Abstract

An optical-see-through augmented reality (AR) system assists our daily work by augmenting our sense with computer-generated information. Two of optical challenges of AR are image registration and vision correction due to fixed optical properties of the optical elements of AR systems. In this paper, we demonstrated an AR system with optical zoom function as well as a function of image registration via two LC lenses in order to help people see better by magnifying the virtual image and adjusting the location of virtual image. The operating principles are introduced, and experiments are performed. The concept demonstrated in this paper could be further extended to other electro-optical devices as long as the devices exhibit the capability of phase modulations.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens

Hung-Shan Chen, Yu-Jen Wang, Po-Ju Chen, and Yi-Hsin Lin
Opt. Express 23(22) 28154-28162 (2015)

An electrically tunable imaging system with separable focus and zoom functions using composite liquid crystal lenses

Ming-Syuan Chen, Po-Ju Chen, Michael Chen, and Yi-Hsin Lin
Opt. Express 22(10) 11427-11435 (2014)

Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications

Yi-Hsin Lin and Hung-Shan Chen
Opt. Express 21(8) 9428-9436 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Phillips and O. L. Siu, Global Aging and Aging Workers in The Oxford Handbook of Work and Aging (Oxford University, 2012).
  2. M. Miodownik, “Materials for the 21st century: What will we dream up next?” MRS Bull. 40(12), 1188–1197 (2015).
    [Crossref]
  3. J. P. Rolland and H. Hua, “Head-mounted displays,” in Encyclopedia of Optical Engineering, R.B. Johnson and R.G. Driggers, eds., Taylor and Francis (2005).
  4. O. Cakmakci and J. P. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
    [Crossref]
  5. J. P. Rolland and O. Cakmakci, “Head-worn displays: the future through new eyes,” Opt. Photonics News 20(4), 20–27 (2009).
    [Crossref]
  6. B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
    [Crossref]
  7. R. Palmarini, J. A. Erkoyuncu, R. Roy, and H. Torabmostaedi, “A systematic review of augmented reality applications in maintenance,” Robot. Comput.-Integr. Manuf. 49, 215–228 (2018).
    [Crossref]
  8. S. K. Feiner, “Augmented Reality: A New Way of Seeing,” Sci. Am. 286(4), 48–55 (2002).
    [Crossref]
  9. H. C. Lin, H. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
    [Crossref]
  10. Y. H. Lin, Y. J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
    [Crossref]
  11. S. Sato, A. Sugiyama, and R. Sato, “Variable-Focus Liquid-Crystal Fresnel Lens,” Jpn. J. Appl. Phys. 24(Part 2), L626–L628 (1985).
    [Crossref]
  12. G. Q. Li, P. Valley, M. S. Giridhar, and et al., “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
    [Crossref]
  13. L. Li, D. Bryant, and P. J. Bos, “Liquid crystal lens with concentric electrodes and inter-electrode resistors,” Liq. Cryst. Rev. 2(2), 130–154 (2014).
    [Crossref]
  14. H. S. Chen, Y. J. Wang, P. J. Chen, and Y. H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
    [Crossref]
  15. Y. J. Wang, P. J. Chen, X. Liang, and Y. H. Lin, “Augmented reality with image registration, vision, correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
    [Crossref]
  16. Y. H. Lin and Y. J. Wang, “Liquid crystal lenses in augmented reality,” SID Symp,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48(1), 230–233 (2017).
    [Crossref]
  17. Y. Arakawa, S. Kang, H. Tsuji, and et al., “The design of liquid crystalline bisolane-based materials with extremely high birefringence,” RSC Adv. 6(95), 92845–92851 (2016).
    [Crossref]
  18. H. S. Chen, Y. J. Wang, C. M. Chang, and Y. H. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
    [Crossref]
  19. Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
    [Crossref]
  20. H. C. Lin, N. Collings, M. S. Chen, and et al., “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
    [Crossref]
  21. H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
    [Crossref]
  22. W. Choi, D. W. Kim, and S. D. Lee, “Liquid Crystal Lens Array with High Fill-Factor Fabricated by an Imprinting Technique,” Mol. Cryst. Liq. Cryst. 504(1), 35–43 (2009).
    [Crossref]
  23. S. Stankovic, D. Dias, M. Hain, and et al., “Fast Switching Liquid Crystal Lenses for a Dual Focus Digital Versatile Disc Pickup,” Appl. Opt. 40(5), 614–621 (2001).
    [Crossref]
  24. H. S. Chen, Y. H. Lin, A. K. Srivastava, and et al., “A large bistable negative lens by integrating a polarization switch with a passively anisotropic focusing element,” Opt. Express 22(11), 13138–13145 (2014).
    [Crossref]
  25. M. Katz and M. Kata, Introduction to Geometrical Optics (World Scientific, 2002).

2018 (1)

R. Palmarini, J. A. Erkoyuncu, R. Roy, and H. Torabmostaedi, “A systematic review of augmented reality applications in maintenance,” Robot. Comput.-Integr. Manuf. 49, 215–228 (2018).
[Crossref]

2017 (3)

Y. H. Lin, Y. J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

Y. J. Wang, P. J. Chen, X. Liang, and Y. H. Lin, “Augmented reality with image registration, vision, correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[Crossref]

Y. H. Lin and Y. J. Wang, “Liquid crystal lenses in augmented reality,” SID Symp,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48(1), 230–233 (2017).
[Crossref]

2016 (1)

Y. Arakawa, S. Kang, H. Tsuji, and et al., “The design of liquid crystalline bisolane-based materials with extremely high birefringence,” RSC Adv. 6(95), 92845–92851 (2016).
[Crossref]

2015 (3)

H. S. Chen, Y. J. Wang, C. M. Chang, and Y. H. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

H. S. Chen, Y. J. Wang, P. J. Chen, and Y. H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[Crossref]

M. Miodownik, “Materials for the 21st century: What will we dream up next?” MRS Bull. 40(12), 1188–1197 (2015).
[Crossref]

2014 (2)

L. Li, D. Bryant, and P. J. Bos, “Liquid crystal lens with concentric electrodes and inter-electrode resistors,” Liq. Cryst. Rev. 2(2), 130–154 (2014).
[Crossref]

H. S. Chen, Y. H. Lin, A. K. Srivastava, and et al., “A large bistable negative lens by integrating a polarization switch with a passively anisotropic focusing element,” Opt. Express 22(11), 13138–13145 (2014).
[Crossref]

2013 (1)

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

2012 (1)

2011 (2)

H. C. Lin, H. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
[Crossref]

2010 (1)

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[Crossref]

2009 (2)

W. Choi, D. W. Kim, and S. D. Lee, “Liquid Crystal Lens Array with High Fill-Factor Fabricated by an Imprinting Technique,” Mol. Cryst. Liq. Cryst. 504(1), 35–43 (2009).
[Crossref]

J. P. Rolland and O. Cakmakci, “Head-worn displays: the future through new eyes,” Opt. Photonics News 20(4), 20–27 (2009).
[Crossref]

2006 (2)

O. Cakmakci and J. P. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

G. Q. Li, P. Valley, M. S. Giridhar, and et al., “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

2002 (1)

S. K. Feiner, “Augmented Reality: A New Way of Seeing,” Sci. Am. 286(4), 48–55 (2002).
[Crossref]

2001 (1)

1985 (1)

S. Sato, A. Sugiyama, and R. Sato, “Variable-Focus Liquid-Crystal Fresnel Lens,” Jpn. J. Appl. Phys. 24(Part 2), L626–L628 (1985).
[Crossref]

Arakawa, Y.

Y. Arakawa, S. Kang, H. Tsuji, and et al., “The design of liquid crystalline bisolane-based materials with extremely high birefringence,” RSC Adv. 6(95), 92845–92851 (2016).
[Crossref]

Bos, P. J.

L. Li, D. Bryant, and P. J. Bos, “Liquid crystal lens with concentric electrodes and inter-electrode resistors,” Liq. Cryst. Rev. 2(2), 130–154 (2014).
[Crossref]

Bryant, D.

L. Li, D. Bryant, and P. J. Bos, “Liquid crystal lens with concentric electrodes and inter-electrode resistors,” Liq. Cryst. Rev. 2(2), 130–154 (2014).
[Crossref]

Cakmakci, O.

J. P. Rolland and O. Cakmakci, “Head-worn displays: the future through new eyes,” Opt. Photonics News 20(4), 20–27 (2009).
[Crossref]

O. Cakmakci and J. P. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

Chang, C. M.

H. S. Chen, Y. J. Wang, C. M. Chang, and Y. H. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

Chen, H. S.

H. S. Chen, Y. J. Wang, C. M. Chang, and Y. H. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

H. S. Chen, Y. J. Wang, P. J. Chen, and Y. H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[Crossref]

H. S. Chen, Y. H. Lin, A. K. Srivastava, and et al., “A large bistable negative lens by integrating a polarization switch with a passively anisotropic focusing element,” Opt. Express 22(11), 13138–13145 (2014).
[Crossref]

H. C. Lin, H. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

Chen, M. S.

Chen, P. J.

Y. J. Wang, P. J. Chen, X. Liang, and Y. H. Lin, “Augmented reality with image registration, vision, correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[Crossref]

H. S. Chen, Y. J. Wang, P. J. Chen, and Y. H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[Crossref]

Choi, W.

W. Choi, D. W. Kim, and S. D. Lee, “Liquid Crystal Lens Array with High Fill-Factor Fabricated by an Imprinting Technique,” Mol. Cryst. Liq. Cryst. 504(1), 35–43 (2009).
[Crossref]

Collings, N.

Dias, D.

Erkoyuncu, J. A.

R. Palmarini, J. A. Erkoyuncu, R. Roy, and H. Torabmostaedi, “A systematic review of augmented reality applications in maintenance,” Robot. Comput.-Integr. Manuf. 49, 215–228 (2018).
[Crossref]

Feiner, S. K.

S. K. Feiner, “Augmented Reality: A New Way of Seeing,” Sci. Am. 286(4), 48–55 (2002).
[Crossref]

Giridhar, M. S.

G. Q. Li, P. Valley, M. S. Giridhar, and et al., “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

Hain, M.

Hua, H.

J. P. Rolland and H. Hua, “Head-mounted displays,” in Encyclopedia of Optical Engineering, R.B. Johnson and R.G. Driggers, eds., Taylor and Francis (2005).

Kang, S.

Y. Arakawa, S. Kang, H. Tsuji, and et al., “The design of liquid crystalline bisolane-based materials with extremely high birefringence,” RSC Adv. 6(95), 92845–92851 (2016).
[Crossref]

Kata, M.

M. Katz and M. Kata, Introduction to Geometrical Optics (World Scientific, 2002).

Katz, M.

M. Katz and M. Kata, Introduction to Geometrical Optics (World Scientific, 2002).

Kim, D. W.

W. Choi, D. W. Kim, and S. D. Lee, “Liquid Crystal Lens Array with High Fill-Factor Fabricated by an Imprinting Technique,” Mol. Cryst. Liq. Cryst. 504(1), 35–43 (2009).
[Crossref]

Kress, B.

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

Lee, S. D.

W. Choi, D. W. Kim, and S. D. Lee, “Liquid Crystal Lens Array with High Fill-Factor Fabricated by an Imprinting Technique,” Mol. Cryst. Liq. Cryst. 504(1), 35–43 (2009).
[Crossref]

Li, G. Q.

G. Q. Li, P. Valley, M. S. Giridhar, and et al., “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

Li, L.

L. Li, D. Bryant, and P. J. Bos, “Liquid crystal lens with concentric electrodes and inter-electrode resistors,” Liq. Cryst. Rev. 2(2), 130–154 (2014).
[Crossref]

Liang, X.

Y. J. Wang, P. J. Chen, X. Liang, and Y. H. Lin, “Augmented reality with image registration, vision, correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[Crossref]

Lin, H. C.

H. C. Lin, N. Collings, M. S. Chen, and et al., “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref]

H. C. Lin, H. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
[Crossref]

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[Crossref]

Lin, Y. H.

Y. J. Wang, P. J. Chen, X. Liang, and Y. H. Lin, “Augmented reality with image registration, vision, correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[Crossref]

Y. H. Lin and Y. J. Wang, “Liquid crystal lenses in augmented reality,” SID Symp,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48(1), 230–233 (2017).
[Crossref]

Y. H. Lin, Y. J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

H. S. Chen, Y. J. Wang, C. M. Chang, and Y. H. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

H. S. Chen, Y. J. Wang, P. J. Chen, and Y. H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[Crossref]

H. S. Chen, Y. H. Lin, A. K. Srivastava, and et al., “A large bistable negative lens by integrating a polarization switch with a passively anisotropic focusing element,” Opt. Express 22(11), 13138–13145 (2014).
[Crossref]

H. C. Lin, H. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
[Crossref]

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[Crossref]

Miodownik, M.

M. Miodownik, “Materials for the 21st century: What will we dream up next?” MRS Bull. 40(12), 1188–1197 (2015).
[Crossref]

Palmarini, R.

R. Palmarini, J. A. Erkoyuncu, R. Roy, and H. Torabmostaedi, “A systematic review of augmented reality applications in maintenance,” Robot. Comput.-Integr. Manuf. 49, 215–228 (2018).
[Crossref]

Phillips, D.

D. Phillips and O. L. Siu, Global Aging and Aging Workers in The Oxford Handbook of Work and Aging (Oxford University, 2012).

Reshetnyak, V.

Y. H. Lin, Y. J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

Rolland, J. P.

J. P. Rolland and O. Cakmakci, “Head-worn displays: the future through new eyes,” Opt. Photonics News 20(4), 20–27 (2009).
[Crossref]

O. Cakmakci and J. P. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

J. P. Rolland and H. Hua, “Head-mounted displays,” in Encyclopedia of Optical Engineering, R.B. Johnson and R.G. Driggers, eds., Taylor and Francis (2005).

Roy, R.

R. Palmarini, J. A. Erkoyuncu, R. Roy, and H. Torabmostaedi, “A systematic review of augmented reality applications in maintenance,” Robot. Comput.-Integr. Manuf. 49, 215–228 (2018).
[Crossref]

Sato, R.

S. Sato, A. Sugiyama, and R. Sato, “Variable-Focus Liquid-Crystal Fresnel Lens,” Jpn. J. Appl. Phys. 24(Part 2), L626–L628 (1985).
[Crossref]

Sato, S.

S. Sato, A. Sugiyama, and R. Sato, “Variable-Focus Liquid-Crystal Fresnel Lens,” Jpn. J. Appl. Phys. 24(Part 2), L626–L628 (1985).
[Crossref]

Siu, O. L.

D. Phillips and O. L. Siu, Global Aging and Aging Workers in The Oxford Handbook of Work and Aging (Oxford University, 2012).

Srivastava, A. K.

Stankovic, S.

Starner, T.

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

Sugiyama, A.

S. Sato, A. Sugiyama, and R. Sato, “Variable-Focus Liquid-Crystal Fresnel Lens,” Jpn. J. Appl. Phys. 24(Part 2), L626–L628 (1985).
[Crossref]

Torabmostaedi, H.

R. Palmarini, J. A. Erkoyuncu, R. Roy, and H. Torabmostaedi, “A systematic review of augmented reality applications in maintenance,” Robot. Comput.-Integr. Manuf. 49, 215–228 (2018).
[Crossref]

Tsuji, H.

Y. Arakawa, S. Kang, H. Tsuji, and et al., “The design of liquid crystalline bisolane-based materials with extremely high birefringence,” RSC Adv. 6(95), 92845–92851 (2016).
[Crossref]

Valley, P.

G. Q. Li, P. Valley, M. S. Giridhar, and et al., “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

Wang, Y. J.

Y. H. Lin, Y. J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

Y. H. Lin and Y. J. Wang, “Liquid crystal lenses in augmented reality,” SID Symp,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48(1), 230–233 (2017).
[Crossref]

Y. J. Wang, P. J. Chen, X. Liang, and Y. H. Lin, “Augmented reality with image registration, vision, correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[Crossref]

H. S. Chen, Y. J. Wang, C. M. Chang, and Y. H. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

H. S. Chen, Y. J. Wang, P. J. Chen, and Y. H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

G. Q. Li, P. Valley, M. S. Giridhar, and et al., “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[Crossref]

Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. (1)

Y. H. Lin and Y. J. Wang, “Liquid crystal lenses in augmented reality,” SID Symp,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48(1), 230–233 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. S. Chen, Y. J. Wang, C. M. Chang, and Y. H. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

J. Disp. Technol. (1)

O. Cakmakci and J. P. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Sato, A. Sugiyama, and R. Sato, “Variable-Focus Liquid-Crystal Fresnel Lens,” Jpn. J. Appl. Phys. 24(Part 2), L626–L628 (1985).
[Crossref]

Liq. Cryst. Rev. (2)

L. Li, D. Bryant, and P. J. Bos, “Liquid crystal lens with concentric electrodes and inter-electrode resistors,” Liq. Cryst. Rev. 2(2), 130–154 (2014).
[Crossref]

Y. H. Lin, Y. J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

W. Choi, D. W. Kim, and S. D. Lee, “Liquid Crystal Lens Array with High Fill-Factor Fabricated by an Imprinting Technique,” Mol. Cryst. Liq. Cryst. 504(1), 35–43 (2009).
[Crossref]

MRS Bull. (1)

M. Miodownik, “Materials for the 21st century: What will we dream up next?” MRS Bull. 40(12), 1188–1197 (2015).
[Crossref]

Opt. Express (4)

Opt. Photonics News (1)

J. P. Rolland and O. Cakmakci, “Head-worn displays: the future through new eyes,” Opt. Photonics News 20(4), 20–27 (2009).
[Crossref]

Proc. SPIE (1)

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

Robot. Comput.-Integr. Manuf. (1)

R. Palmarini, J. A. Erkoyuncu, R. Roy, and H. Torabmostaedi, “A systematic review of augmented reality applications in maintenance,” Robot. Comput.-Integr. Manuf. 49, 215–228 (2018).
[Crossref]

RSC Adv. (1)

Y. Arakawa, S. Kang, H. Tsuji, and et al., “The design of liquid crystalline bisolane-based materials with extremely high birefringence,” RSC Adv. 6(95), 92845–92851 (2016).
[Crossref]

Sci. Am. (1)

S. K. Feiner, “Augmented Reality: A New Way of Seeing,” Sci. Am. 286(4), 48–55 (2002).
[Crossref]

Sci. Rep. (1)

Y. J. Wang, P. J. Chen, X. Liang, and Y. H. Lin, “Augmented reality with image registration, vision, correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[Crossref]

Trans. Electr. Electron. Mater. (1)

H. C. Lin, H. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

Other (3)

J. P. Rolland and H. Hua, “Head-mounted displays,” in Encyclopedia of Optical Engineering, R.B. Johnson and R.G. Driggers, eds., Taylor and Francis (2005).

D. Phillips and O. L. Siu, Global Aging and Aging Workers in The Oxford Handbook of Work and Aging (Oxford University, 2012).

M. Katz and M. Kata, Introduction to Geometrical Optics (World Scientific, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Operating principle of the AR system with optical zoom function and image registration. (a) Initially, eye sees the distant real object and the virtual image “zoom function” when “LC lens 1” and “LC lens 2” are off. (b) When “LC lens 2” is on and the virtual image is registered with the near real object, for eye, both the virtual image and the real object are blurred due to presbyopia. (c) The project virtual is magnified when “LC lens 1” and “LC lens 2” are operated properly together. Therefore, the magnified virtual image in the retinal becomes clearer.
Fig. 2.
Fig. 2. (a) Structure of “LC lens 1”. (b) Structure of “LC lens 2”. (c) The measured lens power as the function of an applied voltage pair of (V1, V2). The “LC lens 1” functions as a positive lens at (60Vrms, V) at frequency (Freq) of 6 kHz (red circles) and a negative lens at (V, 50Vrms) at Freq = 0.2 kHz (red triangles). The “LC lens 2” functions as a positive lens at (70Vrms, V) at Freq = 7kHz (blue squares) and a negative lens at (V, 75Vrms) at Freq = 2 kHz (blue diamonds). The effective aperture size of “LC lens 2” was 4 mm.
Fig. 3.
Fig. 3. (a) The virtual image recorded by the camera when the “LC lens 1” was applied voltage pair of (60Vrms, 10Vrms) at Freq = 6 kHz and the “LC lens 2” was applied voltage pair of (20Vrms, 75Vrms) at Freq = 2 kHz. (b) The virtual image recorded by the camera when the “LC lens 1” was applied voltage pair of (60Vrms, 10Vrms) at Freq = 6 kHz and the “LC lens 2” was applied voltage pair of (75Vrms, 75Vrms) at Freq = 2 kHz. In (a) and (b), q2=300 cm. (c) Contrast ratio of the virtual image as the function of applied voltage V1 of “LC lens 2” at different voltage pairs of “LC lens 1” when z = 300 cm. (d) ${\bar{P}_{LC2}}$ as the function of ${\bar{P}_{LC1}}$ at z = 50 cm, 100 cm, and 300 cm, respectively. (e) The magnification of the virtual images as the function of the lens power of “LC lens 1” at q2 = 50 cm, 100 cm, and 300 cm, respectively. “sim” and “exp” in (d) and (e) stand for theoretical calculation and experimental results, respectively.
Fig. 4.
Fig. 4. Images of proposed AR system with optical zoom function. (a) The camera is set to see the object at 300 cm (tall building). The projected virtual image is at 300 cm when ${\bar{P}_{LC1}}$ = 0D and ${\bar{P}_{LC2}}$= −1.12D. (b) The image as ${\bar{P}_{LC1}}$ = −14.10D and ${\bar{P}_{LC2}}$ = −0.56D. (c) The image as ${\bar{P}_{LC1}}$ = +12.86D and ${\bar{P}_{LC2}}$ = −1.89D. (d) The camera is set to see the object at 100 cm (medium tall building). The projected virtual image is at 100 cm when ${\bar{P}_{LC1}}$ = 0.08D and ${\bar{P}_{LC2}}$ = −1.46D. (e) From (d), the image as ${\bar{P}_{LC1}}$ = −14.10D and ${\bar{P}_{LC2}}$ = −0.88D. (f) From (e), the image as ${\bar{P}_{LC1}}$ = +12.86D and ${\bar{P}_{LC2}}$ = −2.11D.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

1 p 1 + 1 q 1 = 1 f 1 ( V ) = P ¯ 1 ( V )
1 p 2 + 1 q 2 = 1 f 2 ( V ) = P ¯ 2 ( V )
P ¯ 2 = P ¯ 1 p 1 ( d + q 2 ) ( p 1 + d + q 2 ) q 2 [ P ¯ 1 p 1 d ( p 1 + d ) ]
M = q 1 p 1 q 2 p 2
M ( P ¯ 1 ) = q 2 P ¯ 1 p 1 d d p 1
M ( P ¯ 2 ) = P ¯ 2 d q 2 d q 2 p 1
q 2 + d + p 1 d p 1 < P ¯ 1 < d + p 1 d p 1 .
P ¯ 2 < p 1 + d + q 2 d q 2 .
M A = q 2 P ¯ L C 1 , min p 1 d d p 1
M B = q 2 P ¯ L C 1 , max p 1 d d p 1
M C = ( 2 P ¯ L C 2 , max + P ¯ m i r r o r ) d q 2 d q 2 p 1
M D = ( 2 P ¯ L C 2 , min + P ¯ m i r r o r ) d q 2 d q 2 p 1
M A = q 2 Δ P ¯ p 1 d d p 1
M B = q 2 Δ P ¯ p 1 d d p 1
M C = ( 2 Δ P ¯ + P ¯ m i r r o r ) d q 2 d q 2 p 1
M D = ( 2 Δ P ¯ + P ¯ m i r r o r ) d q 2 d q 2 p 1
M max = q 2 P 1 , max p 1 d d p 1
M min = q 2 P 1 , min p 1 d d p 1
Z R = M max M min = P L C 1 , min p 1 d d p 1 P L C 1 , max p 1 d d p 1
P ¯ L C ( V ) = 2 δ n ( V ) t r 2

Metrics