Abstract

We report experimental observations of a mechanism that potentially supports and intensifies induced magnetization at optical frequencies without the intervention of spin-orbit or spin-spin interactions. Energy-resolved spectra of scattered light, recorded at moderate intensities (108 W/cm2) and short timescales (<150 fs) in a series of non-magnetic molecular liquids, reveal the signature of torque dynamics driven jointly by the electric and magnetic field components of light at the molecular level. While past experiments have recorded radiant magnetization from magneto-electric interactions of this type, no evidence has been provided to date of the inelastic librational features expected in cross-polarized light scattering spectra due to the Lorentz force acting in combination with optical magnetic torque. Here, torque is shown to account for unpolarized rotational components in the magnetic scattering spectrum under conditions that produce only polarized vibrational features in electric dipole scattering, in excellent agreement with quantum theoretical predictions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical magnetization, Part I: Experiments on radiant optical magnetization in solids

Alexander A. Fisher, Elizabeth F. C. Dreyer, Ayan Chakrabarty, and Stephen C. Rand
Opt. Express 24(23) 26055-26063 (2016)

Optical magnetization, part III: theory of molecular magneto-electric rectification

Elizabeth F. C. Dreyer, Alexander A. Fisher, Gregory Smail, Petr Anisimov, and Stephen C. Rand
Opt. Express 26(14) 17755-17771 (2018)

Optical magnetization, Part II: Theory of induced optical magnetism

Alexander A. Fisher, Elizabeth F. C. Dreyer, Ayan Chakrabarty, and Stephen C. Rand
Opt. Express 24(23) 26064-26079 (2016)

References

  • View by:
  • |
  • |
  • |

  1. I. Levin, J. Li, J. Slutsker, and A. L. Roytburd, “Design of Self-Assembled Multiferroic Nanostructures in Epitaxial Films,” Adv. Mater. 18(15), 2044–2047 (2006).
    [Crossref]
  2. J. Das, Y. Y. Song, N. Mo, P. Krivosik, and C. E. Patton, “Electric-Field-Tunable Low Loss Multiferroic Ferrimagnetic–Ferroelectric Heterostructures,” Adv. Mater. 21(20), 2045–2049 (2009).
    [Crossref]
  3. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields,” Nature 429(6990), 392–395 (2004).
    [Crossref]
  4. S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. Zhang, R. Ramesh, and R. C. Dynes, “Reversible electric control of exchange bias in a multiferroic field-effect device,” Nat. Mater. 9(9), 756–761 (2010).
    [Crossref]
  5. D. Bossini, K. Konishi, S. Toyoda, T. Arima, J. Yumoto, and M. K. Gonokami, “Femtosecond activation of magnetoelectricity,” Nat. Phys. 14(4), 370–374 (2018).
    [Crossref]
  6. V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and T. Rasing, “Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films,” Phys. Rev. Lett. 78(10), 2004–2007 (1997).
    [Crossref]
  7. M. Fiebig, D. Frohlich, T. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H. -J. Weber, “Second harmonic generation in the centrosymmetric antiferromagnet NiO,” Phys. Rev. Lett. 87(13), 137202 (2001).
    [Crossref]
  8. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
    [Crossref]
  9. M. Fiebig, “Revival of the magnetoelectric effect,” J. Phys. D: Appl. Phys. 38(8), R123–R152 (2005).
    [Crossref]
  10. P. Curie, “Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique,” J. Phys. Theor. Appl. 3(1), 393–415 (1894).
    [Crossref]
  11. P. Debye, “Bemerkung zu einigen neuen Versuchen über einen magneto-elektrischen Richteffekt,” Z. Phys 36(4), 300–301 (1926).
    [Crossref]
  12. K. Y. Bliokh, Y. S. Kivshar, and F. Nori, “Magnetoelectric effects in local light-matter interactions,” Phys. Rev. Lett. 113(3), 033601 (2014).
    [Crossref]
  13. A. A. Fisher, E. F. C. Dreyer, A. Chakrabarty, and S. C. Rand, “Optical magnetization, Part I: Experiments on radiant magnetization in solids,” Opt. Express 24(23), 26055–26063 (2016).
    [Crossref]
  14. A. A. Fisher, E. F. C. Dreyer, A. Chakrabarty, and S. C. Rand, “Optical Magnetization, Part II: Theory of induced optical magnetism,” Opt. Express 24(23), 26064–26079 (2016).
    [Crossref]
  15. E. F. C. Dreyer, A. A. Fisher, P. Anisimov, and S. C. Rand, “Optical magnetism, Part III: Theory of molecular magneto-electric rectification,” Opt. Express 26(14), 17755–17771 (2018).
    [Crossref]
  16. J. Bucaro and T. Litovitz, “Rayleigh scattering: collisional motions in liquids,” J. Chem. Phys. 54(9), 3846–3853 (1971).
    [Crossref]
  17. J. McTague and G. Birnbaum, “Collision-induced light scattering in gaseous Ar and Kr,” Phys. Rev. Lett. 21(10), 661–664 (1968).
    [Crossref]
  18. L. Frommhold, “Collision-induced scattering of light and the diatom polarizabilities,” Adv. Chem. Phys. 46(1), 1–72 (1981).
    [Crossref]
  19. J. Stevens, G. Patterson, P. Carroll, and G. Alms, “The central Lorentzian in the depolarized Rayleigh spectra of CCl4 and GeCl4,” J. Chem. Phys. 76(11), 5203–5207 (1982).
    [Crossref]
  20. S. Shapiro and H. Broida, “Light scattering from fluctuations in orientations of CS2 in liquids,” Phys. Rev. 154(1), 129–138 (1967).
    [Crossref]
  21. P. Madden, “The depolarized Rayleigh scattering from fluids of spherical molecules,” Mol. Phys. 36(2), 365–388 (1978).
    [Crossref]
  22. P. J. Chappell, M. P. Allen, R. I. Hallem, and D. Kivelson, “Theory of depolarized light scattering,” J. Chem. Phys. 74(11), 5929–5941 (1981).
    [Crossref]
  23. A. A. Fisher, E. F. C. Cloos, W. M. Fisher, and S. C. Rand, “Dynamic symmetry-breaking in a simple quantum model of magneto-electric rectification, optical magnetization, and harmonic generation,” Opt. Express 22(3), 2910–2924 (2014).
    [Crossref]
  24. W. Phadungsukanan, S. Shekar, R. Shirley, M. Sander, R. H. West, and M. Kraft, “First principles thermochemistry for silicon species in the decomposition of tetraethoxysilane,” J. Phys. Chem. A 113(31), 9041–9049 (2009).
    [Crossref]
  25. T. Shinoda, “Qualitative classification of tetrahedral molecular crystals,” Mol. Cryst. Liq. Cryst. 76(3-4), 191–197 (1981).
    [Crossref]
  26. Y. R. Shen, The Principles of Nonlinear Optics. pp. 286–296 (J. Wiley & Sons)
  27. G. C. Causley and B. R. Russell, “The vacuum ultraviolet absorption spectra of the group IVA tetrachlorides,” J. Electron Spectrosc. Relat. Phenom. 11(4), 383–397 (1977).
    [Crossref]

2018 (2)

D. Bossini, K. Konishi, S. Toyoda, T. Arima, J. Yumoto, and M. K. Gonokami, “Femtosecond activation of magnetoelectricity,” Nat. Phys. 14(4), 370–374 (2018).
[Crossref]

E. F. C. Dreyer, A. A. Fisher, P. Anisimov, and S. C. Rand, “Optical magnetism, Part III: Theory of molecular magneto-electric rectification,” Opt. Express 26(14), 17755–17771 (2018).
[Crossref]

2016 (2)

2014 (2)

2010 (1)

S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. Zhang, R. Ramesh, and R. C. Dynes, “Reversible electric control of exchange bias in a multiferroic field-effect device,” Nat. Mater. 9(9), 756–761 (2010).
[Crossref]

2009 (2)

J. Das, Y. Y. Song, N. Mo, P. Krivosik, and C. E. Patton, “Electric-Field-Tunable Low Loss Multiferroic Ferrimagnetic–Ferroelectric Heterostructures,” Adv. Mater. 21(20), 2045–2049 (2009).
[Crossref]

W. Phadungsukanan, S. Shekar, R. Shirley, M. Sander, R. H. West, and M. Kraft, “First principles thermochemistry for silicon species in the decomposition of tetraethoxysilane,” J. Phys. Chem. A 113(31), 9041–9049 (2009).
[Crossref]

2007 (1)

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref]

2006 (1)

I. Levin, J. Li, J. Slutsker, and A. L. Roytburd, “Design of Self-Assembled Multiferroic Nanostructures in Epitaxial Films,” Adv. Mater. 18(15), 2044–2047 (2006).
[Crossref]

2005 (1)

M. Fiebig, “Revival of the magnetoelectric effect,” J. Phys. D: Appl. Phys. 38(8), R123–R152 (2005).
[Crossref]

2004 (1)

N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields,” Nature 429(6990), 392–395 (2004).
[Crossref]

2001 (1)

M. Fiebig, D. Frohlich, T. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H. -J. Weber, “Second harmonic generation in the centrosymmetric antiferromagnet NiO,” Phys. Rev. Lett. 87(13), 137202 (2001).
[Crossref]

1997 (1)

V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and T. Rasing, “Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films,” Phys. Rev. Lett. 78(10), 2004–2007 (1997).
[Crossref]

1982 (1)

J. Stevens, G. Patterson, P. Carroll, and G. Alms, “The central Lorentzian in the depolarized Rayleigh spectra of CCl4 and GeCl4,” J. Chem. Phys. 76(11), 5203–5207 (1982).
[Crossref]

1981 (3)

L. Frommhold, “Collision-induced scattering of light and the diatom polarizabilities,” Adv. Chem. Phys. 46(1), 1–72 (1981).
[Crossref]

T. Shinoda, “Qualitative classification of tetrahedral molecular crystals,” Mol. Cryst. Liq. Cryst. 76(3-4), 191–197 (1981).
[Crossref]

P. J. Chappell, M. P. Allen, R. I. Hallem, and D. Kivelson, “Theory of depolarized light scattering,” J. Chem. Phys. 74(11), 5929–5941 (1981).
[Crossref]

1978 (1)

P. Madden, “The depolarized Rayleigh scattering from fluids of spherical molecules,” Mol. Phys. 36(2), 365–388 (1978).
[Crossref]

1977 (1)

G. C. Causley and B. R. Russell, “The vacuum ultraviolet absorption spectra of the group IVA tetrachlorides,” J. Electron Spectrosc. Relat. Phenom. 11(4), 383–397 (1977).
[Crossref]

1971 (1)

J. Bucaro and T. Litovitz, “Rayleigh scattering: collisional motions in liquids,” J. Chem. Phys. 54(9), 3846–3853 (1971).
[Crossref]

1968 (1)

J. McTague and G. Birnbaum, “Collision-induced light scattering in gaseous Ar and Kr,” Phys. Rev. Lett. 21(10), 661–664 (1968).
[Crossref]

1967 (1)

S. Shapiro and H. Broida, “Light scattering from fluctuations in orientations of CS2 in liquids,” Phys. Rev. 154(1), 129–138 (1967).
[Crossref]

1926 (1)

P. Debye, “Bemerkung zu einigen neuen Versuchen über einen magneto-elektrischen Richteffekt,” Z. Phys 36(4), 300–301 (1926).
[Crossref]

1894 (1)

P. Curie, “Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique,” J. Phys. Theor. Appl. 3(1), 393–415 (1894).
[Crossref]

Ahn, J. S.

N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields,” Nature 429(6990), 392–395 (2004).
[Crossref]

Allen, M. P.

P. J. Chappell, M. P. Allen, R. I. Hallem, and D. Kivelson, “Theory of depolarized light scattering,” J. Chem. Phys. 74(11), 5929–5941 (1981).
[Crossref]

Alms, G.

J. Stevens, G. Patterson, P. Carroll, and G. Alms, “The central Lorentzian in the depolarized Rayleigh spectra of CCl4 and GeCl4,” J. Chem. Phys. 76(11), 5203–5207 (1982).
[Crossref]

Anisimov, P.

Arima, T.

D. Bossini, K. Konishi, S. Toyoda, T. Arima, J. Yumoto, and M. K. Gonokami, “Femtosecond activation of magnetoelectricity,” Nat. Phys. 14(4), 370–374 (2018).
[Crossref]

Birnbaum, G.

J. McTague and G. Birnbaum, “Collision-induced light scattering in gaseous Ar and Kr,” Phys. Rev. Lett. 21(10), 661–664 (1968).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh, Y. S. Kivshar, and F. Nori, “Magnetoelectric effects in local light-matter interactions,” Phys. Rev. Lett. 113(3), 033601 (2014).
[Crossref]

Bossini, D.

D. Bossini, K. Konishi, S. Toyoda, T. Arima, J. Yumoto, and M. K. Gonokami, “Femtosecond activation of magnetoelectricity,” Nat. Phys. 14(4), 370–374 (2018).
[Crossref]

Broida, H.

S. Shapiro and H. Broida, “Light scattering from fluctuations in orientations of CS2 in liquids,” Phys. Rev. 154(1), 129–138 (1967).
[Crossref]

Bucaro, J.

J. Bucaro and T. Litovitz, “Rayleigh scattering: collisional motions in liquids,” J. Chem. Phys. 54(9), 3846–3853 (1971).
[Crossref]

Carroll, P.

J. Stevens, G. Patterson, P. Carroll, and G. Alms, “The central Lorentzian in the depolarized Rayleigh spectra of CCl4 and GeCl4,” J. Chem. Phys. 76(11), 5203–5207 (1982).
[Crossref]

Causley, G. C.

G. C. Causley and B. R. Russell, “The vacuum ultraviolet absorption spectra of the group IVA tetrachlorides,” J. Electron Spectrosc. Relat. Phenom. 11(4), 383–397 (1977).
[Crossref]

Chakrabarty, A.

Chappell, P. J.

P. J. Chappell, M. P. Allen, R. I. Hallem, and D. Kivelson, “Theory of depolarized light scattering,” J. Chem. Phys. 74(11), 5929–5941 (1981).
[Crossref]

Cheong, S. W.

N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields,” Nature 429(6990), 392–395 (2004).
[Crossref]

Cloos, E. F. C.

Curie, P.

P. Curie, “Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique,” J. Phys. Theor. Appl. 3(1), 393–415 (1894).
[Crossref]

Cybart, S. A.

S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. Zhang, R. Ramesh, and R. C. Dynes, “Reversible electric control of exchange bias in a multiferroic field-effect device,” Nat. Mater. 9(9), 756–761 (2010).
[Crossref]

Das, J.

J. Das, Y. Y. Song, N. Mo, P. Krivosik, and C. E. Patton, “Electric-Field-Tunable Low Loss Multiferroic Ferrimagnetic–Ferroelectric Heterostructures,” Adv. Mater. 21(20), 2045–2049 (2009).
[Crossref]

Debye, P.

P. Debye, “Bemerkung zu einigen neuen Versuchen über einen magneto-elektrischen Richteffekt,” Z. Phys 36(4), 300–301 (1926).
[Crossref]

Dreyer, E. F. C.

Dynes, R. C.

S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. Zhang, R. Ramesh, and R. C. Dynes, “Reversible electric control of exchange bias in a multiferroic field-effect device,” Nat. Mater. 9(9), 756–761 (2010).
[Crossref]

Fiebig, M.

M. Fiebig, “Revival of the magnetoelectric effect,” J. Phys. D: Appl. Phys. 38(8), R123–R152 (2005).
[Crossref]

M. Fiebig, D. Frohlich, T. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H. -J. Weber, “Second harmonic generation in the centrosymmetric antiferromagnet NiO,” Phys. Rev. Lett. 87(13), 137202 (2001).
[Crossref]

Fisher, A. A.

Fisher, W. M.

Frohlich, D.

M. Fiebig, D. Frohlich, T. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H. -J. Weber, “Second harmonic generation in the centrosymmetric antiferromagnet NiO,” Phys. Rev. Lett. 87(13), 137202 (2001).
[Crossref]

Frommhold, L.

L. Frommhold, “Collision-induced scattering of light and the diatom polarizabilities,” Adv. Chem. Phys. 46(1), 1–72 (1981).
[Crossref]

Gonokami, M. K.

D. Bossini, K. Konishi, S. Toyoda, T. Arima, J. Yumoto, and M. K. Gonokami, “Femtosecond activation of magnetoelectricity,” Nat. Phys. 14(4), 370–374 (2018).
[Crossref]

Guha, S.

N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields,” Nature 429(6990), 392–395 (2004).
[Crossref]

Hallem, R. I.

P. J. Chappell, M. P. Allen, R. I. Hallem, and D. Kivelson, “Theory of depolarized light scattering,” J. Chem. Phys. 74(11), 5929–5941 (1981).
[Crossref]

Hansteen, F.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref]

Hur, N.

N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields,” Nature 429(6990), 392–395 (2004).
[Crossref]

Itoh, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref]

Kimel, A. V.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref]

Kirilyuk, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref]

V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and T. Rasing, “Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films,” Phys. Rev. Lett. 78(10), 2004–2007 (1997).
[Crossref]

Kivelson, D.

P. J. Chappell, M. P. Allen, R. I. Hallem, and D. Kivelson, “Theory of depolarized light scattering,” J. Chem. Phys. 74(11), 5929–5941 (1981).
[Crossref]

Kivshar, Y. S.

K. Y. Bliokh, Y. S. Kivshar, and F. Nori, “Magnetoelectric effects in local light-matter interactions,” Phys. Rev. Lett. 113(3), 033601 (2014).
[Crossref]

Konishi, K.

D. Bossini, K. Konishi, S. Toyoda, T. Arima, J. Yumoto, and M. K. Gonokami, “Femtosecond activation of magnetoelectricity,” Nat. Phys. 14(4), 370–374 (2018).
[Crossref]

Kraft, M.

W. Phadungsukanan, S. Shekar, R. Shirley, M. Sander, R. H. West, and M. Kraft, “First principles thermochemistry for silicon species in the decomposition of tetraethoxysilane,” J. Phys. Chem. A 113(31), 9041–9049 (2009).
[Crossref]

Krivosik, P.

J. Das, Y. Y. Song, N. Mo, P. Krivosik, and C. E. Patton, “Electric-Field-Tunable Low Loss Multiferroic Ferrimagnetic–Ferroelectric Heterostructures,” Adv. Mater. 21(20), 2045–2049 (2009).
[Crossref]

Levin, I.

I. Levin, J. Li, J. Slutsker, and A. L. Roytburd, “Design of Self-Assembled Multiferroic Nanostructures in Epitaxial Films,” Adv. Mater. 18(15), 2044–2047 (2006).
[Crossref]

Li, J.

I. Levin, J. Li, J. Slutsker, and A. L. Roytburd, “Design of Self-Assembled Multiferroic Nanostructures in Epitaxial Films,” Adv. Mater. 18(15), 2044–2047 (2006).
[Crossref]

Litovitz, T.

J. Bucaro and T. Litovitz, “Rayleigh scattering: collisional motions in liquids,” J. Chem. Phys. 54(9), 3846–3853 (1971).
[Crossref]

Lottermoser, T.

M. Fiebig, D. Frohlich, T. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H. -J. Weber, “Second harmonic generation in the centrosymmetric antiferromagnet NiO,” Phys. Rev. Lett. 87(13), 137202 (2001).
[Crossref]

Madden, P.

P. Madden, “The depolarized Rayleigh scattering from fluids of spherical molecules,” Mol. Phys. 36(2), 365–388 (1978).
[Crossref]

McTague, J.

J. McTague and G. Birnbaum, “Collision-induced light scattering in gaseous Ar and Kr,” Phys. Rev. Lett. 21(10), 661–664 (1968).
[Crossref]

Mo, N.

J. Das, Y. Y. Song, N. Mo, P. Krivosik, and C. E. Patton, “Electric-Field-Tunable Low Loss Multiferroic Ferrimagnetic–Ferroelectric Heterostructures,” Adv. Mater. 21(20), 2045–2049 (2009).
[Crossref]

Nori, F.

K. Y. Bliokh, Y. S. Kivshar, and F. Nori, “Magnetoelectric effects in local light-matter interactions,” Phys. Rev. Lett. 113(3), 033601 (2014).
[Crossref]

Park, S.

N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields,” Nature 429(6990), 392–395 (2004).
[Crossref]

Patterson, G.

J. Stevens, G. Patterson, P. Carroll, and G. Alms, “The central Lorentzian in the depolarized Rayleigh spectra of CCl4 and GeCl4,” J. Chem. Phys. 76(11), 5203–5207 (1982).
[Crossref]

Patton, C. E.

J. Das, Y. Y. Song, N. Mo, P. Krivosik, and C. E. Patton, “Electric-Field-Tunable Low Loss Multiferroic Ferrimagnetic–Ferroelectric Heterostructures,” Adv. Mater. 21(20), 2045–2049 (2009).
[Crossref]

Pavlov, V. V.

M. Fiebig, D. Frohlich, T. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H. -J. Weber, “Second harmonic generation in the centrosymmetric antiferromagnet NiO,” Phys. Rev. Lett. 87(13), 137202 (2001).
[Crossref]

V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and T. Rasing, “Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films,” Phys. Rev. Lett. 78(10), 2004–2007 (1997).
[Crossref]

Phadungsukanan, W.

W. Phadungsukanan, S. Shekar, R. Shirley, M. Sander, R. H. West, and M. Kraft, “First principles thermochemistry for silicon species in the decomposition of tetraethoxysilane,” J. Phys. Chem. A 113(31), 9041–9049 (2009).
[Crossref]

Pisarev, R. V.

M. Fiebig, D. Frohlich, T. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H. -J. Weber, “Second harmonic generation in the centrosymmetric antiferromagnet NiO,” Phys. Rev. Lett. 87(13), 137202 (2001).
[Crossref]

V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and T. Rasing, “Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films,” Phys. Rev. Lett. 78(10), 2004–2007 (1997).
[Crossref]

Ramesh, R.

S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. Zhang, R. Ramesh, and R. C. Dynes, “Reversible electric control of exchange bias in a multiferroic field-effect device,” Nat. Mater. 9(9), 756–761 (2010).
[Crossref]

Rand, S. C.

Rasing, T.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref]

V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and T. Rasing, “Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films,” Phys. Rev. Lett. 78(10), 2004–2007 (1997).
[Crossref]

Rossell, M. D.

S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. Zhang, R. Ramesh, and R. C. Dynes, “Reversible electric control of exchange bias in a multiferroic field-effect device,” Nat. Mater. 9(9), 756–761 (2010).
[Crossref]

Roytburd, A. L.

I. Levin, J. Li, J. Slutsker, and A. L. Roytburd, “Design of Self-Assembled Multiferroic Nanostructures in Epitaxial Films,” Adv. Mater. 18(15), 2044–2047 (2006).
[Crossref]

Russell, B. R.

G. C. Causley and B. R. Russell, “The vacuum ultraviolet absorption spectra of the group IVA tetrachlorides,” J. Electron Spectrosc. Relat. Phenom. 11(4), 383–397 (1977).
[Crossref]

Sander, M.

W. Phadungsukanan, S. Shekar, R. Shirley, M. Sander, R. H. West, and M. Kraft, “First principles thermochemistry for silicon species in the decomposition of tetraethoxysilane,” J. Phys. Chem. A 113(31), 9041–9049 (2009).
[Crossref]

Shapiro, S.

S. Shapiro and H. Broida, “Light scattering from fluctuations in orientations of CS2 in liquids,” Phys. Rev. 154(1), 129–138 (1967).
[Crossref]

Sharma, P. A.

N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields,” Nature 429(6990), 392–395 (2004).
[Crossref]

Shekar, S.

W. Phadungsukanan, S. Shekar, R. Shirley, M. Sander, R. H. West, and M. Kraft, “First principles thermochemistry for silicon species in the decomposition of tetraethoxysilane,” J. Phys. Chem. A 113(31), 9041–9049 (2009).
[Crossref]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics. pp. 286–296 (J. Wiley & Sons)

Shinoda, T.

T. Shinoda, “Qualitative classification of tetrahedral molecular crystals,” Mol. Cryst. Liq. Cryst. 76(3-4), 191–197 (1981).
[Crossref]

Shirley, R.

W. Phadungsukanan, S. Shekar, R. Shirley, M. Sander, R. H. West, and M. Kraft, “First principles thermochemistry for silicon species in the decomposition of tetraethoxysilane,” J. Phys. Chem. A 113(31), 9041–9049 (2009).
[Crossref]

Slutsker, J.

I. Levin, J. Li, J. Slutsker, and A. L. Roytburd, “Design of Self-Assembled Multiferroic Nanostructures in Epitaxial Films,” Adv. Mater. 18(15), 2044–2047 (2006).
[Crossref]

Song, Y. Y.

J. Das, Y. Y. Song, N. Mo, P. Krivosik, and C. E. Patton, “Electric-Field-Tunable Low Loss Multiferroic Ferrimagnetic–Ferroelectric Heterostructures,” Adv. Mater. 21(20), 2045–2049 (2009).
[Crossref]

Stanciu, C. D.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref]

Stevens, J.

J. Stevens, G. Patterson, P. Carroll, and G. Alms, “The central Lorentzian in the depolarized Rayleigh spectra of CCl4 and GeCl4,” J. Chem. Phys. 76(11), 5203–5207 (1982).
[Crossref]

Toyoda, S.

D. Bossini, K. Konishi, S. Toyoda, T. Arima, J. Yumoto, and M. K. Gonokami, “Femtosecond activation of magnetoelectricity,” Nat. Phys. 14(4), 370–374 (2018).
[Crossref]

Tsukamoto, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref]

Weber, H. -J.

M. Fiebig, D. Frohlich, T. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H. -J. Weber, “Second harmonic generation in the centrosymmetric antiferromagnet NiO,” Phys. Rev. Lett. 87(13), 137202 (2001).
[Crossref]

West, R. H.

W. Phadungsukanan, S. Shekar, R. Shirley, M. Sander, R. H. West, and M. Kraft, “First principles thermochemistry for silicon species in the decomposition of tetraethoxysilane,” J. Phys. Chem. A 113(31), 9041–9049 (2009).
[Crossref]

Wu, S. M.

S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. Zhang, R. Ramesh, and R. C. Dynes, “Reversible electric control of exchange bias in a multiferroic field-effect device,” Nat. Mater. 9(9), 756–761 (2010).
[Crossref]

Yu, P.

S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. Zhang, R. Ramesh, and R. C. Dynes, “Reversible electric control of exchange bias in a multiferroic field-effect device,” Nat. Mater. 9(9), 756–761 (2010).
[Crossref]

Yumoto, J.

D. Bossini, K. Konishi, S. Toyoda, T. Arima, J. Yumoto, and M. K. Gonokami, “Femtosecond activation of magnetoelectricity,” Nat. Phys. 14(4), 370–374 (2018).
[Crossref]

Zhang, J.

S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. Zhang, R. Ramesh, and R. C. Dynes, “Reversible electric control of exchange bias in a multiferroic field-effect device,” Nat. Mater. 9(9), 756–761 (2010).
[Crossref]

Adv. Chem. Phys. (1)

L. Frommhold, “Collision-induced scattering of light and the diatom polarizabilities,” Adv. Chem. Phys. 46(1), 1–72 (1981).
[Crossref]

Adv. Mater. (2)

I. Levin, J. Li, J. Slutsker, and A. L. Roytburd, “Design of Self-Assembled Multiferroic Nanostructures in Epitaxial Films,” Adv. Mater. 18(15), 2044–2047 (2006).
[Crossref]

J. Das, Y. Y. Song, N. Mo, P. Krivosik, and C. E. Patton, “Electric-Field-Tunable Low Loss Multiferroic Ferrimagnetic–Ferroelectric Heterostructures,” Adv. Mater. 21(20), 2045–2049 (2009).
[Crossref]

J. Chem. Phys. (3)

J. Stevens, G. Patterson, P. Carroll, and G. Alms, “The central Lorentzian in the depolarized Rayleigh spectra of CCl4 and GeCl4,” J. Chem. Phys. 76(11), 5203–5207 (1982).
[Crossref]

J. Bucaro and T. Litovitz, “Rayleigh scattering: collisional motions in liquids,” J. Chem. Phys. 54(9), 3846–3853 (1971).
[Crossref]

P. J. Chappell, M. P. Allen, R. I. Hallem, and D. Kivelson, “Theory of depolarized light scattering,” J. Chem. Phys. 74(11), 5929–5941 (1981).
[Crossref]

J. Electron Spectrosc. Relat. Phenom. (1)

G. C. Causley and B. R. Russell, “The vacuum ultraviolet absorption spectra of the group IVA tetrachlorides,” J. Electron Spectrosc. Relat. Phenom. 11(4), 383–397 (1977).
[Crossref]

J. Phys. Chem. A (1)

W. Phadungsukanan, S. Shekar, R. Shirley, M. Sander, R. H. West, and M. Kraft, “First principles thermochemistry for silicon species in the decomposition of tetraethoxysilane,” J. Phys. Chem. A 113(31), 9041–9049 (2009).
[Crossref]

J. Phys. D: Appl. Phys. (1)

M. Fiebig, “Revival of the magnetoelectric effect,” J. Phys. D: Appl. Phys. 38(8), R123–R152 (2005).
[Crossref]

J. Phys. Theor. Appl. (1)

P. Curie, “Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique,” J. Phys. Theor. Appl. 3(1), 393–415 (1894).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

T. Shinoda, “Qualitative classification of tetrahedral molecular crystals,” Mol. Cryst. Liq. Cryst. 76(3-4), 191–197 (1981).
[Crossref]

Mol. Phys. (1)

P. Madden, “The depolarized Rayleigh scattering from fluids of spherical molecules,” Mol. Phys. 36(2), 365–388 (1978).
[Crossref]

Nat. Mater. (1)

S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. Zhang, R. Ramesh, and R. C. Dynes, “Reversible electric control of exchange bias in a multiferroic field-effect device,” Nat. Mater. 9(9), 756–761 (2010).
[Crossref]

Nat. Phys. (1)

D. Bossini, K. Konishi, S. Toyoda, T. Arima, J. Yumoto, and M. K. Gonokami, “Femtosecond activation of magnetoelectricity,” Nat. Phys. 14(4), 370–374 (2018).
[Crossref]

Nature (1)

N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields,” Nature 429(6990), 392–395 (2004).
[Crossref]

Opt. Express (4)

Phys. Rev. (1)

S. Shapiro and H. Broida, “Light scattering from fluctuations in orientations of CS2 in liquids,” Phys. Rev. 154(1), 129–138 (1967).
[Crossref]

Phys. Rev. Lett. (5)

J. McTague and G. Birnbaum, “Collision-induced light scattering in gaseous Ar and Kr,” Phys. Rev. Lett. 21(10), 661–664 (1968).
[Crossref]

V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and T. Rasing, “Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films,” Phys. Rev. Lett. 78(10), 2004–2007 (1997).
[Crossref]

M. Fiebig, D. Frohlich, T. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H. -J. Weber, “Second harmonic generation in the centrosymmetric antiferromagnet NiO,” Phys. Rev. Lett. 87(13), 137202 (2001).
[Crossref]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref]

K. Y. Bliokh, Y. S. Kivshar, and F. Nori, “Magnetoelectric effects in local light-matter interactions,” Phys. Rev. Lett. 113(3), 033601 (2014).
[Crossref]

Z. Phys (1)

P. Debye, “Bemerkung zu einigen neuen Versuchen über einen magneto-elektrischen Richteffekt,” Z. Phys 36(4), 300–301 (1926).
[Crossref]

Other (1)

Y. R. Shen, The Principles of Nonlinear Optics. pp. 286–296 (J. Wiley & Sons)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) The light scattering process: the optical electric field causes an electric dipole transition which imparts orbital kinetic energy to the molecule. This energy is subsequently converted to librational motion by the optical magnetic field. The induced electric and magnetic dipole moments cause incoherent scattering at an angle to the incident beam. (b) Raw data for co-polarized (circles) and cross-polarized (triangles) scattering intensities versus input rotation angle in CCl4. (c) Radiation patterns of the co- and cross-polarized light-scattering data after subtraction of the constant (unpolarized) background evident in Fig. 1(b). The solid curves are fits to a cos2θ function.
Fig. 2.
Fig. 2. Normalized co- and cross-polarized scattered light spectra in CCl4, dashed-red (labelled ED) and -blue (labelled MD), respectively. The black arrow indicates the spectral peak. The solid curve showing a best fit that takes instrumental linewidth into account together with inelastic components due to vibrational and rotational transitions as indicated by vertical red and blue bars. The grey curve is the difference between the red and blue curves, highlighting the inelastic components in the MD spectrum. Inset: A comparison of the laser and ED spectra.
Fig. 3.
Fig. 3. Normalized co- and cross-polarized scattered light spectra for various compounds. (a) SiCl4, (b) SiBr4 and (c) Si(OCH3)4 with fitted curves. (d) The experimental rotation frequencies (ωexp) plotted versus literature values (ωRef.) [24,25] for all samples. The solid line is a linear fit with a slope of 0.85.
Fig. 4.
Fig. 4. Polarization dependence of cross-polarized (a) and co-polarized (b) spectra in CCl4. θ is the pump polarization angle. The input angle θ = 0° corresponds to vertical polarization. In (b) the entire spectrum is highly polarized, including small vibrational features due to spontaneous Raman scattering (see variation of curves with input polarization at low energies). The energy range from 1.40 to 1.53 eV has been magnified 5 times for (a) and 30 times for (b).
Fig. 5.
Fig. 5. Two-photon transitions responsible for second-order magneto-electric scattering driven by E and H fields. (a) In the Stokes process, the H field stimulates two classes of magnetic transition back to the ground state, as indicated by the two downward arrows. The magnetic transition at frequency ω− ωϕ (solid downward arrow) is resonant but can only be driven by a Fourier component of the optical pulse that is down-shifted from the carrier frequency by ωφ . The first transition (dashed arrow) is ineffective in generating molecular rotations and produces polarized scattering. The second transition stimulates molecular rotations resonantly (final rotational state J = 1), causing unpolarized scattering and knock-on vibrations. (b) In the “reverse” process, the E field first drives an ED transition which preserves the initial rotational state (J = 1) at room temperature. Then the magnetic field stimulates an anti-Stokes MD transition at frequency ω + ωϕ which removes the rotation. This generates unpolarized anti-Stokes rotational scattering without the possibility of knock-on vibrations. Note that anti-Stokes vibrational scattering is not observed in the MD spectrum of Fig. 2.
Fig. 6.
Fig. 6. Experimental setup. Ti:S = Ti:Sapphire laser, Pol = polarizer, IC = intensity controller. The analyzer is a rotating polarizer, which is set either vertical or horizontal polarization for detecting electric- or magnetic-dipole radiation patterns, respectively.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d L z d t = i T r { ρ ~ , [ H ( m ) , L z ] } ,
H ( m ) = ( f L O + a + + h . c . ) ,
τ = μ 0 ( e ) E ,
d L z d t = i { ρ ~ 23 [ H ( m ) , L z ] 32 + ρ ~ 32 [ H ( m ) , L z ] 23 } ,
d L z d t = i { ρ ~ 23 3 | L z f L O a + | 2 + ρ ~ 32 2 | f L + O a L z | 3 } = 2 i n { f ρ ~ 23 + f ρ ~ 32 }
f = i μ e f f ξ / c .
f = i μ 0 ( e ) ξ / 2 = i g / 2.
d L z d t = | g | n .
τ = | g | n .
τ = μ 0 ( e ) E .

Metrics