Abstract

A two-dimensional tetra-lateral position-sensitive cap-resistive-layer silicon photomultiplier (CRL-SiPM) is employed as a single-photon imaging sensor at room temperature. The CRL-SiPM has only four anodes and one back cathode with an active area of 2.77 mm × 2.77 mm and a micro avalanche photodiode cell pitch of ~10 μm. It achieved a 150 μm-linewidth-resolved single-photon image, which is near the device’s theoretical intrinsic single-photon position resolution limit of ~115 μm. With increasing light intensity, the position resolution of the device improved. When the mean photoelectron numbers were 1.34 and 41.56, the corresponding intrinsic position resolutions were 101.6 and 14.08 μm, respectively. Finally, owing to the single photoelectron imaging capability of the CRL-SiPM, we achieved the lensless imaging of dark counting sites, i.e., the locations of thermal carriers inducing avalanche breakdown of the device.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
One-dimensional single-photon position-sensitive silicon photomultiplier and its application in Raman spectroscopy

Tianqi Zhao, Yu Peng, Quanlong Miao, Baicheng Li, Kun Liang, Ru Yang, and Dejun Han
Opt. Express 25(19) 22820-22828 (2017)

Photon-number-resolving megapixel image sensor at room temperature without avalanche gain

Jiaju Ma, Saleh Masoodian, Dakota A. Starkey, and Eric R. Fossum
Optica 4(12) 1474-1481 (2017)

Two-photon imaging with silicon photomultipliers

Mehrab N. Modi, Kayvon Daie, Glenn C. Turner, and Kaspar Podgorski
Opt. Express 27(24) 35830-35841 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Seitz and A. J. P. Theuwissen, Single-Photon Imaging (Springer, 2011).
  2. J. Hynecek, “Impactron-a new solid state image intensifier,” IEEE Trans. Electron Dev. 48(10), 2238–2241 (2001).
    [Crossref]
  3. J. Ma, S. Masoodian, D. A. Starkey, and E. R. Fossum, “Photon-number-resolving megapixel image sensor at room temperature without avalanche gain,” Optica 4(12), 1474–1481 (2017).
    [Crossref]
  4. D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16(1), 3–12 (2016).
    [Crossref]
  5. F. Simon, “Silicon photomultipliers in particle and nuclear physics,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 926, 85–100 (2019).
    [Crossref]
  6. M. G. Bisogni, A. Del Guerra, and N. Belcari, “Medical applications of silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 926, 118–128 (2019).
    [Crossref]
  7. M. Caccia, L. Nardo, R. Santoro, and D. Schaffhauser, “Silicon photomultipliers and SPAD imagers in biophotonics: advances and perspectives,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 926, 101–117 (2019).
    [Crossref]
  8. N. Omidvari and V. Schulz, “Characterization of sensitivity encoded silicon photomultiplier (SeSP) with 1-dimensional and 2-dimensional encoding for high resolution PET/MR,” IEEE Trans. Nucl. Sci. 62(3), 679–687 (2015).
    [Crossref]
  9. J. P. Schmall, J. Du, M. S. Judenhofer, P. Dokhale, J. Christian, M. McClish, K. S. Shah, and S. R. Cherry, “A study of position-sensitive solid-state photomultiplier signal properties,” IEEE Trans. Nucl. Sci. 61(3), 1074–1083 (2014).
    [Crossref] [PubMed]
  10. J. Du, X. Bai, A. Gola, F. Acerbi, A. Ferri, C. Piemonte, Y. Yang, and S. R. Cherry, “Performance of a high-resolution depth-encoding PET detector module using linearly-graded SiPM arrays,” Phys. Med. Biol. 63(3), 035035 (2018).
    [Crossref] [PubMed]
  11. I. Sacco, P. Fischer, A. Gola, and C. Piemonte, “Interpolating silicon photo-multiplier: a novel position sensitive device with submillimeter spatial resolution and depth of interaction capability,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 2013), 1–3.
  12. T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New distortion correction algorithm for two-dimensional tetra-lateral position-sensitive silicon photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
    [Crossref]
  13. T. Zhao, Y. Peng, B. Li, R. He, K. Liang, R. Yang, and D. J. Han, “High-time resolved two-dimensional tetra-lateral position-sensitive silicon photomultiplier,” IEEE Electron Device Lett. 39(2), 232–235 (2018).
    [Crossref]
  14. E. Engelmann, E. Popova, and S. Vinogradov, “Spatially resolved dark count rate of SiPMs,” Eur. Phys. J. C 78(11), 1–8 (2018).
    [Crossref]

2019 (3)

F. Simon, “Silicon photomultipliers in particle and nuclear physics,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 926, 85–100 (2019).
[Crossref]

M. G. Bisogni, A. Del Guerra, and N. Belcari, “Medical applications of silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 926, 118–128 (2019).
[Crossref]

M. Caccia, L. Nardo, R. Santoro, and D. Schaffhauser, “Silicon photomultipliers and SPAD imagers in biophotonics: advances and perspectives,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 926, 101–117 (2019).
[Crossref]

2018 (3)

J. Du, X. Bai, A. Gola, F. Acerbi, A. Ferri, C. Piemonte, Y. Yang, and S. R. Cherry, “Performance of a high-resolution depth-encoding PET detector module using linearly-graded SiPM arrays,” Phys. Med. Biol. 63(3), 035035 (2018).
[Crossref] [PubMed]

T. Zhao, Y. Peng, B. Li, R. He, K. Liang, R. Yang, and D. J. Han, “High-time resolved two-dimensional tetra-lateral position-sensitive silicon photomultiplier,” IEEE Electron Device Lett. 39(2), 232–235 (2018).
[Crossref]

E. Engelmann, E. Popova, and S. Vinogradov, “Spatially resolved dark count rate of SiPMs,” Eur. Phys. J. C 78(11), 1–8 (2018).
[Crossref]

2017 (2)

T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New distortion correction algorithm for two-dimensional tetra-lateral position-sensitive silicon photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
[Crossref]

J. Ma, S. Masoodian, D. A. Starkey, and E. R. Fossum, “Photon-number-resolving megapixel image sensor at room temperature without avalanche gain,” Optica 4(12), 1474–1481 (2017).
[Crossref]

2016 (1)

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16(1), 3–12 (2016).
[Crossref]

2015 (1)

N. Omidvari and V. Schulz, “Characterization of sensitivity encoded silicon photomultiplier (SeSP) with 1-dimensional and 2-dimensional encoding for high resolution PET/MR,” IEEE Trans. Nucl. Sci. 62(3), 679–687 (2015).
[Crossref]

2014 (1)

J. P. Schmall, J. Du, M. S. Judenhofer, P. Dokhale, J. Christian, M. McClish, K. S. Shah, and S. R. Cherry, “A study of position-sensitive solid-state photomultiplier signal properties,” IEEE Trans. Nucl. Sci. 61(3), 1074–1083 (2014).
[Crossref] [PubMed]

2001 (1)

J. Hynecek, “Impactron-a new solid state image intensifier,” IEEE Trans. Electron Dev. 48(10), 2238–2241 (2001).
[Crossref]

Acerbi, F.

J. Du, X. Bai, A. Gola, F. Acerbi, A. Ferri, C. Piemonte, Y. Yang, and S. R. Cherry, “Performance of a high-resolution depth-encoding PET detector module using linearly-graded SiPM arrays,” Phys. Med. Biol. 63(3), 035035 (2018).
[Crossref] [PubMed]

Bai, X.

J. Du, X. Bai, A. Gola, F. Acerbi, A. Ferri, C. Piemonte, Y. Yang, and S. R. Cherry, “Performance of a high-resolution depth-encoding PET detector module using linearly-graded SiPM arrays,” Phys. Med. Biol. 63(3), 035035 (2018).
[Crossref] [PubMed]

Belcari, N.

M. G. Bisogni, A. Del Guerra, and N. Belcari, “Medical applications of silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 926, 118–128 (2019).
[Crossref]

Bisogni, M. G.

M. G. Bisogni, A. Del Guerra, and N. Belcari, “Medical applications of silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 926, 118–128 (2019).
[Crossref]

Bronzi, D.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16(1), 3–12 (2016).
[Crossref]

Caccia, M.

M. Caccia, L. Nardo, R. Santoro, and D. Schaffhauser, “Silicon photomultipliers and SPAD imagers in biophotonics: advances and perspectives,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 926, 101–117 (2019).
[Crossref]

Cherry, S. R.

J. Du, X. Bai, A. Gola, F. Acerbi, A. Ferri, C. Piemonte, Y. Yang, and S. R. Cherry, “Performance of a high-resolution depth-encoding PET detector module using linearly-graded SiPM arrays,” Phys. Med. Biol. 63(3), 035035 (2018).
[Crossref] [PubMed]

J. P. Schmall, J. Du, M. S. Judenhofer, P. Dokhale, J. Christian, M. McClish, K. S. Shah, and S. R. Cherry, “A study of position-sensitive solid-state photomultiplier signal properties,” IEEE Trans. Nucl. Sci. 61(3), 1074–1083 (2014).
[Crossref] [PubMed]

Christian, J.

J. P. Schmall, J. Du, M. S. Judenhofer, P. Dokhale, J. Christian, M. McClish, K. S. Shah, and S. R. Cherry, “A study of position-sensitive solid-state photomultiplier signal properties,” IEEE Trans. Nucl. Sci. 61(3), 1074–1083 (2014).
[Crossref] [PubMed]

Del Guerra, A.

M. G. Bisogni, A. Del Guerra, and N. Belcari, “Medical applications of silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 926, 118–128 (2019).
[Crossref]

Dokhale, P.

J. P. Schmall, J. Du, M. S. Judenhofer, P. Dokhale, J. Christian, M. McClish, K. S. Shah, and S. R. Cherry, “A study of position-sensitive solid-state photomultiplier signal properties,” IEEE Trans. Nucl. Sci. 61(3), 1074–1083 (2014).
[Crossref] [PubMed]

Du, J.

J. Du, X. Bai, A. Gola, F. Acerbi, A. Ferri, C. Piemonte, Y. Yang, and S. R. Cherry, “Performance of a high-resolution depth-encoding PET detector module using linearly-graded SiPM arrays,” Phys. Med. Biol. 63(3), 035035 (2018).
[Crossref] [PubMed]

J. P. Schmall, J. Du, M. S. Judenhofer, P. Dokhale, J. Christian, M. McClish, K. S. Shah, and S. R. Cherry, “A study of position-sensitive solid-state photomultiplier signal properties,” IEEE Trans. Nucl. Sci. 61(3), 1074–1083 (2014).
[Crossref] [PubMed]

Engelmann, E.

E. Engelmann, E. Popova, and S. Vinogradov, “Spatially resolved dark count rate of SiPMs,” Eur. Phys. J. C 78(11), 1–8 (2018).
[Crossref]

Ferri, A.

J. Du, X. Bai, A. Gola, F. Acerbi, A. Ferri, C. Piemonte, Y. Yang, and S. R. Cherry, “Performance of a high-resolution depth-encoding PET detector module using linearly-graded SiPM arrays,” Phys. Med. Biol. 63(3), 035035 (2018).
[Crossref] [PubMed]

Fischer, P.

I. Sacco, P. Fischer, A. Gola, and C. Piemonte, “Interpolating silicon photo-multiplier: a novel position sensitive device with submillimeter spatial resolution and depth of interaction capability,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 2013), 1–3.

Fossum, E. R.

Gola, A.

J. Du, X. Bai, A. Gola, F. Acerbi, A. Ferri, C. Piemonte, Y. Yang, and S. R. Cherry, “Performance of a high-resolution depth-encoding PET detector module using linearly-graded SiPM arrays,” Phys. Med. Biol. 63(3), 035035 (2018).
[Crossref] [PubMed]

I. Sacco, P. Fischer, A. Gola, and C. Piemonte, “Interpolating silicon photo-multiplier: a novel position sensitive device with submillimeter spatial resolution and depth of interaction capability,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 2013), 1–3.

Han, D. J.

T. Zhao, Y. Peng, B. Li, R. He, K. Liang, R. Yang, and D. J. Han, “High-time resolved two-dimensional tetra-lateral position-sensitive silicon photomultiplier,” IEEE Electron Device Lett. 39(2), 232–235 (2018).
[Crossref]

T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New distortion correction algorithm for two-dimensional tetra-lateral position-sensitive silicon photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
[Crossref]

He, R.

T. Zhao, Y. Peng, B. Li, R. He, K. Liang, R. Yang, and D. J. Han, “High-time resolved two-dimensional tetra-lateral position-sensitive silicon photomultiplier,” IEEE Electron Device Lett. 39(2), 232–235 (2018).
[Crossref]

Hynecek, J.

J. Hynecek, “Impactron-a new solid state image intensifier,” IEEE Trans. Electron Dev. 48(10), 2238–2241 (2001).
[Crossref]

Judenhofer, M. S.

J. P. Schmall, J. Du, M. S. Judenhofer, P. Dokhale, J. Christian, M. McClish, K. S. Shah, and S. R. Cherry, “A study of position-sensitive solid-state photomultiplier signal properties,” IEEE Trans. Nucl. Sci. 61(3), 1074–1083 (2014).
[Crossref] [PubMed]

Li, B.

T. Zhao, Y. Peng, B. Li, R. He, K. Liang, R. Yang, and D. J. Han, “High-time resolved two-dimensional tetra-lateral position-sensitive silicon photomultiplier,” IEEE Electron Device Lett. 39(2), 232–235 (2018).
[Crossref]

T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New distortion correction algorithm for two-dimensional tetra-lateral position-sensitive silicon photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
[Crossref]

Li, C.

T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New distortion correction algorithm for two-dimensional tetra-lateral position-sensitive silicon photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
[Crossref]

Liang, K.

T. Zhao, Y. Peng, B. Li, R. He, K. Liang, R. Yang, and D. J. Han, “High-time resolved two-dimensional tetra-lateral position-sensitive silicon photomultiplier,” IEEE Electron Device Lett. 39(2), 232–235 (2018).
[Crossref]

T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New distortion correction algorithm for two-dimensional tetra-lateral position-sensitive silicon photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
[Crossref]

Ma, J.

Masoodian, S.

McClish, M.

J. P. Schmall, J. Du, M. S. Judenhofer, P. Dokhale, J. Christian, M. McClish, K. S. Shah, and S. R. Cherry, “A study of position-sensitive solid-state photomultiplier signal properties,” IEEE Trans. Nucl. Sci. 61(3), 1074–1083 (2014).
[Crossref] [PubMed]

Miao, Q.

T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New distortion correction algorithm for two-dimensional tetra-lateral position-sensitive silicon photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
[Crossref]

Nardo, L.

M. Caccia, L. Nardo, R. Santoro, and D. Schaffhauser, “Silicon photomultipliers and SPAD imagers in biophotonics: advances and perspectives,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 926, 101–117 (2019).
[Crossref]

Omidvari, N.

N. Omidvari and V. Schulz, “Characterization of sensitivity encoded silicon photomultiplier (SeSP) with 1-dimensional and 2-dimensional encoding for high resolution PET/MR,” IEEE Trans. Nucl. Sci. 62(3), 679–687 (2015).
[Crossref]

Peng, Y.

T. Zhao, Y. Peng, B. Li, R. He, K. Liang, R. Yang, and D. J. Han, “High-time resolved two-dimensional tetra-lateral position-sensitive silicon photomultiplier,” IEEE Electron Device Lett. 39(2), 232–235 (2018).
[Crossref]

Piemonte, C.

J. Du, X. Bai, A. Gola, F. Acerbi, A. Ferri, C. Piemonte, Y. Yang, and S. R. Cherry, “Performance of a high-resolution depth-encoding PET detector module using linearly-graded SiPM arrays,” Phys. Med. Biol. 63(3), 035035 (2018).
[Crossref] [PubMed]

I. Sacco, P. Fischer, A. Gola, and C. Piemonte, “Interpolating silicon photo-multiplier: a novel position sensitive device with submillimeter spatial resolution and depth of interaction capability,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 2013), 1–3.

Popova, E.

E. Engelmann, E. Popova, and S. Vinogradov, “Spatially resolved dark count rate of SiPMs,” Eur. Phys. J. C 78(11), 1–8 (2018).
[Crossref]

Sacco, I.

I. Sacco, P. Fischer, A. Gola, and C. Piemonte, “Interpolating silicon photo-multiplier: a novel position sensitive device with submillimeter spatial resolution and depth of interaction capability,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 2013), 1–3.

Santoro, R.

M. Caccia, L. Nardo, R. Santoro, and D. Schaffhauser, “Silicon photomultipliers and SPAD imagers in biophotonics: advances and perspectives,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 926, 101–117 (2019).
[Crossref]

Schaffhauser, D.

M. Caccia, L. Nardo, R. Santoro, and D. Schaffhauser, “Silicon photomultipliers and SPAD imagers in biophotonics: advances and perspectives,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 926, 101–117 (2019).
[Crossref]

Schmall, J. P.

J. P. Schmall, J. Du, M. S. Judenhofer, P. Dokhale, J. Christian, M. McClish, K. S. Shah, and S. R. Cherry, “A study of position-sensitive solid-state photomultiplier signal properties,” IEEE Trans. Nucl. Sci. 61(3), 1074–1083 (2014).
[Crossref] [PubMed]

Schulz, V.

N. Omidvari and V. Schulz, “Characterization of sensitivity encoded silicon photomultiplier (SeSP) with 1-dimensional and 2-dimensional encoding for high resolution PET/MR,” IEEE Trans. Nucl. Sci. 62(3), 679–687 (2015).
[Crossref]

Shah, K. S.

J. P. Schmall, J. Du, M. S. Judenhofer, P. Dokhale, J. Christian, M. McClish, K. S. Shah, and S. R. Cherry, “A study of position-sensitive solid-state photomultiplier signal properties,” IEEE Trans. Nucl. Sci. 61(3), 1074–1083 (2014).
[Crossref] [PubMed]

Simon, F.

F. Simon, “Silicon photomultipliers in particle and nuclear physics,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 926, 85–100 (2019).
[Crossref]

Starkey, D. A.

Tisa, S.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16(1), 3–12 (2016).
[Crossref]

Tosi, A.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16(1), 3–12 (2016).
[Crossref]

Villa, F.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16(1), 3–12 (2016).
[Crossref]

Vinogradov, S.

E. Engelmann, E. Popova, and S. Vinogradov, “Spatially resolved dark count rate of SiPMs,” Eur. Phys. J. C 78(11), 1–8 (2018).
[Crossref]

Wang, Y.

T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New distortion correction algorithm for two-dimensional tetra-lateral position-sensitive silicon photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
[Crossref]

Yang, R.

T. Zhao, Y. Peng, B. Li, R. He, K. Liang, R. Yang, and D. J. Han, “High-time resolved two-dimensional tetra-lateral position-sensitive silicon photomultiplier,” IEEE Electron Device Lett. 39(2), 232–235 (2018).
[Crossref]

T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New distortion correction algorithm for two-dimensional tetra-lateral position-sensitive silicon photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
[Crossref]

Yang, Y.

J. Du, X. Bai, A. Gola, F. Acerbi, A. Ferri, C. Piemonte, Y. Yang, and S. R. Cherry, “Performance of a high-resolution depth-encoding PET detector module using linearly-graded SiPM arrays,” Phys. Med. Biol. 63(3), 035035 (2018).
[Crossref] [PubMed]

Zappa, F.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16(1), 3–12 (2016).
[Crossref]

Zhao, T.

T. Zhao, Y. Peng, B. Li, R. He, K. Liang, R. Yang, and D. J. Han, “High-time resolved two-dimensional tetra-lateral position-sensitive silicon photomultiplier,” IEEE Electron Device Lett. 39(2), 232–235 (2018).
[Crossref]

T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New distortion correction algorithm for two-dimensional tetra-lateral position-sensitive silicon photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
[Crossref]

Eur. Phys. J. C (1)

E. Engelmann, E. Popova, and S. Vinogradov, “Spatially resolved dark count rate of SiPMs,” Eur. Phys. J. C 78(11), 1–8 (2018).
[Crossref]

IEEE Electron Device Lett. (2)

T. Zhao, B. Li, C. Li, Y. Wang, Q. Miao, K. Liang, R. Yang, and D. J. Han, “New distortion correction algorithm for two-dimensional tetra-lateral position-sensitive silicon photomultiplier,” IEEE Electron Device Lett. 38(2), 228–231 (2017).
[Crossref]

T. Zhao, Y. Peng, B. Li, R. He, K. Liang, R. Yang, and D. J. Han, “High-time resolved two-dimensional tetra-lateral position-sensitive silicon photomultiplier,” IEEE Electron Device Lett. 39(2), 232–235 (2018).
[Crossref]

IEEE Sens. J. (1)

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review,” IEEE Sens. J. 16(1), 3–12 (2016).
[Crossref]

IEEE Trans. Electron Dev. (1)

J. Hynecek, “Impactron-a new solid state image intensifier,” IEEE Trans. Electron Dev. 48(10), 2238–2241 (2001).
[Crossref]

IEEE Trans. Nucl. Sci. (2)

N. Omidvari and V. Schulz, “Characterization of sensitivity encoded silicon photomultiplier (SeSP) with 1-dimensional and 2-dimensional encoding for high resolution PET/MR,” IEEE Trans. Nucl. Sci. 62(3), 679–687 (2015).
[Crossref]

J. P. Schmall, J. Du, M. S. Judenhofer, P. Dokhale, J. Christian, M. McClish, K. S. Shah, and S. R. Cherry, “A study of position-sensitive solid-state photomultiplier signal properties,” IEEE Trans. Nucl. Sci. 61(3), 1074–1083 (2014).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. (3)

F. Simon, “Silicon photomultipliers in particle and nuclear physics,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 926, 85–100 (2019).
[Crossref]

M. G. Bisogni, A. Del Guerra, and N. Belcari, “Medical applications of silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 926, 118–128 (2019).
[Crossref]

M. Caccia, L. Nardo, R. Santoro, and D. Schaffhauser, “Silicon photomultipliers and SPAD imagers in biophotonics: advances and perspectives,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 926, 101–117 (2019).
[Crossref]

Optica (1)

Phys. Med. Biol. (1)

J. Du, X. Bai, A. Gola, F. Acerbi, A. Ferri, C. Piemonte, Y. Yang, and S. R. Cherry, “Performance of a high-resolution depth-encoding PET detector module using linearly-graded SiPM arrays,” Phys. Med. Biol. 63(3), 035035 (2018).
[Crossref] [PubMed]

Other (2)

I. Sacco, P. Fischer, A. Gola, and C. Piemonte, “Interpolating silicon photo-multiplier: a novel position sensitive device with submillimeter spatial resolution and depth of interaction capability,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 2013), 1–3.

P. Seitz and A. J. P. Theuwissen, Single-Photon Imaging (Springer, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Top view of the CRL-SiPM; the violet dot (x0, y0) represents the photon illumination position. (b) Schematic cross-section of the CRL-SiPM structure.
Fig. 2
Fig. 2 Probability distribution of the barycenter position when the FWHM of the light spot is ~40 μm and (a) MPEN is equal to 2, and (b) the incident photon number ranges from 1 to 10.
Fig. 3
Fig. 3 (a) Monte Carlo simulation of the barycenter position distribution of incident photons when the FWHM of the light spot is ~40 μm and the MPEN is 2. (b) Gaussian fitting of the X position distribution of the barycenter.
Fig. 4
Fig. 4 Position distribution of electronic noise when the MPEN is ~1.8.
Fig. 5
Fig. 5 Setup of the measurement system.
Fig. 6
Fig. 6 Position resolution of the measurement system in the (a) X and (b) Y directions at (0, 0) with single photon; the FWHM of the light spot is ~40 μm.
Fig. 7
Fig. 7 Dependence of (a) the position resolutions of the measurement system and (b) intrinsic position resolutions of the device on the MPEN at the position (0, 0).
Fig. 8
Fig. 8 Single-photon imaging of the resolution test charts with 140-, 150-, and 160-μm linewidth “NDL” characters.
Fig. 9
Fig. 9 (a)–(c) Lensless imaging of the CRL-SiPM dark counting sites with self-space-resolved function for different counts and durations. (d) Field emission microscope image of the same device obtained with an EMCCD-equipped microscope.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P R System 2 =P R Device 2 +FWH M Photons 2 +FWH M Electronics 2 .
P(k)= λ k k! e λ ,
f(x)= 1 2π σ exp( (xμ) 2 2 σ 2 ),
f k (x)= 1 2π ( σ k ) exp( (xμ) 2 2 ( σ k ) 2 ).
F λ (x)= k f k (x)P(k) .
Q i = Q i + Q ni ,
SNR= Q σ Q n ,
FWH M Q n =2 2ln2 σ Q n ,
SNR= 2 2ln2 Q FWH M Q n .

Metrics