Abstract

We report the measurement of form and magnetic birefringence in Permalloy (Ni80Fe20) films grown on rippled Poly(Ethylene Terephthalate), PET, substrates. Prior to Permalloy deposition, Laser Induced Periodic Surface Structures (LIPSS) were generated on the polymeric substrate by a nanosecond laser beam, developing an ordered rippled nanostructure. Due to their high transparency factor, we could investigate the behavior of linear polarized light transmitting at normal incidence on Permalloy/PET sample. The results show the existence of an optical axis parallel to the ripples direction, which yields an strong form birefringence effect arising from the laser patterning. Concerning the Permalloy thin film, the study of its in-plane magnetization was carried out measuring the Voigt magnetooptical effect. The obtained data in our samples reveal the appearance of two different mechanisms to reverse the magnetization, as the external magnetic field is parallel or perpendicular to the ripples direction. Accordingly, the transmitted light shows a magnetic birefringence depending on the relative orientation between the ripple direction, i.e. the optical axis of the LIPSS, and the in-plane magnetization of the Permalloy film.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spectral dependence of the magnetic modulation of surface plasmon polaritons in permalloy/noble metal films

V. G. Kravets, P. Yu. Kurioz, and L. V. Poperenko
J. Opt. Soc. Am. B 31(8) 1836-1844 (2014)

Plate-void model for thin-film form birefringence

Kumudini Abeysuriya and Ian J. Hodgkinson
J. Opt. Soc. Am. A 5(9) 1549-1553 (1988)

Enhanced form birefringence of metal nanoparticles with anisotropic shell mediated by localized surface plasmon resonance

Shunsuke Murai, Takuya Tsujiguchi, Koji Fujita, and Katsuhisa Tanaka
Opt. Express 19(23) 23581-23589 (2011)

References

  • View by:
  • |
  • |
  • |

  1. B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicon,” J. Micromech. Microeng. 16, 1–6 (2006).
    [Crossref]
  2. X. Y. Chen, Y. F. Lu, B. J. Cho, Y. P. Zeng, J. N. Zeng, and Y. H. Wu, “Pattern-induced ripple structures at silicon-oxide/silicon interface by excimer laser irradiation,” Appl. Phys. Lett. 81, 1344–1347 (2002).
    [Crossref]
  3. R. L. Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express 13, 6651–6655 (2005).
    [Crossref] [PubMed]
  4. T. T. D. Huynh, A. Petit, and N. Semmar, “Picosecond laser induced periodic surface structure on copper thin films,” Appl. Surf. Sci. 302, 109–113 (2014).
    [Crossref]
  5. A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4, 2944–2951 (2017).
    [Crossref]
  6. A. Cerkauskaite, R. Drevinskas, A. O. Rybaltovskii, and P. G. Kazansky, “Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel,” Opt. Express 25, 8011–8021 (2017).
    [Crossref] [PubMed]
  7. P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys. 95, 5280–5283 (2004).
    [Crossref]
  8. S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULEtm,” Opt. Mat. Express 3, 1161–1166 (2013).
    [Crossref]
  9. M. Castillejo, T. A. Ezquerra, M. O. Margarita Martín, S. Péreza, and E. Rebollar, “Laser nanostructuring of polymers: ripples and applications,” AIP Conf. Proc. 1464, 372–380 (2012).
    [Crossref]
  10. P. Slepička, O. Neděla, J. Siegel, R. Krajcar, Z. Kolská, and V. Švorčík, “Ripple polystyrene nano-pattern induced by KrF laser,” eXPRESS Polym. Lett. 8, 459–466 (2014).
    [Crossref]
  11. S. Bagheri-Khoulenjani and H. Mirzadeh, “Polystyrene surface modification using excimer laser and radiofrequency plasma: Blood compatibility evaluations,” Prog. Biomater. 1, 1–8 (2012).
    [Crossref]
  12. H. Y. Zheng, T. T. Tan, and W. Zhou, “Studies of KrF laser induced long periodic structures on polyimide evaluations,” Opt. Lasers Eng. 47, 180–185 (2009).
    [Crossref]
  13. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29, 119–121 (2004).
    [Crossref] [PubMed]
  14. R. Moroni, D. Sekiba, F. B. de Mongeot, G. Gonella, C. Boragno, L. Mattera, and U. Valbusa, “Uniaxial magnetic anisotropy in nanostructured Co/Cu(001): from surface ripples to nanowires,” Phys. Rev. Lett. 91, 7027–7030 (2003).
    [Crossref]
  15. M. A. Arranz, J. M. Colino, and F. J. Palomares, “On the limits of uniaxial magnetic anisotropy tuning by a ripple surface pattern,” J. Appl. Phys. 115, 3906–3914 (2014).
    [Crossref]
  16. M. A. Arranz and J. M. Colino, “Angular tuning of the magnetic birefringence in rippled cobalt films,” Appl. Phys. Lett. 106, 3102–3105 (2015).
    [Crossref]
  17. M. Ali, “Growth and study of magnetostrictive FeSiBC thin films for device applications,” Ph.D. thesis, University of Sheffield (1999).
  18. S. S. P. Parkin, M. Hayashi, and L. Thomas, “Domain-wall racetrack memory,” Science 320, 190–194 (2008).
    [Crossref] [PubMed]
  19. G. Francis, “Data storage-trends and directions,” Tech. rep., Oracle Corporation, web.stanford.edu (2011). PASIG-January 2012.
  20. A. Fernández-Pacheco, R. Streubel, O. Fruchart, P. F. R. Hertel, and R. P. Cowburn, “Three-dimensional nanomagnetism,” Nat. Commun. 8, 15756–15769 (2017).
    [Crossref] [PubMed]
  21. J. Li, Q. Zhang, S. Zhang, J. Wei, J. Wang, M. Pan, Y. Xie, H. Yang, Z. Zhou, S. Xie, B. Wang, and R.-W. Li, “Magnetic anisotropy and high-frequency property of flexible FeCoTa films obliquely deposited on a wrinkled topography,” Nat. Sci. Reports 7, 2837–2843 (2017).
  22. J. Briones, P. Toro, A. Encinas, L. Caballero, J. C. Denardin, F. Melo, E. Cerda, S. Robert, D. Lacour, and F. Montaigne, “Large area patterned magnetic films by depositing cobalt layers on nano-wrinkled polydimethylsiloxane templates,” Appl. Phys. Lett. 103, 2404–2407 (2013).
    [Crossref]
  23. E. Rebollar, M. Castillejo, and T. Ezquerra, “Laser induced periodic surface structures on polymer films: from fundamentals to applications,” Eur. Polym. J. 73, 162–174 (2015).
    [Crossref]
  24. E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal,” Langmuir 27, 5596–5606 (2011).
    [Crossref] [PubMed]
  25. A. Sokolov, Optical properties of metals (Blackie, London, 1967), 1st ed.
  26. M. A. Arranz and J. M. Colino, “Magnetooptical Voigt effect in rippled polycrystalline Co films,” J. Phys. D: Appl. Phys. 49, 5306–5313 (2016).
    [Crossref]
  27. E. D. Palik, “The use of polarized infrared radiation in magneto-optical studies of semiconductors,” Appl. Opt. 2, 527–539 (1963).
    [Crossref]
  28. R. Carey, B. W. J. Thomas, I. V. F. Viney, and G. H. Weaver, “Magnetic birefringence in thin ferromagnetic films,” J. Phys. D 1, 1679–1684 (1968).
    [Crossref]
  29. J. M. Colino, M. A. Arranz, A. J. Barbero, A. Bollero, and J. Camarero, “Surface magnetization and the role of pattern defects in various types of ripple patterned films,” J. Phys. D: Appl. Phys. 49, 5002–5011 (2016).
    [Crossref]
  30. R. Carey and B. W. J. Thomas, “An improved method of measuring the Voigt effect in thin magnetic films,” J. Phys. E: Sci. Instr. 4, 545–547 (1971).
    [Crossref]
  31. N. P. Suponev, R. M. Grechishkin, M. B. Lyakhova, and Y. E. Pushkar, “Angular dependence of coercive field in (Sm, Zr) (Co, Cu, Fe)z alloys,” J. Magn. Magn. Mater. 157, 376–377 (1996).
    [Crossref]

2017 (4)

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4, 2944–2951 (2017).
[Crossref]

A. Fernández-Pacheco, R. Streubel, O. Fruchart, P. F. R. Hertel, and R. P. Cowburn, “Three-dimensional nanomagnetism,” Nat. Commun. 8, 15756–15769 (2017).
[Crossref] [PubMed]

J. Li, Q. Zhang, S. Zhang, J. Wei, J. Wang, M. Pan, Y. Xie, H. Yang, Z. Zhou, S. Xie, B. Wang, and R.-W. Li, “Magnetic anisotropy and high-frequency property of flexible FeCoTa films obliquely deposited on a wrinkled topography,” Nat. Sci. Reports 7, 2837–2843 (2017).

A. Cerkauskaite, R. Drevinskas, A. O. Rybaltovskii, and P. G. Kazansky, “Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel,” Opt. Express 25, 8011–8021 (2017).
[Crossref] [PubMed]

2016 (2)

M. A. Arranz and J. M. Colino, “Magnetooptical Voigt effect in rippled polycrystalline Co films,” J. Phys. D: Appl. Phys. 49, 5306–5313 (2016).
[Crossref]

J. M. Colino, M. A. Arranz, A. J. Barbero, A. Bollero, and J. Camarero, “Surface magnetization and the role of pattern defects in various types of ripple patterned films,” J. Phys. D: Appl. Phys. 49, 5002–5011 (2016).
[Crossref]

2015 (2)

E. Rebollar, M. Castillejo, and T. Ezquerra, “Laser induced periodic surface structures on polymer films: from fundamentals to applications,” Eur. Polym. J. 73, 162–174 (2015).
[Crossref]

M. A. Arranz and J. M. Colino, “Angular tuning of the magnetic birefringence in rippled cobalt films,” Appl. Phys. Lett. 106, 3102–3105 (2015).
[Crossref]

2014 (3)

T. T. D. Huynh, A. Petit, and N. Semmar, “Picosecond laser induced periodic surface structure on copper thin films,” Appl. Surf. Sci. 302, 109–113 (2014).
[Crossref]

M. A. Arranz, J. M. Colino, and F. J. Palomares, “On the limits of uniaxial magnetic anisotropy tuning by a ripple surface pattern,” J. Appl. Phys. 115, 3906–3914 (2014).
[Crossref]

P. Slepička, O. Neděla, J. Siegel, R. Krajcar, Z. Kolská, and V. Švorčík, “Ripple polystyrene nano-pattern induced by KrF laser,” eXPRESS Polym. Lett. 8, 459–466 (2014).
[Crossref]

2013 (2)

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULEtm,” Opt. Mat. Express 3, 1161–1166 (2013).
[Crossref]

J. Briones, P. Toro, A. Encinas, L. Caballero, J. C. Denardin, F. Melo, E. Cerda, S. Robert, D. Lacour, and F. Montaigne, “Large area patterned magnetic films by depositing cobalt layers on nano-wrinkled polydimethylsiloxane templates,” Appl. Phys. Lett. 103, 2404–2407 (2013).
[Crossref]

2012 (2)

M. Castillejo, T. A. Ezquerra, M. O. Margarita Martín, S. Péreza, and E. Rebollar, “Laser nanostructuring of polymers: ripples and applications,” AIP Conf. Proc. 1464, 372–380 (2012).
[Crossref]

S. Bagheri-Khoulenjani and H. Mirzadeh, “Polystyrene surface modification using excimer laser and radiofrequency plasma: Blood compatibility evaluations,” Prog. Biomater. 1, 1–8 (2012).
[Crossref]

2011 (1)

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal,” Langmuir 27, 5596–5606 (2011).
[Crossref] [PubMed]

2009 (1)

H. Y. Zheng, T. T. Tan, and W. Zhou, “Studies of KrF laser induced long periodic structures on polyimide evaluations,” Opt. Lasers Eng. 47, 180–185 (2009).
[Crossref]

2008 (1)

S. S. P. Parkin, M. Hayashi, and L. Thomas, “Domain-wall racetrack memory,” Science 320, 190–194 (2008).
[Crossref] [PubMed]

2006 (1)

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicon,” J. Micromech. Microeng. 16, 1–6 (2006).
[Crossref]

2005 (1)

2004 (2)

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29, 119–121 (2004).
[Crossref] [PubMed]

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys. 95, 5280–5283 (2004).
[Crossref]

2003 (1)

R. Moroni, D. Sekiba, F. B. de Mongeot, G. Gonella, C. Boragno, L. Mattera, and U. Valbusa, “Uniaxial magnetic anisotropy in nanostructured Co/Cu(001): from surface ripples to nanowires,” Phys. Rev. Lett. 91, 7027–7030 (2003).
[Crossref]

2002 (1)

X. Y. Chen, Y. F. Lu, B. J. Cho, Y. P. Zeng, J. N. Zeng, and Y. H. Wu, “Pattern-induced ripple structures at silicon-oxide/silicon interface by excimer laser irradiation,” Appl. Phys. Lett. 81, 1344–1347 (2002).
[Crossref]

1996 (1)

N. P. Suponev, R. M. Grechishkin, M. B. Lyakhova, and Y. E. Pushkar, “Angular dependence of coercive field in (Sm, Zr) (Co, Cu, Fe)z alloys,” J. Magn. Magn. Mater. 157, 376–377 (1996).
[Crossref]

1971 (1)

R. Carey and B. W. J. Thomas, “An improved method of measuring the Voigt effect in thin magnetic films,” J. Phys. E: Sci. Instr. 4, 545–547 (1971).
[Crossref]

1968 (1)

R. Carey, B. W. J. Thomas, I. V. F. Viney, and G. H. Weaver, “Magnetic birefringence in thin ferromagnetic films,” J. Phys. D 1, 1679–1684 (1968).
[Crossref]

1963 (1)

Abdulhalim, I.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4, 2944–2951 (2017).
[Crossref]

Ali, M.

M. Ali, “Growth and study of magnetostrictive FeSiBC thin films for device applications,” Ph.D. thesis, University of Sheffield (1999).

Anhut, T.

Arranz, M. A.

M. A. Arranz and J. M. Colino, “Magnetooptical Voigt effect in rippled polycrystalline Co films,” J. Phys. D: Appl. Phys. 49, 5306–5313 (2016).
[Crossref]

J. M. Colino, M. A. Arranz, A. J. Barbero, A. Bollero, and J. Camarero, “Surface magnetization and the role of pattern defects in various types of ripple patterned films,” J. Phys. D: Appl. Phys. 49, 5002–5011 (2016).
[Crossref]

M. A. Arranz and J. M. Colino, “Angular tuning of the magnetic birefringence in rippled cobalt films,” Appl. Phys. Lett. 106, 3102–3105 (2015).
[Crossref]

M. A. Arranz, J. M. Colino, and F. J. Palomares, “On the limits of uniaxial magnetic anisotropy tuning by a ripple surface pattern,” J. Appl. Phys. 115, 3906–3914 (2014).
[Crossref]

Bagheri-Khoulenjani, S.

S. Bagheri-Khoulenjani and H. Mirzadeh, “Polystyrene surface modification using excimer laser and radiofrequency plasma: Blood compatibility evaluations,” Prog. Biomater. 1, 1–8 (2012).
[Crossref]

Barbero, A. J.

J. M. Colino, M. A. Arranz, A. J. Barbero, A. Bollero, and J. Camarero, “Surface magnetization and the role of pattern defects in various types of ripple patterned films,” J. Phys. D: Appl. Phys. 49, 5002–5011 (2016).
[Crossref]

Bollero, A.

J. M. Colino, M. A. Arranz, A. J. Barbero, A. Bollero, and J. Camarero, “Surface magnetization and the role of pattern defects in various types of ripple patterned films,” J. Phys. D: Appl. Phys. 49, 5002–5011 (2016).
[Crossref]

Boragno, C.

R. Moroni, D. Sekiba, F. B. de Mongeot, G. Gonella, C. Boragno, L. Mattera, and U. Valbusa, “Uniaxial magnetic anisotropy in nanostructured Co/Cu(001): from surface ripples to nanowires,” Phys. Rev. Lett. 91, 7027–7030 (2003).
[Crossref]

Bricchi, E.

Briones, J.

J. Briones, P. Toro, A. Encinas, L. Caballero, J. C. Denardin, F. Melo, E. Cerda, S. Robert, D. Lacour, and F. Montaigne, “Large area patterned magnetic films by depositing cobalt layers on nano-wrinkled polydimethylsiloxane templates,” Appl. Phys. Lett. 103, 2404–2407 (2013).
[Crossref]

Burns, G. R.

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys. 95, 5280–5283 (2004).
[Crossref]

Caballero, L.

J. Briones, P. Toro, A. Encinas, L. Caballero, J. C. Denardin, F. Melo, E. Cerda, S. Robert, D. Lacour, and F. Montaigne, “Large area patterned magnetic films by depositing cobalt layers on nano-wrinkled polydimethylsiloxane templates,” Appl. Phys. Lett. 103, 2404–2407 (2013).
[Crossref]

Camarero, J.

J. M. Colino, M. A. Arranz, A. J. Barbero, A. Bollero, and J. Camarero, “Surface magnetization and the role of pattern defects in various types of ripple patterned films,” J. Phys. D: Appl. Phys. 49, 5002–5011 (2016).
[Crossref]

Carey, R.

R. Carey and B. W. J. Thomas, “An improved method of measuring the Voigt effect in thin magnetic films,” J. Phys. E: Sci. Instr. 4, 545–547 (1971).
[Crossref]

R. Carey, B. W. J. Thomas, I. V. F. Viney, and G. H. Weaver, “Magnetic birefringence in thin ferromagnetic films,” J. Phys. D 1, 1679–1684 (1968).
[Crossref]

Castillejo, M.

E. Rebollar, M. Castillejo, and T. Ezquerra, “Laser induced periodic surface structures on polymer films: from fundamentals to applications,” Eur. Polym. J. 73, 162–174 (2015).
[Crossref]

M. Castillejo, T. A. Ezquerra, M. O. Margarita Martín, S. Péreza, and E. Rebollar, “Laser nanostructuring of polymers: ripples and applications,” AIP Conf. Proc. 1464, 372–380 (2012).
[Crossref]

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal,” Langmuir 27, 5596–5606 (2011).
[Crossref] [PubMed]

Cerda, E.

J. Briones, P. Toro, A. Encinas, L. Caballero, J. C. Denardin, F. Melo, E. Cerda, S. Robert, D. Lacour, and F. Montaigne, “Large area patterned magnetic films by depositing cobalt layers on nano-wrinkled polydimethylsiloxane templates,” Appl. Phys. Lett. 103, 2404–2407 (2013).
[Crossref]

Cerkauskaite, A.

A. Cerkauskaite, R. Drevinskas, A. O. Rybaltovskii, and P. G. Kazansky, “Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel,” Opt. Express 25, 8011–8021 (2017).
[Crossref] [PubMed]

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4, 2944–2951 (2017).
[Crossref]

Chen, X. Y.

X. Y. Chen, Y. F. Lu, B. J. Cho, Y. P. Zeng, J. N. Zeng, and Y. H. Wu, “Pattern-induced ripple structures at silicon-oxide/silicon interface by excimer laser irradiation,” Appl. Phys. Lett. 81, 1344–1347 (2002).
[Crossref]

Cho, B. J.

X. Y. Chen, Y. F. Lu, B. J. Cho, Y. P. Zeng, J. N. Zeng, and Y. H. Wu, “Pattern-induced ripple structures at silicon-oxide/silicon interface by excimer laser irradiation,” Appl. Phys. Lett. 81, 1344–1347 (2002).
[Crossref]

Colino, J. M.

J. M. Colino, M. A. Arranz, A. J. Barbero, A. Bollero, and J. Camarero, “Surface magnetization and the role of pattern defects in various types of ripple patterned films,” J. Phys. D: Appl. Phys. 49, 5002–5011 (2016).
[Crossref]

M. A. Arranz and J. M. Colino, “Magnetooptical Voigt effect in rippled polycrystalline Co films,” J. Phys. D: Appl. Phys. 49, 5306–5313 (2016).
[Crossref]

M. A. Arranz and J. M. Colino, “Angular tuning of the magnetic birefringence in rippled cobalt films,” Appl. Phys. Lett. 106, 3102–3105 (2015).
[Crossref]

M. A. Arranz, J. M. Colino, and F. J. Palomares, “On the limits of uniaxial magnetic anisotropy tuning by a ripple surface pattern,” J. Appl. Phys. 115, 3906–3914 (2014).
[Crossref]

Cowburn, R. P.

A. Fernández-Pacheco, R. Streubel, O. Fruchart, P. F. R. Hertel, and R. P. Cowburn, “Three-dimensional nanomagnetism,” Nat. Commun. 8, 15756–15769 (2017).
[Crossref] [PubMed]

de Mongeot, F. B.

R. Moroni, D. Sekiba, F. B. de Mongeot, G. Gonella, C. Boragno, L. Mattera, and U. Valbusa, “Uniaxial magnetic anisotropy in nanostructured Co/Cu(001): from surface ripples to nanowires,” Phys. Rev. Lett. 91, 7027–7030 (2003).
[Crossref]

Denardin, J. C.

J. Briones, P. Toro, A. Encinas, L. Caballero, J. C. Denardin, F. Melo, E. Cerda, S. Robert, D. Lacour, and F. Montaigne, “Large area patterned magnetic films by depositing cobalt layers on nano-wrinkled polydimethylsiloxane templates,” Appl. Phys. Lett. 103, 2404–2407 (2013).
[Crossref]

Döring, S.

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULEtm,” Opt. Mat. Express 3, 1161–1166 (2013).
[Crossref]

Drevinskas, R.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4, 2944–2951 (2017).
[Crossref]

A. Cerkauskaite, R. Drevinskas, A. O. Rybaltovskii, and P. G. Kazansky, “Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel,” Opt. Express 25, 8011–8021 (2017).
[Crossref] [PubMed]

Encinas, A.

J. Briones, P. Toro, A. Encinas, L. Caballero, J. C. Denardin, F. Melo, E. Cerda, S. Robert, D. Lacour, and F. Montaigne, “Large area patterned magnetic films by depositing cobalt layers on nano-wrinkled polydimethylsiloxane templates,” Appl. Phys. Lett. 103, 2404–2407 (2013).
[Crossref]

Ezquerra, T.

E. Rebollar, M. Castillejo, and T. Ezquerra, “Laser induced periodic surface structures on polymer films: from fundamentals to applications,” Eur. Polym. J. 73, 162–174 (2015).
[Crossref]

Ezquerra, T. A.

M. Castillejo, T. A. Ezquerra, M. O. Margarita Martín, S. Péreza, and E. Rebollar, “Laser nanostructuring of polymers: ripples and applications,” AIP Conf. Proc. 1464, 372–380 (2012).
[Crossref]

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal,” Langmuir 27, 5596–5606 (2011).
[Crossref] [PubMed]

Fernández-Pacheco, A.

A. Fernández-Pacheco, R. Streubel, O. Fruchart, P. F. R. Hertel, and R. P. Cowburn, “Three-dimensional nanomagnetism,” Nat. Commun. 8, 15756–15769 (2017).
[Crossref] [PubMed]

Fruchart, O.

A. Fernández-Pacheco, R. Streubel, O. Fruchart, P. F. R. Hertel, and R. P. Cowburn, “Three-dimensional nanomagnetism,” Nat. Commun. 8, 15756–15769 (2017).
[Crossref] [PubMed]

Gonella, G.

R. Moroni, D. Sekiba, F. B. de Mongeot, G. Gonella, C. Boragno, L. Mattera, and U. Valbusa, “Uniaxial magnetic anisotropy in nanostructured Co/Cu(001): from surface ripples to nanowires,” Phys. Rev. Lett. 91, 7027–7030 (2003).
[Crossref]

Grechishkin, R. M.

N. P. Suponev, R. M. Grechishkin, M. B. Lyakhova, and Y. E. Pushkar, “Angular dependence of coercive field in (Sm, Zr) (Co, Cu, Fe)z alloys,” J. Magn. Magn. Mater. 157, 376–377 (1996).
[Crossref]

Guo, J.

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys. 95, 5280–5283 (2004).
[Crossref]

Harzic, R. L.

Hayashi, M.

S. S. P. Parkin, M. Hayashi, and L. Thomas, “Domain-wall racetrack memory,” Science 320, 190–194 (2008).
[Crossref] [PubMed]

Hernández, J. J.

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal,” Langmuir 27, 5596–5606 (2011).
[Crossref] [PubMed]

Hertel, P. F. R.

A. Fernández-Pacheco, R. Streubel, O. Fruchart, P. F. R. Hertel, and R. P. Cowburn, “Three-dimensional nanomagnetism,” Nat. Commun. 8, 15756–15769 (2017).
[Crossref] [PubMed]

Huynh, T. T. D.

T. T. D. Huynh, A. Petit, and N. Semmar, “Picosecond laser induced periodic surface structure on copper thin films,” Appl. Surf. Sci. 302, 109–113 (2014).
[Crossref]

Kazansky, P. G.

Klappauf, B. G.

Kolská, Z.

P. Slepička, O. Neděla, J. Siegel, R. Krajcar, Z. Kolská, and V. Švorčík, “Ripple polystyrene nano-pattern induced by KrF laser,” eXPRESS Polym. Lett. 8, 459–466 (2014).
[Crossref]

König, K.

Krajcar, R.

P. Slepička, O. Neděla, J. Siegel, R. Krajcar, Z. Kolská, and V. Švorčík, “Ripple polystyrene nano-pattern induced by KrF laser,” eXPRESS Polym. Lett. 8, 459–466 (2014).
[Crossref]

Lacour, D.

J. Briones, P. Toro, A. Encinas, L. Caballero, J. C. Denardin, F. Melo, E. Cerda, S. Robert, D. Lacour, and F. Montaigne, “Large area patterned magnetic films by depositing cobalt layers on nano-wrinkled polydimethylsiloxane templates,” Appl. Phys. Lett. 103, 2404–2407 (2013).
[Crossref]

Li, J.

J. Li, Q. Zhang, S. Zhang, J. Wei, J. Wang, M. Pan, Y. Xie, H. Yang, Z. Zhou, S. Xie, B. Wang, and R.-W. Li, “Magnetic anisotropy and high-frequency property of flexible FeCoTa films obliquely deposited on a wrinkled topography,” Nat. Sci. Reports 7, 2837–2843 (2017).

Li, R.-W.

J. Li, Q. Zhang, S. Zhang, J. Wei, J. Wang, M. Pan, Y. Xie, H. Yang, Z. Zhou, S. Xie, B. Wang, and R.-W. Li, “Magnetic anisotropy and high-frequency property of flexible FeCoTa films obliquely deposited on a wrinkled topography,” Nat. Sci. Reports 7, 2837–2843 (2017).

Lu, Y. F.

X. Y. Chen, Y. F. Lu, B. J. Cho, Y. P. Zeng, J. N. Zeng, and Y. H. Wu, “Pattern-induced ripple structures at silicon-oxide/silicon interface by excimer laser irradiation,” Appl. Phys. Lett. 81, 1344–1347 (2002).
[Crossref]

Luk, T. S.

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys. 95, 5280–5283 (2004).
[Crossref]

Lyakhova, M. B.

N. P. Suponev, R. M. Grechishkin, M. B. Lyakhova, and Y. E. Pushkar, “Angular dependence of coercive field in (Sm, Zr) (Co, Cu, Fe)z alloys,” J. Magn. Magn. Mater. 157, 376–377 (1996).
[Crossref]

Margarita Martín, M. O.

M. Castillejo, T. A. Ezquerra, M. O. Margarita Martín, S. Péreza, and E. Rebollar, “Laser nanostructuring of polymers: ripples and applications,” AIP Conf. Proc. 1464, 372–380 (2012).
[Crossref]

Martín-Fabiani, I.

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal,” Langmuir 27, 5596–5606 (2011).
[Crossref] [PubMed]

Mattera, L.

R. Moroni, D. Sekiba, F. B. de Mongeot, G. Gonella, C. Boragno, L. Mattera, and U. Valbusa, “Uniaxial magnetic anisotropy in nanostructured Co/Cu(001): from surface ripples to nanowires,” Phys. Rev. Lett. 91, 7027–7030 (2003).
[Crossref]

Melo, F.

J. Briones, P. Toro, A. Encinas, L. Caballero, J. C. Denardin, F. Melo, E. Cerda, S. Robert, D. Lacour, and F. Montaigne, “Large area patterned magnetic films by depositing cobalt layers on nano-wrinkled polydimethylsiloxane templates,” Appl. Phys. Lett. 103, 2404–2407 (2013).
[Crossref]

Miese, C.

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULEtm,” Opt. Mat. Express 3, 1161–1166 (2013).
[Crossref]

Mirzadeh, H.

S. Bagheri-Khoulenjani and H. Mirzadeh, “Polystyrene surface modification using excimer laser and radiofrequency plasma: Blood compatibility evaluations,” Prog. Biomater. 1, 1–8 (2012).
[Crossref]

Montaigne, F.

J. Briones, P. Toro, A. Encinas, L. Caballero, J. C. Denardin, F. Melo, E. Cerda, S. Robert, D. Lacour, and F. Montaigne, “Large area patterned magnetic films by depositing cobalt layers on nano-wrinkled polydimethylsiloxane templates,” Appl. Phys. Lett. 103, 2404–2407 (2013).
[Crossref]

Moroni, R.

R. Moroni, D. Sekiba, F. B. de Mongeot, G. Gonella, C. Boragno, L. Mattera, and U. Valbusa, “Uniaxial magnetic anisotropy in nanostructured Co/Cu(001): from surface ripples to nanowires,” Phys. Rev. Lett. 91, 7027–7030 (2003).
[Crossref]

Nedela, O.

P. Slepička, O. Neděla, J. Siegel, R. Krajcar, Z. Kolská, and V. Švorčík, “Ripple polystyrene nano-pattern induced by KrF laser,” eXPRESS Polym. Lett. 8, 459–466 (2014).
[Crossref]

Nolte, S.

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULEtm,” Opt. Mat. Express 3, 1161–1166 (2013).
[Crossref]

Palik, E. D.

Palomares, F. J.

M. A. Arranz, J. M. Colino, and F. J. Palomares, “On the limits of uniaxial magnetic anisotropy tuning by a ripple surface pattern,” J. Appl. Phys. 115, 3906–3914 (2014).
[Crossref]

Pan, M.

J. Li, Q. Zhang, S. Zhang, J. Wei, J. Wang, M. Pan, Y. Xie, H. Yang, Z. Zhou, S. Xie, B. Wang, and R.-W. Li, “Magnetic anisotropy and high-frequency property of flexible FeCoTa films obliquely deposited on a wrinkled topography,” Nat. Sci. Reports 7, 2837–2843 (2017).

Parkin, S. S. P.

S. S. P. Parkin, M. Hayashi, and L. Thomas, “Domain-wall racetrack memory,” Science 320, 190–194 (2008).
[Crossref] [PubMed]

Pérez, S.

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal,” Langmuir 27, 5596–5606 (2011).
[Crossref] [PubMed]

Péreza, S.

M. Castillejo, T. A. Ezquerra, M. O. Margarita Martín, S. Péreza, and E. Rebollar, “Laser nanostructuring of polymers: ripples and applications,” AIP Conf. Proc. 1464, 372–380 (2012).
[Crossref]

Petit, A.

T. T. D. Huynh, A. Petit, and N. Semmar, “Picosecond laser induced periodic surface structure on copper thin films,” Appl. Surf. Sci. 302, 109–113 (2014).
[Crossref]

Pushkar, Y. E.

N. P. Suponev, R. M. Grechishkin, M. B. Lyakhova, and Y. E. Pushkar, “Angular dependence of coercive field in (Sm, Zr) (Co, Cu, Fe)z alloys,” J. Magn. Magn. Mater. 157, 376–377 (1996).
[Crossref]

Rebollar, E.

E. Rebollar, M. Castillejo, and T. Ezquerra, “Laser induced periodic surface structures on polymer films: from fundamentals to applications,” Eur. Polym. J. 73, 162–174 (2015).
[Crossref]

M. Castillejo, T. A. Ezquerra, M. O. Margarita Martín, S. Péreza, and E. Rebollar, “Laser nanostructuring of polymers: ripples and applications,” AIP Conf. Proc. 1464, 372–380 (2012).
[Crossref]

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal,” Langmuir 27, 5596–5606 (2011).
[Crossref] [PubMed]

Richter, S.

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULEtm,” Opt. Mat. Express 3, 1161–1166 (2013).
[Crossref]

Riemann, I.

Robert, S.

J. Briones, P. Toro, A. Encinas, L. Caballero, J. C. Denardin, F. Melo, E. Cerda, S. Robert, D. Lacour, and F. Montaigne, “Large area patterned magnetic films by depositing cobalt layers on nano-wrinkled polydimethylsiloxane templates,” Appl. Phys. Lett. 103, 2404–2407 (2013).
[Crossref]

Rueda, D. R.

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal,” Langmuir 27, 5596–5606 (2011).
[Crossref] [PubMed]

Rybaltovskii, A. O.

Sauer, D.

Schuck, H.

Sekiba, D.

R. Moroni, D. Sekiba, F. B. de Mongeot, G. Gonella, C. Boragno, L. Mattera, and U. Valbusa, “Uniaxial magnetic anisotropy in nanostructured Co/Cu(001): from surface ripples to nanowires,” Phys. Rev. Lett. 91, 7027–7030 (2003).
[Crossref]

Semmar, N.

T. T. D. Huynh, A. Petit, and N. Semmar, “Picosecond laser induced periodic surface structure on copper thin films,” Appl. Surf. Sci. 302, 109–113 (2014).
[Crossref]

Siegel, J.

P. Slepička, O. Neděla, J. Siegel, R. Krajcar, Z. Kolská, and V. Švorčík, “Ripple polystyrene nano-pattern induced by KrF laser,” eXPRESS Polym. Lett. 8, 459–466 (2014).
[Crossref]

Slepicka, P.

P. Slepička, O. Neděla, J. Siegel, R. Krajcar, Z. Kolská, and V. Švorčík, “Ripple polystyrene nano-pattern induced by KrF laser,” eXPRESS Polym. Lett. 8, 459–466 (2014).
[Crossref]

Sokolov, A.

A. Sokolov, Optical properties of metals (Blackie, London, 1967), 1st ed.

Solodar, A.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4, 2944–2951 (2017).
[Crossref]

Streubel, R.

A. Fernández-Pacheco, R. Streubel, O. Fruchart, P. F. R. Hertel, and R. P. Cowburn, “Three-dimensional nanomagnetism,” Nat. Commun. 8, 15756–15769 (2017).
[Crossref] [PubMed]

Suponev, N. P.

N. P. Suponev, R. M. Grechishkin, M. B. Lyakhova, and Y. E. Pushkar, “Angular dependence of coercive field in (Sm, Zr) (Co, Cu, Fe)z alloys,” J. Magn. Magn. Mater. 157, 376–377 (1996).
[Crossref]

Švorcík, V.

P. Slepička, O. Neděla, J. Siegel, R. Krajcar, Z. Kolská, and V. Švorčík, “Ripple polystyrene nano-pattern induced by KrF laser,” eXPRESS Polym. Lett. 8, 459–466 (2014).
[Crossref]

Tan, B.

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicon,” J. Micromech. Microeng. 16, 1–6 (2006).
[Crossref]

Tan, T. T.

H. Y. Zheng, T. T. Tan, and W. Zhou, “Studies of KrF laser induced long periodic structures on polyimide evaluations,” Opt. Lasers Eng. 47, 180–185 (2009).
[Crossref]

Thomas, B. W. J.

R. Carey and B. W. J. Thomas, “An improved method of measuring the Voigt effect in thin magnetic films,” J. Phys. E: Sci. Instr. 4, 545–547 (1971).
[Crossref]

R. Carey, B. W. J. Thomas, I. V. F. Viney, and G. H. Weaver, “Magnetic birefringence in thin ferromagnetic films,” J. Phys. D 1, 1679–1684 (1968).
[Crossref]

Thomas, L.

S. S. P. Parkin, M. Hayashi, and L. Thomas, “Domain-wall racetrack memory,” Science 320, 190–194 (2008).
[Crossref] [PubMed]

Toro, P.

J. Briones, P. Toro, A. Encinas, L. Caballero, J. C. Denardin, F. Melo, E. Cerda, S. Robert, D. Lacour, and F. Montaigne, “Large area patterned magnetic films by depositing cobalt layers on nano-wrinkled polydimethylsiloxane templates,” Appl. Phys. Lett. 103, 2404–2407 (2013).
[Crossref]

Tünnermann, A.

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULEtm,” Opt. Mat. Express 3, 1161–1166 (2013).
[Crossref]

Valbusa, U.

R. Moroni, D. Sekiba, F. B. de Mongeot, G. Gonella, C. Boragno, L. Mattera, and U. Valbusa, “Uniaxial magnetic anisotropy in nanostructured Co/Cu(001): from surface ripples to nanowires,” Phys. Rev. Lett. 91, 7027–7030 (2003).
[Crossref]

Vawter, G. A.

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys. 95, 5280–5283 (2004).
[Crossref]

Venkatakrishnan, K.

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicon,” J. Micromech. Microeng. 16, 1–6 (2006).
[Crossref]

Viney, I. V. F.

R. Carey, B. W. J. Thomas, I. V. F. Viney, and G. H. Weaver, “Magnetic birefringence in thin ferromagnetic films,” J. Phys. D 1, 1679–1684 (1968).
[Crossref]

Wang, B.

J. Li, Q. Zhang, S. Zhang, J. Wei, J. Wang, M. Pan, Y. Xie, H. Yang, Z. Zhou, S. Xie, B. Wang, and R.-W. Li, “Magnetic anisotropy and high-frequency property of flexible FeCoTa films obliquely deposited on a wrinkled topography,” Nat. Sci. Reports 7, 2837–2843 (2017).

Wang, J.

J. Li, Q. Zhang, S. Zhang, J. Wei, J. Wang, M. Pan, Y. Xie, H. Yang, Z. Zhou, S. Xie, B. Wang, and R.-W. Li, “Magnetic anisotropy and high-frequency property of flexible FeCoTa films obliquely deposited on a wrinkled topography,” Nat. Sci. Reports 7, 2837–2843 (2017).

Weaver, G. H.

R. Carey, B. W. J. Thomas, I. V. F. Viney, and G. H. Weaver, “Magnetic birefringence in thin ferromagnetic films,” J. Phys. D 1, 1679–1684 (1968).
[Crossref]

Wei, J.

J. Li, Q. Zhang, S. Zhang, J. Wei, J. Wang, M. Pan, Y. Xie, H. Yang, Z. Zhou, S. Xie, B. Wang, and R.-W. Li, “Magnetic anisotropy and high-frequency property of flexible FeCoTa films obliquely deposited on a wrinkled topography,” Nat. Sci. Reports 7, 2837–2843 (2017).

Withford, M. J.

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULEtm,” Opt. Mat. Express 3, 1161–1166 (2013).
[Crossref]

Wu, Y. H.

X. Y. Chen, Y. F. Lu, B. J. Cho, Y. P. Zeng, J. N. Zeng, and Y. H. Wu, “Pattern-induced ripple structures at silicon-oxide/silicon interface by excimer laser irradiation,” Appl. Phys. Lett. 81, 1344–1347 (2002).
[Crossref]

Xie, S.

J. Li, Q. Zhang, S. Zhang, J. Wei, J. Wang, M. Pan, Y. Xie, H. Yang, Z. Zhou, S. Xie, B. Wang, and R.-W. Li, “Magnetic anisotropy and high-frequency property of flexible FeCoTa films obliquely deposited on a wrinkled topography,” Nat. Sci. Reports 7, 2837–2843 (2017).

Xie, Y.

J. Li, Q. Zhang, S. Zhang, J. Wei, J. Wang, M. Pan, Y. Xie, H. Yang, Z. Zhou, S. Xie, B. Wang, and R.-W. Li, “Magnetic anisotropy and high-frequency property of flexible FeCoTa films obliquely deposited on a wrinkled topography,” Nat. Sci. Reports 7, 2837–2843 (2017).

Yang, H.

J. Li, Q. Zhang, S. Zhang, J. Wei, J. Wang, M. Pan, Y. Xie, H. Yang, Z. Zhou, S. Xie, B. Wang, and R.-W. Li, “Magnetic anisotropy and high-frequency property of flexible FeCoTa films obliquely deposited on a wrinkled topography,” Nat. Sci. Reports 7, 2837–2843 (2017).

Yang, P.

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys. 95, 5280–5283 (2004).
[Crossref]

Zeng, J. N.

X. Y. Chen, Y. F. Lu, B. J. Cho, Y. P. Zeng, J. N. Zeng, and Y. H. Wu, “Pattern-induced ripple structures at silicon-oxide/silicon interface by excimer laser irradiation,” Appl. Phys. Lett. 81, 1344–1347 (2002).
[Crossref]

Zeng, Y. P.

X. Y. Chen, Y. F. Lu, B. J. Cho, Y. P. Zeng, J. N. Zeng, and Y. H. Wu, “Pattern-induced ripple structures at silicon-oxide/silicon interface by excimer laser irradiation,” Appl. Phys. Lett. 81, 1344–1347 (2002).
[Crossref]

Zhang, Q.

J. Li, Q. Zhang, S. Zhang, J. Wei, J. Wang, M. Pan, Y. Xie, H. Yang, Z. Zhou, S. Xie, B. Wang, and R.-W. Li, “Magnetic anisotropy and high-frequency property of flexible FeCoTa films obliquely deposited on a wrinkled topography,” Nat. Sci. Reports 7, 2837–2843 (2017).

Zhang, S.

J. Li, Q. Zhang, S. Zhang, J. Wei, J. Wang, M. Pan, Y. Xie, H. Yang, Z. Zhou, S. Xie, B. Wang, and R.-W. Li, “Magnetic anisotropy and high-frequency property of flexible FeCoTa films obliquely deposited on a wrinkled topography,” Nat. Sci. Reports 7, 2837–2843 (2017).

Zheng, H. Y.

H. Y. Zheng, T. T. Tan, and W. Zhou, “Studies of KrF laser induced long periodic structures on polyimide evaluations,” Opt. Lasers Eng. 47, 180–185 (2009).
[Crossref]

Zhou, W.

H. Y. Zheng, T. T. Tan, and W. Zhou, “Studies of KrF laser induced long periodic structures on polyimide evaluations,” Opt. Lasers Eng. 47, 180–185 (2009).
[Crossref]

Zhou, Z.

J. Li, Q. Zhang, S. Zhang, J. Wei, J. Wang, M. Pan, Y. Xie, H. Yang, Z. Zhou, S. Xie, B. Wang, and R.-W. Li, “Magnetic anisotropy and high-frequency property of flexible FeCoTa films obliquely deposited on a wrinkled topography,” Nat. Sci. Reports 7, 2837–2843 (2017).

Zimmermann, F.

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULEtm,” Opt. Mat. Express 3, 1161–1166 (2013).
[Crossref]

ACS Photonics (1)

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4, 2944–2951 (2017).
[Crossref]

AIP Conf. Proc. (1)

M. Castillejo, T. A. Ezquerra, M. O. Margarita Martín, S. Péreza, and E. Rebollar, “Laser nanostructuring of polymers: ripples and applications,” AIP Conf. Proc. 1464, 372–380 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. Briones, P. Toro, A. Encinas, L. Caballero, J. C. Denardin, F. Melo, E. Cerda, S. Robert, D. Lacour, and F. Montaigne, “Large area patterned magnetic films by depositing cobalt layers on nano-wrinkled polydimethylsiloxane templates,” Appl. Phys. Lett. 103, 2404–2407 (2013).
[Crossref]

M. A. Arranz and J. M. Colino, “Angular tuning of the magnetic birefringence in rippled cobalt films,” Appl. Phys. Lett. 106, 3102–3105 (2015).
[Crossref]

X. Y. Chen, Y. F. Lu, B. J. Cho, Y. P. Zeng, J. N. Zeng, and Y. H. Wu, “Pattern-induced ripple structures at silicon-oxide/silicon interface by excimer laser irradiation,” Appl. Phys. Lett. 81, 1344–1347 (2002).
[Crossref]

Appl. Surf. Sci. (1)

T. T. D. Huynh, A. Petit, and N. Semmar, “Picosecond laser induced periodic surface structure on copper thin films,” Appl. Surf. Sci. 302, 109–113 (2014).
[Crossref]

Eur. Polym. J. (1)

E. Rebollar, M. Castillejo, and T. Ezquerra, “Laser induced periodic surface structures on polymer films: from fundamentals to applications,” Eur. Polym. J. 73, 162–174 (2015).
[Crossref]

eXPRESS Polym. Lett. (1)

P. Slepička, O. Neděla, J. Siegel, R. Krajcar, Z. Kolská, and V. Švorčík, “Ripple polystyrene nano-pattern induced by KrF laser,” eXPRESS Polym. Lett. 8, 459–466 (2014).
[Crossref]

J. Appl. Phys. (2)

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys. 95, 5280–5283 (2004).
[Crossref]

M. A. Arranz, J. M. Colino, and F. J. Palomares, “On the limits of uniaxial magnetic anisotropy tuning by a ripple surface pattern,” J. Appl. Phys. 115, 3906–3914 (2014).
[Crossref]

J. Magn. Magn. Mater. (1)

N. P. Suponev, R. M. Grechishkin, M. B. Lyakhova, and Y. E. Pushkar, “Angular dependence of coercive field in (Sm, Zr) (Co, Cu, Fe)z alloys,” J. Magn. Magn. Mater. 157, 376–377 (1996).
[Crossref]

J. Micromech. Microeng. (1)

B. Tan and K. Venkatakrishnan, “A femtosecond laser-induced periodical surface structure on crystalline silicon,” J. Micromech. Microeng. 16, 1–6 (2006).
[Crossref]

J. Phys. D (1)

R. Carey, B. W. J. Thomas, I. V. F. Viney, and G. H. Weaver, “Magnetic birefringence in thin ferromagnetic films,” J. Phys. D 1, 1679–1684 (1968).
[Crossref]

J. Phys. D: Appl. Phys. (2)

J. M. Colino, M. A. Arranz, A. J. Barbero, A. Bollero, and J. Camarero, “Surface magnetization and the role of pattern defects in various types of ripple patterned films,” J. Phys. D: Appl. Phys. 49, 5002–5011 (2016).
[Crossref]

M. A. Arranz and J. M. Colino, “Magnetooptical Voigt effect in rippled polycrystalline Co films,” J. Phys. D: Appl. Phys. 49, 5306–5313 (2016).
[Crossref]

J. Phys. E: Sci. Instr. (1)

R. Carey and B. W. J. Thomas, “An improved method of measuring the Voigt effect in thin magnetic films,” J. Phys. E: Sci. Instr. 4, 545–547 (1971).
[Crossref]

Langmuir (1)

E. Rebollar, S. Pérez, J. J. Hernández, I. Martín-Fabiani, D. R. Rueda, T. A. Ezquerra, and M. Castillejo, “Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal,” Langmuir 27, 5596–5606 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

A. Fernández-Pacheco, R. Streubel, O. Fruchart, P. F. R. Hertel, and R. P. Cowburn, “Three-dimensional nanomagnetism,” Nat. Commun. 8, 15756–15769 (2017).
[Crossref] [PubMed]

Nat. Sci. Reports (1)

J. Li, Q. Zhang, S. Zhang, J. Wei, J. Wang, M. Pan, Y. Xie, H. Yang, Z. Zhou, S. Xie, B. Wang, and R.-W. Li, “Magnetic anisotropy and high-frequency property of flexible FeCoTa films obliquely deposited on a wrinkled topography,” Nat. Sci. Reports 7, 2837–2843 (2017).

Opt. Express (2)

Opt. Lasers Eng. (1)

H. Y. Zheng, T. T. Tan, and W. Zhou, “Studies of KrF laser induced long periodic structures on polyimide evaluations,” Opt. Lasers Eng. 47, 180–185 (2009).
[Crossref]

Opt. Lett. (1)

Opt. Mat. Express (1)

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULEtm,” Opt. Mat. Express 3, 1161–1166 (2013).
[Crossref]

Phys. Rev. Lett. (1)

R. Moroni, D. Sekiba, F. B. de Mongeot, G. Gonella, C. Boragno, L. Mattera, and U. Valbusa, “Uniaxial magnetic anisotropy in nanostructured Co/Cu(001): from surface ripples to nanowires,” Phys. Rev. Lett. 91, 7027–7030 (2003).
[Crossref]

Prog. Biomater. (1)

S. Bagheri-Khoulenjani and H. Mirzadeh, “Polystyrene surface modification using excimer laser and radiofrequency plasma: Blood compatibility evaluations,” Prog. Biomater. 1, 1–8 (2012).
[Crossref]

Science (1)

S. S. P. Parkin, M. Hayashi, and L. Thomas, “Domain-wall racetrack memory,” Science 320, 190–194 (2008).
[Crossref] [PubMed]

Other (3)

G. Francis, “Data storage-trends and directions,” Tech. rep., Oracle Corporation, web.stanford.edu (2011). PASIG-January 2012.

M. Ali, “Growth and study of magnetostrictive FeSiBC thin films for device applications,” Ph.D. thesis, University of Sheffield (1999).

A. Sokolov, Optical properties of metals (Blackie, London, 1967), 1st ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (Left) Frontal view of the sample along the light path used for measurements in section 3.1. (Right) (a) 5×5 μm2 AFM topography image of the surface pattern of 20 nm thick permalloy film grown on a PET foil which has previously undergone a LIPSS process. Its inset shows a ripple amplitude histogram from the surface pattern of the topography image. (Right) (b) Line profiles along the main directions (perpendicular=across the pattern, parallel=along the pattern) of a Fourier Transform from the topography image in upper figure. The 2D Fourier Transform image is shown in the inset.
Fig. 2
Fig. 2 (Left) Angular dependence of both normalized intensities for the Permalloy (10nm)/PET sample, Ix (black symbols) and Iy (red symbols). (Right) Angular dependence of both intensities for that sample (solid circles) and the flat PET foil (open circles). The Ix curve for the Permalloy(10nm)/PET sample has been vertically shifted for comparison. Lines are guides to the eye.
Fig. 3
Fig. 3 (left) Angular dependence of T for LIPSS on PET coated with different Permalloy coatings. Lines are guides to the eye. (right) Solid circles are the estimated δ factor from Eq. (1) at θ = 45° for all measured samples. The solid line corresponds to the representation of that equation. The maximum experimental error for T was ∼ 10−3
Fig. 4
Fig. 4 Raw data of measured differential intensity with H oriented perpendicular to the ripples direction and a range of ±40° (sample with a Permalloy film of 15nm thickness). Arrows indicate the H variation in all panels.
Fig. 5
Fig. 5 Measured differential intensity with H oriented near to the perpendicular to the ripples direction (left panel, Permalloy thickness 25nm; right panel Permalloy thickness 15nm). The insets show an estimated field dependence of M near the HA (see the text for details). Symbols and arrows color indicates the H variation: (black) decreasing and (red) increasing.
Fig. 6
Fig. 6 Angular dependence of the coercive field measured around the normal to ripples direction (HA). The maximum experimental error for HC was ∼ 0.03mT

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = sin 2 ( 2 θ ) 2 ( 1 cos ( δ ) )

Metrics