. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sensing 6(1), 063562 (2012).
[Crossref]

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 µm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Petzar, P. J.

G. J. Koch, J. Y. Beyon, E. A. Modlin, P. J. Petzar, S. Woll, M. Petros, J. Yu, and M. J. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sensing 6(1), 063562 (2012).
[Crossref]

Prasad, N. S.

N. S. Prasad, A. Tracy, S. Vetorino, R. Higgins, and R. Sibell, “Innovative fiber-laser architecture-based compact wind lidar,” Proceedings of the Photonic Instrumentation Engineering III, 9754, 97540J (2016).

Prytherch, J.

P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström, “Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar,” Atmos. Meas. Tech. 8(11), 4993–5007 (2015).
[Crossref]

Rahm, S.

I. N. Smalikho, V. A. Banakh, F. Holzapfel, and S. Rahm, “Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar,” Opt. Express 23(19), A1194–1207 (2015).
[Crossref]

V. A. Banakh, I. N. Smalikho, and S. Rahm, “Estimation of the refractive index structure characteristic of air from coherent Doppler wind lidar data,” Opt. Lett. 39(15), 4321–4324 (2014).
[Crossref]

S. Rahm and I. Smalikho, “Aircraft wake vortex measurement with airborne coherent Doppler lidar,” J. Aircr. 45(4), 1148–1155 (2008).
[Crossref]

I. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2 µm Doppler lidar,” J. Atmospheric Oceanic Technol. 22(11), 1733–1747 (2005).
[Crossref]

F. Köpp, S. Rahm, and I. Smalikho, “Characterization of aircraft wake vortices by 2-µm pulsed Doppler lidar,” J. Atmospheric Oceanic Technol. 21(2), 194–206 (2004).
[Crossref]

V. A. Banakh, I. N. Smalikho, and S. Rahm, “Determination of the optical turbulence intensity from data measured by a coherent Doppler lidar,” in 20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, G. G. Matvienko and O. A. Romanovski, eds. (2014).

Riihimaki, L.

R. Newsom, C. Sivaraman, T. Shippert, and L. Riihimaki, “Doppler Lidar WIND Value Added Product” (2015.6), retrieved https://engineering.arm.gov/∼newsom/Doppler/doc/DLPROFWIND_DraftTechReport_20150617.pdf .

Rui, X.

X. Rui, P. Guo, H. Chen, S. Chen, Y. Zhang, M. Zhao, Y. Wu, and P. Zhao, “Portable coherent Doppler light detection and ranging for boundary-layer wind sensing,” Opt. Eng. 58(03), 1 (2019).
[Crossref]

Y. Wu, P. Guo, S. Chen, H. Chen, Y. Zhang, and X. Rui, “Analysis of weighted subspace fitting and subspace-based eigenvector techniques for frequency estimation for the coherent Doppler lidar,” Appl. Opt. 56(33), 9268–9276 (2017).
[Crossref]

Rye, B. J.

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Electron. 31(1), 16–27 (1993).
[Crossref]

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Electron. 31(1), 28–35 (1993).
[Crossref]

Sharman, R.

R. Frehlich, Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, “Measurements of boundary layer profiles in an urban environment,” J. Appl. Meteorology Climatology 45(6), 821–837 (2006).
[Crossref]

Shippert, T.

R. Newsom, C. Sivaraman, T. Shippert, and L. Riihimaki, “Doppler Lidar WIND Value Added Product” (2015.6), retrieved https://engineering.arm.gov/∼newsom/Doppler/doc/DLPROFWIND_DraftTechReport_20150617.pdf .

Sibell, R.

N. S. Prasad, A. Tracy, S. Vetorino, R. Higgins, and R. Sibell, “Innovative fiber-laser architecture-based compact wind lidar,” Proceedings of the Photonic Instrumentation Engineering III, 9754, 97540J (2016).

Singh, U. N.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 µm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Sivaraman, C.

R. Newsom, C. Sivaraman, T. Shippert, and L. Riihimaki, “Doppler Lidar WIND Value Added Product” (2015.6), retrieved https://engineering.arm.gov/∼newsom/Doppler/doc/DLPROFWIND_DraftTechReport_20150617.pdf .

Smalikho, I.

S. Rahm and I. Smalikho, “Aircraft wake vortex measurement with airborne coherent Doppler lidar,” J. Aircr. 45(4), 1148–1155 (2008).
[Crossref]

I. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2 µm Doppler lidar,” J. Atmospheric Oceanic Technol. 22(11), 1733–1747 (2005).
[Crossref]

F. Köpp, S. Rahm, and I. Smalikho, “Characterization of aircraft wake vortices by 2-µm pulsed Doppler lidar,” J. Atmospheric Oceanic Technol. 21(2), 194–206 (2004).
[Crossref]

I. Smalikho, “Techniques of wind vector estimation from data measured with a scanning coherent Doppler lidar,” J. Atmospheric Oceanic Technol. 20(2), 276–291 (2003).
[Crossref]

Smalikho, I. N.

V. A. Banakh and I. N. Smalikho, “Lidar observations of atmospheric internal waves in the boundary layer of the atmosphere on the coast of Lake Baikal,” Atmos. Meas. Tech. 9(10), 5239–5248 (2016).
[Crossref]

I. N. Smalikho and V. A. Banakh, “Estimation of aircraft wake vortex parameters from data measured with a 1.5 µm coherent Doppler lidar,” Opt. Lett. 40(14), 3408–3411 (2015).
[Crossref]

I. N. Smalikho, V. A. Banakh, F. Holzapfel, and S. Rahm, “Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar,” Opt. Express 23(19), A1194–1207 (2015).
[Crossref]

V. A. Banakh, I. N. Smalikho, and S. Rahm, “Estimation of the refractive index structure characteristic of air from coherent Doppler wind lidar data,” Opt. Lett. 39(15), 4321–4324 (2014).
[Crossref]

V. A. Banakh, I. N. Smalikho, and S. Rahm, “Determination of the optical turbulence intensity from data measured by a coherent Doppler lidar,” in 20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, G. G. Matvienko and O. A. Romanovski, eds. (2014).

Tjernström, M.

P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström, “Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar,” Atmos. Meas. Tech. 8(11), 4993–5007 (2015).
[Crossref]

Tracy, A.

N. S. Prasad, A. Tracy, S. Vetorino, R. Higgins, and R. Sibell, “Innovative fiber-laser architecture-based compact wind lidar,” Proceedings of the Photonic Instrumentation Engineering III, 9754, 97540J (2016).

Vetorino, S.

N. S. Prasad, A. Tracy, S. Vetorino, R. Higgins, and R. Sibell, “Innovative fiber-laser architecture-based compact wind lidar,” Proceedings of the Photonic Instrumentation Engineering III, 9754, 97540J (2016).

Wadaka, S.

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Performance of discrete-Fourier-transform-based velocity estimators for a wind-sensing coherent Doppler lidar system in the Kolmogorov turbulence regime,” IEEE Trans. Geosci. Electron. 47(10), 3560–3569 (2009).
[Crossref]

Wang, G.

Wang, X.

S. Wu, B. Liu, J. Liu, X. Zhai, C. Feng, G. Wang, H. Zhang, J. Yin, X. Wang, R. Li, and D. Gallacher, “Wind turbine wake visualization and characteristics analysis by Doppler lidar,” Opt. Express 24(10), A762–780 (2016).
[Crossref]

B. Gross, S. Wu, J. Yin, R. Li, X. Wang, B. Liu, J. Liu, F. Moshary, and M. Arend, “Observations and analysis of turbulent wake of wind turbine by coherent Doppler lidar,” EPJ Web Conf. 119, 11003 (2016).
[Crossref]

Woll, S.

G. J. Koch, J. Y. Beyon, E. A. Modlin, P. J. Petzar, S. Woll, M. Petros, J. Yu, and M. J. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sensing 6(1), 063562 (2012).
[Crossref]

Wu, P.

S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
[Crossref]

Wu, S.

Wu, Y.

X. Rui, P. Guo, H. Chen, S. Chen, Y. Zhang, M. Zhao, Y. Wu, and P. Zhao, “Portable coherent Doppler light detection and ranging for boundary-layer wind sensing,” Opt. Eng. 58(03), 1 (2019).
[Crossref]

Y. Wu, P. Guo, S. Chen, H. Chen, Y. Zhang, and X. Rui, “Analysis of weighted subspace fitting and subspace-based eigenvector techniques for frequency estimation for the coherent Doppler lidar,” Appl. Opt. 56(33), 9268–9276 (2017).
[Crossref]

Xie, W.

S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
[Crossref]

Yadlowsky, M. J.

R. G. Frehlich and M. J. Yadlowsky, “Performance of mean-frequency estimators for Doppler radar and lidar,” J. Atmospheric Oceanic Technol. 11(5), 1217–1230 (1994).
[Crossref]

Yin, J.

B. Gross, S. Wu, J. Yin, R. Li, X. Wang, B. Liu, J. Liu, F. Moshary, and M. Arend, “Observations and analysis of turbulent wake of wind turbine by coherent Doppler lidar,” EPJ Web Conf. 119, 11003 (2016).
[Crossref]

S. Wu, B. Liu, J. Liu, X. Zhai, C. Feng, G. Wang, H. Zhang, J. Yin, X. Wang, R. Li, and D. Gallacher, “Wind turbine wake visualization and characteristics analysis by Doppler lidar,” Opt. Express 24(10), A762–780 (2016).
[Crossref]

Yu, J.

G. J. Koch, J. Y. Beyon, E. A. Modlin, P. J. Petzar, S. Woll, M. Petros, J. Yu, and M. J. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sensing 6(1), 063562 (2012).
[Crossref]

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 µm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Zhai, X.

Zhang, H.

Zhang, W.

S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
[Crossref]

Zhang, Y.

X. Rui, P. Guo, H. Chen, S. Chen, Y. Zhang, M. Zhao, Y. Wu, and P. Zhao, “Portable coherent Doppler light detection and ranging for boundary-layer wind sensing,” Opt. Eng. 58(03), 1 (2019).
[Crossref]

Y. Wu, P. Guo, S. Chen, H. Chen, Y. Zhang, and X. Rui, “Analysis of weighted subspace fitting and subspace-based eigenvector techniques for frequency estimation for the coherent Doppler lidar,” Appl. Opt. 56(33), 9268–9276 (2017).
[Crossref]

Zhang, Z. M.

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst 135(5), 1138–1146 (2010).
[Crossref]

Zhao, M.

X. Rui, P. Guo, H. Chen, S. Chen, Y. Zhang, M. Zhao, Y. Wu, and P. Zhao, “Portable coherent Doppler light detection and ranging for boundary-layer wind sensing,” Opt. Eng. 58(03), 1 (2019).
[Crossref]

Zhao, P.

X. Rui, P. Guo, H. Chen, S. Chen, Y. Zhang, M. Zhao, Y. Wu, and P. Zhao, “Portable coherent Doppler light detection and ranging for boundary-layer wind sensing,” Opt. Eng. 58(03), 1 (2019).
[Crossref]

Anal. Methods (1)

S. He, W. Zhang, L. Liu, Y. Huang, J. He, W. Xie, P. Wu, and C. Du, “Baseline correction for Raman spectra using an improved asymmetric least squares method,” Anal. Methods 6(12), 4402–4407 (2014).
[Crossref]

Analyst (1)

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst 135(5), 1138–1146 (2010).
[Crossref]

Appl. Opt. (1)

Atmos. Meas. Tech. (3)

P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström, “Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar,” Atmos. Meas. Tech. 8(11), 4993–5007 (2015).
[Crossref]

E. Päschke, R. Leinweber, and V. Lehmann, “An assessment of the performance of a 1.5 µm Doppler lidar for operational vertical wind profiling based on a 1-year trial,” Atmos. Meas. Tech. 8(6), 2251–2266 (2015).
[Crossref]

V. A. Banakh and I. N. Smalikho, “Lidar observations of atmospheric internal waves in the boundary layer of the atmosphere on the coast of Lake Baikal,” Atmos. Meas. Tech. 9(10), 5239–5248 (2016).
[Crossref]

EPJ Web Conf. (1)

B. Gross, S. Wu, J. Yin, R. Li, X. Wang, B. Liu, J. Liu, F. Moshary, and M. Arend, “Observations and analysis of turbulent wake of wind turbine by coherent Doppler lidar,” EPJ Web Conf. 119, 11003 (2016).
[Crossref]

IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing (1)

R. Frehlich and N. Kelley, “Measurements of wind and turbulence profiles with scanning Doppler lidar for wind energy applications,” IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 1(1), 42–47 (2008).
[Crossref]

IEEE Trans. Geosci. Electron. (4)

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Performance of discrete-Fourier-transform-based velocity estimators for a wind-sensing coherent Doppler lidar system in the Kolmogorov turbulence regime,” IEEE Trans. Geosci. Electron. 47(10), 3560–3569 (2009).
[Crossref]

R. Hardesty, “Performance of a discrete spectral peak frequency estimator for Doppler wind velocity measurements,” IEEE Trans. Geosci. Electron. GE-24(5), 777–783 (1986).
[Crossref]

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Electron. 31(1), 16–27 (1993).
[Crossref]

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Electron. 31(1), 28–35 (1993).
[Crossref]

Int. J. Remote Sensing (1)

S. Kongara, R. Calhoun, A. Choukulkar, and M.-O. Boldi, “Velocity retrieval for coherent Doppler lidar,” Int. J. Remote Sensing 33(11), 3596–3613 (2012).
[Crossref]

J. Aircr. (1)

S. Rahm and I. Smalikho, “Aircraft wake vortex measurement with airborne coherent Doppler lidar,” J. Aircr. 45(4), 1148–1155 (2008).
[Crossref]

J. Appl. Meteorology Climatology (1)

R. Frehlich, Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, “Measurements of boundary layer profiles in an urban environment,” J. Appl. Meteorology Climatology 45(6), 821–837 (2006).
[Crossref]

J. Appl. Remote Sensing (2)

G. J. Koch, J. Y. Beyon, E. A. Modlin, P. J. Petzar, S. Woll, M. Petros, J. Yu, and M. J. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sensing 6(1), 063562 (2012).
[Crossref]

G. J. Koch, J. Y. Beyon, L. J. Cowen, M. J. Kavaya, and M. S. Grant, “Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar,” J. Appl. Remote Sensing 8(1), 083662 (2014).
[Crossref]

J. Atmospheric Oceanic Technol. (6)

I. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2 µm Doppler lidar,” J. Atmospheric Oceanic Technol. 22(11), 1733–1747 (2005).
[Crossref]

J. Berg, J. Mann, and E. G. Patton, “Lidar-observed stress vectors and veer in the atmospheric boundary layer,” J. Atmospheric Oceanic Technol. 30(9), 1961–1969 (2013).
[Crossref]

F. Köpp, S. Rahm, and I. Smalikho, “Characterization of aircraft wake vortices by 2-µm pulsed Doppler lidar,” J. Atmospheric Oceanic Technol. 21(2), 194–206 (2004).
[Crossref]

R. G. Frehlich and M. J. Yadlowsky, “Performance of mean-frequency estimators for Doppler radar and lidar,” J. Atmospheric Oceanic Technol. 11(5), 1217–1230 (1994).
[Crossref]

R. Frehlich, “Effects of wind turbulence on coherent Doppler lidar performance,” J. Atmospheric Oceanic Technol. 14(1), 54–75 (1997).
[Crossref]

I. Smalikho, “Techniques of wind vector estimation from data measured with a scanning coherent Doppler lidar,” J. Atmospheric Oceanic Technol. 20(2), 276–291 (2003).
[Crossref]

Opt. Eng. (3)

X. Rui, P. Guo, H. Chen, S. Chen, Y. Zhang, M. Zhao, Y. Wu, and P. Zhao, “Portable coherent Doppler light detection and ranging for boundary-layer wind sensing,” Opt. Eng. 58(03), 1 (2019).
[Crossref]

J. Y. Beyon and G. J. Koch, “Novel nonlinear adaptive Doppler-shift estimation technique for the coherent Doppler validation lidar,” Opt. Eng. 46(1), 016002 (2007).
[Crossref]

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 µm Doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Wind Energ. (1)

R. Krishnamurthy, A. Choukulkar, R. Calhoun, J. Fine, A. Oliver, and K. S. Barr, “Coherent Doppler lidar for wind farm characterization,” Wind Energ. 16(2), 189–206 (2013).
[Crossref]

Other (3)

V. A. Banakh, I. N. Smalikho, and S. Rahm, “Determination of the optical turbulence intensity from data measured by a coherent Doppler lidar,” in 20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, G. G. Matvienko and O. A. Romanovski, eds. (2014).

N. S. Prasad, A. Tracy, S. Vetorino, R. Higgins, and R. Sibell, “Innovative fiber-laser architecture-based compact wind lidar,” Proceedings of the Photonic Instrumentation Engineering III, 9754, 97540J (2016).

R. Newsom, C. Sivaraman, T. Shippert, and L. Riihimaki, “Doppler Lidar WIND Value Added Product” (2015.6), retrieved https://engineering.arm.gov/∼newsom/Doppler/doc/DLPROFWIND_DraftTechReport_20150617.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Scheme of VAD scanning technique for a ground-based PCDL system.
Fig. 2.
Fig. 2. Flowchart of the proposed airSWF method.
Fig. 3.
Fig. 3. Simulated signal: (a) real part of the amplitude of a single pulse; (b) averaged noise and signal PSD of the real part.
Fig. 4.
Fig. 4. Histogram distribution of the fds-SNR of the simulated signals.
Fig. 5.
Fig. 5. Histogram and PDF of the estimated radial wind velocities with fds-SNRs of (a) −16 dB and (b) −22 dB; (c) Relationship between the fds-SNR and the SD of reliable radial wind velocity estimates and the detection probability.
Fig. 6.
Fig. 6. Radial wind velocities vs. azimuth angles; the mean fds-SNRs are: (a) −16.01 dB and (b) −19.3 dB.
Fig. 7.
Fig. 7. (a) Residual and (b) correlation between the fitting radial wind velocities and the true radial wind velocities vs. different mean frequency search band SNRs; (c) Proportion of available wind vectors estimated using the different methods vs. different mean frequency search band SNRs; (d) Time required (in seconds) for the different wind vector estimation methods.
Fig. 8.
Fig. 8. (a) Structure diagram and (b) photo of the portable PCDL system.
Fig. 9.
Fig. 9. Relationship between the frequency-domain search band SNR and the SD of reliable radial wind velocity estimates and the detection probability for the real captured signal.
Fig. 10.
Fig. 10. Spatial-temporal pseudo-color map of horizontal wind velocities estimated using (a) DSWF; (b) wDSWF; (c) airSWF; and (d) FSWF methods.
Fig. 11.
Fig. 11. Spatial-temporal pseudo-color map of (a) fds-SNR and horizontal wind velocities estimated using (b) DSWF; (c) airSWF; and (d) FSWF methods.

Tables (2)

Tables Icon

Table 1. Parameters of the Simulated Signal

Tables Icon

Table 2. Specifications of the Portable PCDL System

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

V r i = V T S i .
PDF ( V ^ r i | V ) = 1 b 2 π σ i exp [ ( V ^ r i V T S i ) 2 2 σ i 2 ] + b B V ,
PDF ( V ^ r 1 , V ^ r 2 , , , V ^ r p | V ) = i = 1 p PDF ( V ^ r i | V ) .
L ( V ) = i = 1 p ( V ^ r i V T S i ) 2 .
V ^ = ( i = 1 p S i S i T ) 1 i = 1 p V ^ r i S i .
Q ( V ) = i = 1 p exp [ ( V ^ r i V T S i ) 2 2 σ i 2 ] .
L w ( V ) = i = 1 p w i ( V ^ r i V T S i ) 2 ,
V ^ = ( i = 1 p w i S i S i T ) 1 i = 1 p w i V ^ r i S i .
d i ( t ) = abs ( V r i ( t ) V ^ r i ) .
w i ( t + 1 ) = 2 1 + exp { 2 [ d i ( t ) ( 2 s d ( t ) m d ( t ) ) s d ( t ) ] } ,
| w i ( t + 1 ) w i ( t ) | | w i ( t ) | 1 p .
S ( m , n ) = SN R W 2 ln 2 T s π Δ t τ = P P { x ( τ , n ) exp [ j 2 π ( 2 V ( τ , n ) λ + f A O M ) ( m 1 ) T s ] , × exp ( 2 ln 2 ( m M / 2 + τ ) 2 T s 2 Δ t 2 ) } + N W G ( m , n )
V ^ r i = λ ( f s h i f t f A O M ) 2 ,

Metrics