Abstract

We report the generation of extremely broadband and inherently phase-locked mid-infrared pulses covering the 5 to 11 µm region. The concept is based on two stages of optical parametric amplification starting from a 270-fs Yb:KGW laser source. A continuum seeded, second harmonic pumped pre-amplifier in β-BaB2O4 (BBO) produces tailored broadband near-infrared pulses that are subsequently mixed with the fundamental pump pulses in LiGaS2 (LGS) for mid-infrared generation and amplification. The pulse bandwidth and chirp is managed entirely by selected optical filters and bulk material. We find an overall quantum efficiency of 1% and a mid-infrared spectrum smoothly covering 5-11 µm with a pulse energy of 220 nJ at 50 kHz repetition rate. Electro-optic sampling with 12-fs long white-light pulses directly from self-compression in a YAG crystal reveals near-single-cycle mid-infrared pulses (32 fs) with passively stable carrier-envelope phase. Such pulses will be ideal for producing attosecond electron pulses or for advancing molecular fingerprint spectroscopy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generation of carrier-envelope phase-stable mid-infrared pulses via dual-wavelength optical parametric amplification

Keisuke Kaneshima, Nobuhisa Ishii, Kengo Takeuchi, and Jiro Itatani
Opt. Express 24(8) 8660-8665 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, “Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 µm,” J. Opt. Soc. Am. B 17(12), 2086–2094 (2000).
    [Crossref]
  2. H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
    [Crossref]
  3. V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
    [Crossref]
  4. M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, “Real-time observation of interfering crystal electrons in high-harmonic generation,” Nature 523(7562), 572–575 (2015).
    [Crossref]
  5. C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
    [Crossref]
  6. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem. 3(1), 175–205 (2010).
    [Crossref]
  7. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  8. M. Bradler, J. C. Werhahn, D. Hutzler, S. Fuhrmann, R. Heider, E. Riedle, H. Iglev, and R. Kienberger, “A novel setup for femtosecond pump-repump-probe IR spectroscopy with few cycle CEP stable pulses,” Opt. Express 21(17), 20145–20158 (2013).
    [Crossref]
  9. H. Timmers, A. Kowligy, A. Lind, F. C. Cruz, N. Nader, M. Silfies, G. Ycas, T. K. Allison, P. G. Schunemann, S. B. Papp, and S. A. Diddams, “Molecular fingerprinting with bright, broadband infrared frequency combs,” Optica 5(6), 727–732 (2018).
    [Crossref]
  10. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M. C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36(15), 2755–2757 (2011).
    [Crossref]
  11. U. Elu, M. Baudisch, H. Pires, F. Tani, M. H. Frosz, F. Köttig, A. Ermolov, P. St.J. Russell, and J. Biegert, “High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier,” Optica 4(9), 1024–1029 (2017).
    [Crossref]
  12. O. Novák, P. R. Krogen, T. Kroh, T. Mocek, F. X. Kärtner, and K. H. Hong, “Femtosecond 8.5 µm source based on intrapulse difference-frequency generation of 2.1 µm pulses,” Opt. Lett. 43(6), 1335–1338 (2018).
    [Crossref]
  13. S. Vasilyev, I. S. Moskalev, V. O. Smolski, J. M. Peppers, M. Mirov, A. V. Muraviev, K. Zawilski, P. G. Schunemann, S. B. Mirov, K. L. Vodopyanov, and V. P. Gapontsev, “Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5-µm pulses,” Optica 6(1), 111–114 (2019).
    [Crossref]
  14. A. Sell, A. Leitenstorfer, and R. Huber, “Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm,” Opt. Lett. 33(23), 2767–2769 (2008).
    [Crossref]
  15. K. Reimann, R. P. Smith, A. M. Weiner, T. Elsaesser, and M. Woerner, “Direct field-resolved detection of terahertz transients with amplitudes of megavolts per centimeter,” Opt. Lett. 28(6), 471–473 (2003).
    [Crossref]
  16. Y. Nomura, H. Shirai, K. Ishii, N. Tsurumachi, A. A. Voronin, A. M. Zheltikov, and T. Fuji, “Phase-stable sub-cycle mid-infrared conical emission from filamentation in gases,” Opt. Express 20(22), 24741–24747 (2012).
    [Crossref]
  17. A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, S. I. Mitryukovsky, A. B. Fedotov, E. E. Serebryannikov, D. V. Meshchankin, V. Shumakova, S. Ališauskas, A. Pugžlys, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt few-cycle mid-infrared pulses from a single filament,” Optica 3(3), 299–302 (2016).
    [Crossref]
  18. Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
    [Crossref]
  19. I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
    [Crossref]
  20. M. Knorr, J. Raab, M. Tauer, P. Merkl, D. Peller, E. Wittmann, E. Riedle, C. Lange, and R. Huber, “Phase-locked multi-terahertz electric fields exceeding 13 MV/cm at a 190 kHz repetition rate,” Opt. Lett. 42(21), 4367–4370 (2017).
    [Crossref]
  21. K. Kato, K. Miyata, L. Isaenko, S. Lobanov, V. Vedenyapin, and V. Petrov, “Phase-matching properties of LiGaS2 in the 1.025-10.910 µm spectral range,” Opt. Lett. 42(21), 4363–4366 (2017).
    [Crossref]
  22. M. Huber, W. Schweinberger, F. Stutzki, J. Limpert, I. Pupeza, and O. Pronin, “Active intensity noise suppression for a broadband mid-infrared laser source,” Opt. Express 25(19), 22499–22509 (2017).
    [Crossref]
  23. B. H. Chen, T. Nagy, and P. Baum, “Efficient middle-infrared generation in LiGaS2 by simultaneous spectral broadening and difference-frequency generation,” Opt. Lett. 43(12), 2876 (2018).
    [Crossref]
  24. M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
    [Crossref]
  25. S. B. Penwell, L. Whaley-Mayda, and A. Tokmakoff, “Single-stage MHz mid-IR OPA using LiGaS2 and a fiber laser pump source,” Opt. Lett. 43(6), 1363–1366 (2018).
    [Crossref]
  26. M. Bradler, C. Homann, and E. Riedle, “Mid-IR femtosecond pulse generation on the microjoule level up to 5µm at high repetition rates,” Opt. Lett. 36(21), 4212–4214 (2011).
    [Crossref]
  27. C. Homann, M. Bradler, M. Förster, P. Hommelhoff, and E. Riedle, “Carrier-envelope phase stable sub-two-cycle pulses tunable around 1.8 µm at 100 kHz,” Opt. Lett. 37(10), 1673–1675 (2012).
    [Crossref]
  28. M. Neuhaus, H. Fuest, M. Seeger, J. Schötz, M. Trubetskov, P. Russbueldt, H. D. Hoffmann, E. Riedle, Zs. Major, V. Pervak, M. F. Kling, and P. Wnuk, “10 W CEP-stable few-cycle source at 2 µm with 100 kHz repetition rate,” Opt. Express 26(13), 16074–16085 (2018).
    [Crossref]
  29. P. Baum, S. Lochbrunner, and E. Riedle, “Generation of tunable 7-fs ultraviolet pulses: achromatic phase matching and chirp management,” Appl. Phys. B: Lasers Opt. 79(8), 1027–1032 (2004).
    [Crossref]
  30. D. Ehberger, A. Ryabov, and P. Baum, “Tilted electron pulses,” Phys. Rev. Lett. 121(9), 094801 (2018).
    [Crossref]
  31. A. Ryabov and P. Baum, “Electron microscopy of electromagnetic waveforms,” Science 353(6297), 374–377 (2016).
    [Crossref]
  32. M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-µJ pump pulses,” Appl. Phys. B: Lasers Opt. 97(3), 561–574 (2009).
    [Crossref]
  33. J. Piel, M. Beutter, and E. Riedle, “20-50-fs pulses tunable across the near infrared from a blue-pumped noncollinear parametric amplifier,” Opt. Lett. 25(3), 180–182 (2000).
    [Crossref]
  34. F. Habel and V. Pervak, “Dispersive mirror for the mid-infrared spectral range of 9-11.5 µm,” Appl. Opt. 56(4), C71–C74 (2017).
    [Crossref]
  35. I. Z. Kozma, P. Baum, S. Lochbrunner, and E. Riedle, “Widely tunable sub-30 fs ultraviolet pulses by chirped sum frequency mixing,” Opt. Express 11(23), 3110–3115 (2003).
    [Crossref]
  36. C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, “Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: Approaching the near infrared,” Appl. Phys. Lett. 85(16), 3360–3362 (2004).
    [Crossref]
  37. E. Wittmann, M. Bradler, and E. Riedle, “Direct generation of 7 fs whitelight pulses from bulk sapphire,” in Preceedings of the 19th International Conference on Ultrafast Phenomena162, 725–728 (2014).
  38. I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, “Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses,” Rev. Sci. Instrum. 75(7), 2323–2327 (2004).
    [Crossref]
  39. M. Porer, J. Ménard, and R. Huber, “Shot noise reduced terahertz detection via spectrally postfiltered electro-optic sampling,” Opt. Lett. 39(8), 2435–2438 (2014).
    [Crossref]
  40. C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79(1), 013107 (2008).
    [Crossref]
  41. M. Knorr, P. Steinleitner, J. Raab, I. Gronwald, P. Merkl, C. Lange, and R. Huber, “Ultrabroadband etalon-free detection of infrared transients by van-der-Waals contacted sub-10-µ m GaSe detectors,” Opt. Express 26(15), 19059–19066 (2018).
    [Crossref]
  42. C. Homann and E. Riedle, “Direct measurement of the effective input noise power of an optical parametric amplifier,” Laser Photonics Rev. 7(4), 580–588 (2013).
    [Crossref]
  43. A. von Hoegen, R. Mankowsky, M. Fechner, M. Först, and A. Cavalleri, “Probing the interatomic potential of solids with strong-field nonlinear phononics,” Nature 555(7694), 79–82 (2018).
    [Crossref]
  44. H. K. Liang, P. Krogen, Z. Wang, H. Park, T. Kroh, K. Zawilski, P. Schunemann, J. Moses, L. F. DiMauro, F. X. Kärtner, and K. H. Hong, “High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier,” Nat. Commun. 8(1), 141 (2017).
    [Crossref]
  45. Y. Morimoto and P. Baum, “Diffraction and microscopy with attosecond electron pulse trains,” Nat. Phys. 14(3), 252–256 (2018).
    [Crossref]
  46. V. S. Yakovlev, M. I. Stockman, F. Krausz, and P. Baum, “Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter,” Sci. Rep. 5(1), 14581 (2015).
    [Crossref]

2019 (1)

2018 (11)

O. Novák, P. R. Krogen, T. Kroh, T. Mocek, F. X. Kärtner, and K. H. Hong, “Femtosecond 8.5 µm source based on intrapulse difference-frequency generation of 2.1 µm pulses,” Opt. Lett. 43(6), 1335–1338 (2018).
[Crossref]

Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
[Crossref]

H. Timmers, A. Kowligy, A. Lind, F. C. Cruz, N. Nader, M. Silfies, G. Ycas, T. K. Allison, P. G. Schunemann, S. B. Papp, and S. A. Diddams, “Molecular fingerprinting with bright, broadband infrared frequency combs,” Optica 5(6), 727–732 (2018).
[Crossref]

B. H. Chen, T. Nagy, and P. Baum, “Efficient middle-infrared generation in LiGaS2 by simultaneous spectral broadening and difference-frequency generation,” Opt. Lett. 43(12), 2876 (2018).
[Crossref]

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref]

S. B. Penwell, L. Whaley-Mayda, and A. Tokmakoff, “Single-stage MHz mid-IR OPA using LiGaS2 and a fiber laser pump source,” Opt. Lett. 43(6), 1363–1366 (2018).
[Crossref]

D. Ehberger, A. Ryabov, and P. Baum, “Tilted electron pulses,” Phys. Rev. Lett. 121(9), 094801 (2018).
[Crossref]

M. Neuhaus, H. Fuest, M. Seeger, J. Schötz, M. Trubetskov, P. Russbueldt, H. D. Hoffmann, E. Riedle, Zs. Major, V. Pervak, M. F. Kling, and P. Wnuk, “10 W CEP-stable few-cycle source at 2 µm with 100 kHz repetition rate,” Opt. Express 26(13), 16074–16085 (2018).
[Crossref]

M. Knorr, P. Steinleitner, J. Raab, I. Gronwald, P. Merkl, C. Lange, and R. Huber, “Ultrabroadband etalon-free detection of infrared transients by van-der-Waals contacted sub-10-µ m GaSe detectors,” Opt. Express 26(15), 19059–19066 (2018).
[Crossref]

A. von Hoegen, R. Mankowsky, M. Fechner, M. Först, and A. Cavalleri, “Probing the interatomic potential of solids with strong-field nonlinear phononics,” Nature 555(7694), 79–82 (2018).
[Crossref]

Y. Morimoto and P. Baum, “Diffraction and microscopy with attosecond electron pulse trains,” Nat. Phys. 14(3), 252–256 (2018).
[Crossref]

2017 (6)

2016 (3)

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref]

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, S. I. Mitryukovsky, A. B. Fedotov, E. E. Serebryannikov, D. V. Meshchankin, V. Shumakova, S. Ališauskas, A. Pugžlys, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt few-cycle mid-infrared pulses from a single filament,” Optica 3(3), 299–302 (2016).
[Crossref]

A. Ryabov and P. Baum, “Electron microscopy of electromagnetic waveforms,” Science 353(6297), 374–377 (2016).
[Crossref]

2015 (5)

H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
[Crossref]

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, “Real-time observation of interfering crystal electrons in high-harmonic generation,” Nature 523(7562), 572–575 (2015).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

V. S. Yakovlev, M. I. Stockman, F. Krausz, and P. Baum, “Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter,” Sci. Rep. 5(1), 14581 (2015).
[Crossref]

2014 (1)

2013 (2)

2012 (3)

2011 (2)

2010 (1)

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem. 3(1), 175–205 (2010).
[Crossref]

2009 (1)

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-µJ pump pulses,” Appl. Phys. B: Lasers Opt. 97(3), 561–574 (2009).
[Crossref]

2008 (2)

A. Sell, A. Leitenstorfer, and R. Huber, “Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm,” Opt. Lett. 33(23), 2767–2769 (2008).
[Crossref]

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79(1), 013107 (2008).
[Crossref]

2004 (3)

C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, “Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: Approaching the near infrared,” Appl. Phys. Lett. 85(16), 3360–3362 (2004).
[Crossref]

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, “Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses,” Rev. Sci. Instrum. 75(7), 2323–2327 (2004).
[Crossref]

P. Baum, S. Lochbrunner, and E. Riedle, “Generation of tunable 7-fs ultraviolet pulses: achromatic phase matching and chirp management,” Appl. Phys. B: Lasers Opt. 79(8), 1027–1032 (2004).
[Crossref]

2003 (2)

2000 (2)

Adler, F.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem. 3(1), 175–205 (2010).
[Crossref]

Ališauskas, S.

Allison, T. K.

Andriukaitis, G.

Apolonski, A.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Arisholm, G.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref]

Balciunas, T.

Baltuška, A.

Baudisch, M.

Baum, P.

D. Ehberger, A. Ryabov, and P. Baum, “Tilted electron pulses,” Phys. Rev. Lett. 121(9), 094801 (2018).
[Crossref]

Y. Morimoto and P. Baum, “Diffraction and microscopy with attosecond electron pulse trains,” Nat. Phys. 14(3), 252–256 (2018).
[Crossref]

B. H. Chen, T. Nagy, and P. Baum, “Efficient middle-infrared generation in LiGaS2 by simultaneous spectral broadening and difference-frequency generation,” Opt. Lett. 43(12), 2876 (2018).
[Crossref]

A. Ryabov and P. Baum, “Electron microscopy of electromagnetic waveforms,” Science 353(6297), 374–377 (2016).
[Crossref]

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref]

V. S. Yakovlev, M. I. Stockman, F. Krausz, and P. Baum, “Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter,” Sci. Rep. 5(1), 14581 (2015).
[Crossref]

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-µJ pump pulses,” Appl. Phys. B: Lasers Opt. 97(3), 561–574 (2009).
[Crossref]

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, “Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses,” Rev. Sci. Instrum. 75(7), 2323–2327 (2004).
[Crossref]

P. Baum, S. Lochbrunner, and E. Riedle, “Generation of tunable 7-fs ultraviolet pulses: achromatic phase matching and chirp management,” Appl. Phys. B: Lasers Opt. 79(8), 1027–1032 (2004).
[Crossref]

I. Z. Kozma, P. Baum, S. Lochbrunner, and E. Riedle, “Widely tunable sub-30 fs ultraviolet pulses by chirped sum frequency mixing,” Opt. Express 11(23), 3110–3115 (2003).
[Crossref]

Beutter, M.

Biegert, J.

U. Elu, M. Baudisch, H. Pires, F. Tani, M. H. Frosz, F. Köttig, A. Ermolov, P. St.J. Russell, and J. Biegert, “High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier,” Optica 4(9), 1024–1029 (2017).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
[Crossref]

Bradler, M.

Cavalleri, A.

A. von Hoegen, R. Mankowsky, M. Fechner, M. Först, and A. Cavalleri, “Probing the interatomic potential of solids with strong-field nonlinear phononics,” Nature 555(7694), 79–82 (2018).
[Crossref]

Chen, B. H.

Chen, M. C.

Cheng, Z.

Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
[Crossref]

Chu, H. H.

Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
[Crossref]

Cossel, K. C.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem. 3(1), 175–205 (2010).
[Crossref]

Cruz, F. C.

Diddams, S. A.

DiMauro, L. F.

H. K. Liang, P. Krogen, Z. Wang, H. Park, T. Kroh, K. Zawilski, P. Schunemann, J. Moses, L. F. DiMauro, F. X. Kärtner, and K. H. Hong, “High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier,” Nat. Commun. 8(1), 141 (2017).
[Crossref]

Ehberger, D.

D. Ehberger, A. Ryabov, and P. Baum, “Tilted electron pulses,” Phys. Rev. Lett. 121(9), 094801 (2018).
[Crossref]

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref]

Elsaesser, T.

Elu, U.

Ermolov, A.

Fechner, M.

A. von Hoegen, R. Mankowsky, M. Fechner, M. Först, and A. Cavalleri, “Probing the interatomic potential of solids with strong-field nonlinear phononics,” Nature 555(7694), 79–82 (2018).
[Crossref]

Fedotov, A. B.

Fill, E.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Först, M.

A. von Hoegen, R. Mankowsky, M. Fechner, M. Först, and A. Cavalleri, “Probing the interatomic potential of solids with strong-field nonlinear phononics,” Nature 555(7694), 79–82 (2018).
[Crossref]

Förster, M.

Frosz, M. H.

Fuest, H.

Fuhrmann, S.

Fuji, T.

Gapontsev, V. P.

Gronwald, I.

Habel, F.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref]

F. Habel and V. Pervak, “Dispersive mirror for the mid-infrared spectral range of 9-11.5 µm,” Appl. Opt. 56(4), C71–C74 (2017).
[Crossref]

Hamm, P.

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Hartung, A.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref]

He, Y. X.

Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
[Crossref]

Heider, R.

Hemmer, M.

H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
[Crossref]

Hoffmann, H. D.

Hohenleutner, M.

M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, “Real-time observation of interfering crystal electrons in high-harmonic generation,” Nature 523(7562), 572–575 (2015).
[Crossref]

Homann, C.

Hommelhoff, P.

Hong, K. H.

O. Novák, P. R. Krogen, T. Kroh, T. Mocek, F. X. Kärtner, and K. H. Hong, “Femtosecond 8.5 µm source based on intrapulse difference-frequency generation of 2.1 µm pulses,” Opt. Lett. 43(6), 1335–1338 (2018).
[Crossref]

H. K. Liang, P. Krogen, Z. Wang, H. Park, T. Kroh, K. Zawilski, P. Schunemann, J. Moses, L. F. DiMauro, F. X. Kärtner, and K. H. Hong, “High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier,” Nat. Commun. 8(1), 141 (2017).
[Crossref]

Hua, J. F.

Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
[Crossref]

Huber, M.

Huber, R.

Hussain, S. A.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref]

Huttner, U.

M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, “Real-time observation of interfering crystal electrons in high-harmonic generation,” Nature 523(7562), 572–575 (2015).
[Crossref]

Hutzler, D.

Iglev, H.

Isaenko, L.

Ishii, K.

Joshi, C.

Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
[Crossref]

Kaindl, R. A.

Kapteyn, H. C.

Karpowicz, N.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Kärtner, F. X.

O. Novák, P. R. Krogen, T. Kroh, T. Mocek, F. X. Kärtner, and K. H. Hong, “Femtosecond 8.5 µm source based on intrapulse difference-frequency generation of 2.1 µm pulses,” Opt. Lett. 43(6), 1335–1338 (2018).
[Crossref]

H. K. Liang, P. Krogen, Z. Wang, H. Park, T. Kroh, K. Zawilski, P. Schunemann, J. Moses, L. F. DiMauro, F. X. Kärtner, and K. H. Hong, “High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier,” Nat. Commun. 8(1), 141 (2017).
[Crossref]

Kato, K.

Kealhofer, C.

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref]

Kienberger, R.

Kira, M.

M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, “Real-time observation of interfering crystal electrons in high-harmonic generation,” Nature 523(7562), 572–575 (2015).
[Crossref]

Kling, M. F.

Knorr, M.

Koch, S. W.

M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, “Real-time observation of interfering crystal electrons in high-harmonic generation,” Nature 523(7562), 572–575 (2015).
[Crossref]

Köttig, F.

Kowligy, A.

Kozma, I. Z.

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, “Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses,” Rev. Sci. Instrum. 75(7), 2323–2327 (2004).
[Crossref]

I. Z. Kozma, P. Baum, S. Lochbrunner, and E. Riedle, “Widely tunable sub-30 fs ultraviolet pulses by chirped sum frequency mixing,” Opt. Express 11(23), 3110–3115 (2003).
[Crossref]

Krausz, F.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref]

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

V. S. Yakovlev, M. I. Stockman, F. Krausz, and P. Baum, “Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter,” Sci. Rep. 5(1), 14581 (2015).
[Crossref]

Krogen, P.

H. K. Liang, P. Krogen, Z. Wang, H. Park, T. Kroh, K. Zawilski, P. Schunemann, J. Moses, L. F. DiMauro, F. X. Kärtner, and K. H. Hong, “High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier,” Nat. Commun. 8(1), 141 (2017).
[Crossref]

Krogen, P. R.

Kroh, T.

O. Novák, P. R. Krogen, T. Kroh, T. Mocek, F. X. Kärtner, and K. H. Hong, “Femtosecond 8.5 µm source based on intrapulse difference-frequency generation of 2.1 µm pulses,” Opt. Lett. 43(6), 1335–1338 (2018).
[Crossref]

H. K. Liang, P. Krogen, Z. Wang, H. Park, T. Kroh, K. Zawilski, P. Schunemann, J. Moses, L. F. DiMauro, F. X. Kärtner, and K. H. Hong, “High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier,” Nat. Commun. 8(1), 141 (2017).
[Crossref]

Kübler, C.

C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, “Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: Approaching the near infrared,” Appl. Phys. Lett. 85(16), 3360–3362 (2004).
[Crossref]

Lange, C.

Langer, F.

M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, “Real-time observation of interfering crystal electrons in high-harmonic generation,” Nature 523(7562), 572–575 (2015).
[Crossref]

Leitenstorfer, A.

A. Sell, A. Leitenstorfer, and R. Huber, “Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm,” Opt. Lett. 33(23), 2767–2769 (2008).
[Crossref]

C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, “Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: Approaching the near infrared,” Appl. Phys. Lett. 85(16), 3360–3362 (2004).
[Crossref]

Li, F.

Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
[Crossref]

Liang, H. K.

H. K. Liang, P. Krogen, Z. Wang, H. Park, T. Kroh, K. Zawilski, P. Schunemann, J. Moses, L. F. DiMauro, F. X. Kärtner, and K. H. Hong, “High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier,” Nat. Commun. 8(1), 141 (2017).
[Crossref]

Lilienfein, N.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Limpert, J.

Lind, A.

Liu, S.

Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
[Crossref]

Lobanov, S.

Lochbrunner, S.

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79(1), 013107 (2008).
[Crossref]

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, “Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses,” Rev. Sci. Instrum. 75(7), 2323–2327 (2004).
[Crossref]

P. Baum, S. Lochbrunner, and E. Riedle, “Generation of tunable 7-fs ultraviolet pulses: achromatic phase matching and chirp management,” Appl. Phys. B: Lasers Opt. 79(8), 1027–1032 (2004).
[Crossref]

I. Z. Kozma, P. Baum, S. Lochbrunner, and E. Riedle, “Widely tunable sub-30 fs ultraviolet pulses by chirped sum frequency mixing,” Opt. Express 11(23), 3110–3115 (2003).
[Crossref]

Lu, W.

Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
[Crossref]

Ma, Y.

Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
[Crossref]

Major, Zs.

Mankowsky, R.

A. von Hoegen, R. Mankowsky, M. Fechner, M. Först, and A. Cavalleri, “Probing the interatomic potential of solids with strong-field nonlinear phononics,” Nature 555(7694), 79–82 (2018).
[Crossref]

Ménard, J.

Merkl, P.

Meshchankin, D. V.

Mirov, M.

Mirov, S. B.

Mitrofanov, A. V.

Mitryukovsky, S. I.

Miyata, K.

Mocek, T.

Mori, W. B.

Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
[Crossref]

Morimoto, Y.

Y. Morimoto and P. Baum, “Diffraction and microscopy with attosecond electron pulse trains,” Nat. Phys. 14(3), 252–256 (2018).
[Crossref]

Moses, J.

H. K. Liang, P. Krogen, Z. Wang, H. Park, T. Kroh, K. Zawilski, P. Schunemann, J. Moses, L. F. DiMauro, F. X. Kärtner, and K. H. Hong, “High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier,” Nat. Commun. 8(1), 141 (2017).
[Crossref]

Moskalev, I. S.

Muraviev, A. V.

Murnane, M. M.

Nader, N.

Nagy, T.

Nesbitt, D. J.

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79(1), 013107 (2008).
[Crossref]

Neuhaus, M.

Nie, Z.

Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
[Crossref]

Ning, X. N.

Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
[Crossref]

Nomura, Y.

Novák, O.

Paasch-Colberg, T.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Pai, C. H.

Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
[Crossref]

Panchenko, V. Y.

Papp, S. B.

Park, H.

H. K. Liang, P. Krogen, Z. Wang, H. Park, T. Kroh, K. Zawilski, P. Schunemann, J. Moses, L. F. DiMauro, F. X. Kärtner, and K. H. Hong, “High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier,” Nat. Commun. 8(1), 141 (2017).
[Crossref]

Peller, D.

Penwell, S. B.

Peppers, J. M.

Pervak, V.

M. Neuhaus, H. Fuest, M. Seeger, J. Schötz, M. Trubetskov, P. Russbueldt, H. D. Hoffmann, E. Riedle, Zs. Major, V. Pervak, M. F. Kling, and P. Wnuk, “10 W CEP-stable few-cycle source at 2 µm with 100 kHz repetition rate,” Opt. Express 26(13), 16074–16085 (2018).
[Crossref]

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref]

F. Habel and V. Pervak, “Dispersive mirror for the mid-infrared spectral range of 9-11.5 µm,” Appl. Opt. 56(4), C71–C74 (2017).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Pescher, M.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Petrov, V.

K. Kato, K. Miyata, L. Isaenko, S. Lobanov, V. Vedenyapin, and V. Petrov, “Phase-matching properties of LiGaS2 in the 1.025-10.910 µm spectral range,” Opt. Lett. 42(21), 4363–4366 (2017).
[Crossref]

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Piel, J.

Pires, H.

Popmintchev, T.

Porer, M.

Pronin, O.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref]

M. Huber, W. Schweinberger, F. Stutzki, J. Limpert, I. Pupeza, and O. Pronin, “Active intensity noise suppression for a broadband mid-infrared laser source,” Opt. Express 25(19), 22499–22509 (2017).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Pugžlys, A.

Pupeza, I.

M. Huber, W. Schweinberger, F. Stutzki, J. Limpert, I. Pupeza, and O. Pronin, “Active intensity noise suppression for a broadband mid-infrared laser source,” Opt. Express 25(19), 22499–22509 (2017).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Raab, J.

Reimann, K.

Riedle, E.

M. Neuhaus, H. Fuest, M. Seeger, J. Schötz, M. Trubetskov, P. Russbueldt, H. D. Hoffmann, E. Riedle, Zs. Major, V. Pervak, M. F. Kling, and P. Wnuk, “10 W CEP-stable few-cycle source at 2 µm with 100 kHz repetition rate,” Opt. Express 26(13), 16074–16085 (2018).
[Crossref]

M. Knorr, J. Raab, M. Tauer, P. Merkl, D. Peller, E. Wittmann, E. Riedle, C. Lange, and R. Huber, “Phase-locked multi-terahertz electric fields exceeding 13 MV/cm at a 190 kHz repetition rate,” Opt. Lett. 42(21), 4367–4370 (2017).
[Crossref]

M. Bradler, J. C. Werhahn, D. Hutzler, S. Fuhrmann, R. Heider, E. Riedle, H. Iglev, and R. Kienberger, “A novel setup for femtosecond pump-repump-probe IR spectroscopy with few cycle CEP stable pulses,” Opt. Express 21(17), 20145–20158 (2013).
[Crossref]

C. Homann and E. Riedle, “Direct measurement of the effective input noise power of an optical parametric amplifier,” Laser Photonics Rev. 7(4), 580–588 (2013).
[Crossref]

C. Homann, M. Bradler, M. Förster, P. Hommelhoff, and E. Riedle, “Carrier-envelope phase stable sub-two-cycle pulses tunable around 1.8 µm at 100 kHz,” Opt. Lett. 37(10), 1673–1675 (2012).
[Crossref]

M. Bradler, C. Homann, and E. Riedle, “Mid-IR femtosecond pulse generation on the microjoule level up to 5µm at high repetition rates,” Opt. Lett. 36(21), 4212–4214 (2011).
[Crossref]

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-µJ pump pulses,” Appl. Phys. B: Lasers Opt. 97(3), 561–574 (2009).
[Crossref]

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79(1), 013107 (2008).
[Crossref]

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, “Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses,” Rev. Sci. Instrum. 75(7), 2323–2327 (2004).
[Crossref]

P. Baum, S. Lochbrunner, and E. Riedle, “Generation of tunable 7-fs ultraviolet pulses: achromatic phase matching and chirp management,” Appl. Phys. B: Lasers Opt. 79(8), 1027–1032 (2004).
[Crossref]

I. Z. Kozma, P. Baum, S. Lochbrunner, and E. Riedle, “Widely tunable sub-30 fs ultraviolet pulses by chirped sum frequency mixing,” Opt. Express 11(23), 3110–3115 (2003).
[Crossref]

J. Piel, M. Beutter, and E. Riedle, “20-50-fs pulses tunable across the near infrared from a blue-pumped noncollinear parametric amplifier,” Opt. Lett. 25(3), 180–182 (2000).
[Crossref]

E. Wittmann, M. Bradler, and E. Riedle, “Direct generation of 7 fs whitelight pulses from bulk sapphire,” in Preceedings of the 19th International Conference on Ultrafast Phenomena162, 725–728 (2014).

Russbueldt, P.

Russell, P. St.J.

Ryabov, A.

D. Ehberger, A. Ryabov, and P. Baum, “Tilted electron pulses,” Phys. Rev. Lett. 121(9), 094801 (2018).
[Crossref]

A. Ryabov and P. Baum, “Electron microscopy of electromagnetic waveforms,” Science 353(6297), 374–377 (2016).
[Crossref]

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref]

Sanchez, D.

H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
[Crossref]

Sánchez, D.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Schmidhammer, U.

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, “Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses,” Rev. Sci. Instrum. 75(7), 2323–2327 (2004).
[Crossref]

Schneider, W.

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref]

Schötz, J.

Schriever, C.

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79(1), 013107 (2008).
[Crossref]

Schubert, O.

M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, “Real-time observation of interfering crystal electrons in high-harmonic generation,” Nature 523(7562), 572–575 (2015).
[Crossref]

Schunemann, P.

H. K. Liang, P. Krogen, Z. Wang, H. Park, T. Kroh, K. Zawilski, P. Schunemann, J. Moses, L. F. DiMauro, F. X. Kärtner, and K. H. Hong, “High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier,” Nat. Commun. 8(1), 141 (2017).
[Crossref]

Schunemann, P. G.

Schweinberger, W.

M. Huber, W. Schweinberger, F. Stutzki, J. Limpert, I. Pupeza, and O. Pronin, “Active intensity noise suppression for a broadband mid-infrared laser source,” Opt. Express 25(19), 22499–22509 (2017).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Seeger, M.

Seidel, M.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Sell, A.

Serebryannikov, E. E.

Shirai, H.

Shumakova, V.

Sidorov-Biryukov, D. A.

Silfies, M.

Smith, R. P.

Smolski, V. O.

Steinleitner, P.

Stockman, M. I.

V. S. Yakovlev, M. I. Stockman, F. Krausz, and P. Baum, “Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter,” Sci. Rep. 5(1), 14581 (2015).
[Crossref]

Stutzki, F.

Su, Q. Q.

Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
[Crossref]

Tani, F.

Tauer, M.

Thorpe, M. J.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem. 3(1), 175–205 (2010).
[Crossref]

Timmers, H.

Tokmakoff, A.

Trubetskov, M.

M. Neuhaus, H. Fuest, M. Seeger, J. Schötz, M. Trubetskov, P. Russbueldt, H. D. Hoffmann, E. Riedle, Zs. Major, V. Pervak, M. F. Kling, and P. Wnuk, “10 W CEP-stable few-cycle source at 2 µm with 100 kHz repetition rate,” Opt. Express 26(13), 16074–16085 (2018).
[Crossref]

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref]

Tsurumachi, N.

Tübel, S.

C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, “Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: Approaching the near infrared,” Appl. Phys. Lett. 85(16), 3360–3362 (2004).
[Crossref]

Vasilyev, S.

Vedenyapin, V.

Vodopyanov, K. L.

von Hoegen, A.

A. von Hoegen, R. Mankowsky, M. Fechner, M. Först, and A. Cavalleri, “Probing the interatomic potential of solids with strong-field nonlinear phononics,” Nature 555(7694), 79–82 (2018).
[Crossref]

Voronin, A. A.

Wan, Y.

Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
[Crossref]

Wang, J.

Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
[Crossref]

Wang, Z.

H. K. Liang, P. Krogen, Z. Wang, H. Park, T. Kroh, K. Zawilski, P. Schunemann, J. Moses, L. F. DiMauro, F. X. Kärtner, and K. H. Hong, “High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier,” Nat. Commun. 8(1), 141 (2017).
[Crossref]

Wei, Z.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Weiner, A. M.

Werhahn, J. C.

Whaley-Mayda, L.

Wittmann, E.

M. Knorr, J. Raab, M. Tauer, P. Merkl, D. Peller, E. Wittmann, E. Riedle, C. Lange, and R. Huber, “Phase-locked multi-terahertz electric fields exceeding 13 MV/cm at a 190 kHz repetition rate,” Opt. Lett. 42(21), 4367–4370 (2017).
[Crossref]

E. Wittmann, M. Bradler, and E. Riedle, “Direct generation of 7 fs whitelight pulses from bulk sapphire,” in Preceedings of the 19th International Conference on Ultrafast Phenomena162, 725–728 (2014).

Wnuk, P.

Woerner, M.

Wu, Y. P.

Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
[Crossref]

Wurm, M.

Xiao, X.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref]

Yakovlev, V. S.

V. S. Yakovlev, M. I. Stockman, F. Krausz, and P. Baum, “Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter,” Sci. Rep. 5(1), 14581 (2015).
[Crossref]

Ycas, G.

Ye, J.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem. 3(1), 175–205 (2010).
[Crossref]

Zawilski, K.

S. Vasilyev, I. S. Moskalev, V. O. Smolski, J. M. Peppers, M. Mirov, A. V. Muraviev, K. Zawilski, P. G. Schunemann, S. B. Mirov, K. L. Vodopyanov, and V. P. Gapontsev, “Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5-µm pulses,” Optica 6(1), 111–114 (2019).
[Crossref]

H. K. Liang, P. Krogen, Z. Wang, H. Park, T. Kroh, K. Zawilski, P. Schunemann, J. Moses, L. F. DiMauro, F. X. Kärtner, and K. H. Hong, “High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier,” Nat. Commun. 8(1), 141 (2017).
[Crossref]

Zawilski, K. T.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref]

Zhang, C. J.

Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
[Crossref]

Zhang, J.

Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Zheltikov, A. M.

Znakovskaya, I.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Annu. Rev. Anal. Chem. (1)

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem. 3(1), 175–205 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (2)

P. Baum, S. Lochbrunner, and E. Riedle, “Generation of tunable 7-fs ultraviolet pulses: achromatic phase matching and chirp management,” Appl. Phys. B: Lasers Opt. 79(8), 1027–1032 (2004).
[Crossref]

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-µJ pump pulses,” Appl. Phys. B: Lasers Opt. 97(3), 561–574 (2009).
[Crossref]

Appl. Phys. Lett. (1)

C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, “Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: Approaching the near infrared,” Appl. Phys. Lett. 85(16), 3360–3362 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

C. Homann and E. Riedle, “Direct measurement of the effective input noise power of an optical parametric amplifier,” Laser Photonics Rev. 7(4), 580–588 (2013).
[Crossref]

Nat. Commun. (1)

H. K. Liang, P. Krogen, Z. Wang, H. Park, T. Kroh, K. Zawilski, P. Schunemann, J. Moses, L. F. DiMauro, F. X. Kärtner, and K. H. Hong, “High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier,” Nat. Commun. 8(1), 141 (2017).
[Crossref]

Nat. Photonics (3)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Z. Nie, C. H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma, X. N. Ning, Y. X. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12(8), 489–494 (2018).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Nat. Phys. (1)

Y. Morimoto and P. Baum, “Diffraction and microscopy with attosecond electron pulse trains,” Nat. Phys. 14(3), 252–256 (2018).
[Crossref]

Nature (2)

M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, “Real-time observation of interfering crystal electrons in high-harmonic generation,” Nature 523(7562), 572–575 (2015).
[Crossref]

A. von Hoegen, R. Mankowsky, M. Fechner, M. Först, and A. Cavalleri, “Probing the interatomic potential of solids with strong-field nonlinear phononics,” Nature 555(7694), 79–82 (2018).
[Crossref]

Opt. Express (6)

Opt. Lett. (12)

J. Piel, M. Beutter, and E. Riedle, “20-50-fs pulses tunable across the near infrared from a blue-pumped noncollinear parametric amplifier,” Opt. Lett. 25(3), 180–182 (2000).
[Crossref]

B. H. Chen, T. Nagy, and P. Baum, “Efficient middle-infrared generation in LiGaS2 by simultaneous spectral broadening and difference-frequency generation,” Opt. Lett. 43(12), 2876 (2018).
[Crossref]

K. Kato, K. Miyata, L. Isaenko, S. Lobanov, V. Vedenyapin, and V. Petrov, “Phase-matching properties of LiGaS2 in the 1.025-10.910 µm spectral range,” Opt. Lett. 42(21), 4363–4366 (2017).
[Crossref]

M. Knorr, J. Raab, M. Tauer, P. Merkl, D. Peller, E. Wittmann, E. Riedle, C. Lange, and R. Huber, “Phase-locked multi-terahertz electric fields exceeding 13 MV/cm at a 190 kHz repetition rate,” Opt. Lett. 42(21), 4367–4370 (2017).
[Crossref]

O. Novák, P. R. Krogen, T. Kroh, T. Mocek, F. X. Kärtner, and K. H. Hong, “Femtosecond 8.5 µm source based on intrapulse difference-frequency generation of 2.1 µm pulses,” Opt. Lett. 43(6), 1335–1338 (2018).
[Crossref]

S. B. Penwell, L. Whaley-Mayda, and A. Tokmakoff, “Single-stage MHz mid-IR OPA using LiGaS2 and a fiber laser pump source,” Opt. Lett. 43(6), 1363–1366 (2018).
[Crossref]

M. Porer, J. Ménard, and R. Huber, “Shot noise reduced terahertz detection via spectrally postfiltered electro-optic sampling,” Opt. Lett. 39(8), 2435–2438 (2014).
[Crossref]

A. Sell, A. Leitenstorfer, and R. Huber, “Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm,” Opt. Lett. 33(23), 2767–2769 (2008).
[Crossref]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M. C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36(15), 2755–2757 (2011).
[Crossref]

M. Bradler, C. Homann, and E. Riedle, “Mid-IR femtosecond pulse generation on the microjoule level up to 5µm at high repetition rates,” Opt. Lett. 36(21), 4212–4214 (2011).
[Crossref]

C. Homann, M. Bradler, M. Förster, P. Hommelhoff, and E. Riedle, “Carrier-envelope phase stable sub-two-cycle pulses tunable around 1.8 µm at 100 kHz,” Opt. Lett. 37(10), 1673–1675 (2012).
[Crossref]

K. Reimann, R. P. Smith, A. M. Weiner, T. Elsaesser, and M. Woerner, “Direct field-resolved detection of terahertz transients with amplitudes of megavolts per centimeter,” Opt. Lett. 28(6), 471–473 (2003).
[Crossref]

Optica (4)

Phys. Rev. Lett. (1)

D. Ehberger, A. Ryabov, and P. Baum, “Tilted electron pulses,” Phys. Rev. Lett. 121(9), 094801 (2018).
[Crossref]

Prog. Quantum Electron. (2)

H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
[Crossref]

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

Rev. Sci. Instrum. (2)

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, “Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses,” Rev. Sci. Instrum. 75(7), 2323–2327 (2004).
[Crossref]

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79(1), 013107 (2008).
[Crossref]

Sci. Adv. (1)

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), eaaq1526 (2018).
[Crossref]

Sci. Rep. (1)

V. S. Yakovlev, M. I. Stockman, F. Krausz, and P. Baum, “Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter,” Sci. Rep. 5(1), 14581 (2015).
[Crossref]

Science (2)

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref]

A. Ryabov and P. Baum, “Electron microscopy of electromagnetic waveforms,” Science 353(6297), 374–377 (2016).
[Crossref]

Other (1)

E. Wittmann, M. Bradler, and E. Riedle, “Direct generation of 7 fs whitelight pulses from bulk sapphire,” in Preceedings of the 19th International Conference on Ultrafast Phenomena162, 725–728 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Experimental setup. BBO, β-BaB2O4 crystal; LGS, LiGaS2 crystal; YAG, Y3Al5O12 crystal; Ge, Germanium plate with 4.5 µm LP filter coating; SHG, second-harmonic generation; LPF, longpass filter; SPF, shortpass filter; PZT, piezo electric transducer; EOS, electro-optic sampling; QWP, quarter-wave plate; WP, Wollaston prism. Note the absence of any pulse compression except by bulk material. The polarization of the three waves interacting in the LGS crystal is indicated.
Fig. 2.
Fig. 2. Spectra of the three key pulses involved. (a) Narrow spectrum of the laser pulses (red) and broadband spectrum of the NOPA output (orange). The grey and blue dotted line corresponds to frequencies that are needed to generate 11 and 5 µm by DFG. (b) MIR spectrum after OPA in LGS. Phase matching term sinc2(Δk: phase mismatch, d: crystal thickness) for a 0.5 mm LGS crystal at perfect phase matching (black) and optimized for bandwidth (red). For comparison the sinc2 curve for a 4 mm crystal is shown (black dotted).
Fig. 3.
Fig. 3. Calculated group delay curves of the pulses at the different stages. (a) NOPA seed at 90% of the LGS crystal. (b) MIR pulses directly after generation (purple), in comparison to the group delay of 1.5 mm of Ge (black, dashed). (c) MIR pulses after passing through 1.0 (dotted), 1.5 (solid) and 2.0 mm (dashed) of Ge.
Fig. 4.
Fig. 4. Short, weak probe pulses for EOS, obtained directly from white-light generation. (a) Spectrum measured after 2 shortpass filters. (b) Intensity autocorrelation measurement of the probe pulses (red); red dotted curve, Fourier-limited pulse shape of the spectrum shown in Fig. 4(a); black dashed curve, Gauß fit to the autocorrelation trace.
Fig. 5.
Fig. 5. Electric field of the MIR pulses and systematic study of pulse compression. (a) EOS data (blue) and retrieved electric field (red). (b) GD dispersion added by Ge. (c) Third order dispersion added. (d) MIR pulse duration as a function of Ge thickness.
Fig. 6.
Fig. 6. Beam quality measurement. (a) MIR beam profile. (b) Beam caustics in the vertical (red, y) and horizontal axis (blue, x). (c) Spectra measured at different position in the MIR beam as indicated in (a) in comparison to the total spectrum (grey).
Fig. 7.
Fig. 7. Energy dependence of the amplification in LGS. (a) The three interacting beams. (b) Output MIR energy at fixed pump energy as a function of seed energy. (c) Output MIR at fixed seed as a function of pump energy. Red line shows the sinh2 fit. (d) Gain measurement at fixed seed and increasing pump energy. Red line shows the cosh2 fit.
Fig. 8.
Fig. 8. Long-term power stability. (a) Mid-infrared power averaged over every minute. (b) Raw measurement with one data point taken every second.
Fig. 9.
Fig. 9. Stability of the carrier-envelope phase (CEP). (a) EOS traces measured repetitively over one hour, with data points taken every 7 seconds. (b) Evaluated carrier-envelope phase values. (c) Carrier-envelope phase measured as rapidly as possible in complete electro-optic sampling scans (every 7 seconds). (d) Single-shot CEP stability over 4 seconds (200,000 pulses, every 800th shown). (e) Single-shot CEP stability over 1 sec (50,000 pulses, every 200th shown).

Metrics