Abstract

We apply a high-resolution interference microscope with spectral resolution to investigate the scattering response of isolated meta-atoms in real space. The final meta-atoms consist of core-shell clusters that are fabricated using a bottom-up approach. The meta-atoms are investigated with an increasing complexity. We start by studying silica and gold spheres and conclude with the investigation of the meta-atom, which consists of a silica core sphere onto which gold nanospheres are attached. Numerical simulations entirely verify the measured data. The measuring process involves recording the intensity and phase of the total field emerging from the scattering process of an incident light at the particle in the transmitted half-space with spectral and high spatial resolution. We show that spectrally resolved high-resolution interference microscopy can be used to differentiate between nanoparticles and characterize single meta-atoms, something that is rarely accomplished.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical properties of a fabricated self-assembled bottom-up bulk metamaterial

S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer
Opt. Express 19(10) 9607-9616 (2011)

Optical absorption analysis and optimization of gold nanoshells

Paerhatijiang Tuersun and Xiang’e Han
Appl. Opt. 52(6) 1325-1329 (2013)

Optical properties of gold-silica-gold multilayer nanoshells

Ying Hu, Ryan C. Fleming, and Rebekah A. Drezek
Opt. Express 16(24) 19579-19591 (2008)

References

  • View by:
  • |
  • |
  • |

  1. V. Veselago, “The electrodynamics of substances with simultaneously negative values of epsilon and mu,” Sov. Phys. Uspekhi 10, 509–514 (1968).
    [Crossref]
  2. I. B. Vendik and O. G. Vendik, “Metamaterials and their application in microwaves: A review,” Tech. Phys. 58, 1–24 (2013).
    [Crossref]
  3. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351 (2004).
    [Crossref] [PubMed]
  4. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
    [Crossref] [PubMed]
  5. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics (2011).
    [Crossref]
  6. H. Moser and C. Rockstuhl, “3d THz metamaterials from micro/nanomanufacturing,” Laser Photonics Rev. 6, 219–244 (2012).
    [Crossref]
  7. S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2 (2013).
    [Crossref]
  8. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311 (2012).
    [Crossref] [PubMed]
  9. N. R. Suryadharma and C. Rockstuhl, “Predicting Observable Quantities of Self-Assembled Metamaterials from the T-Matrix of Its Constituting Meta-Atom,” Materials 11 (2018).
    [Crossref] [PubMed]
  10. J. Dintinger, S. Mühlig, C. Rockstuhl, and T. Scharf, “A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles,” Opt. Mater. Express 2, 269–278 (2012).
    [Crossref]
  11. C. Rockstuhl, I. Marki, T. Scharf, M. Salt, H. Peter Herzig, and R. Dändliker, “High resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2, 337–350 (2006).
    [Crossref]
  12. J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich Method for Gold Nanoparticle Synthesis Revisited,” The J. Phys. Chem. B 110, 15700–15707 (2006).
    [Crossref] [PubMed]
  13. S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-Assembled Plasmonic Core-Shell Clusters with an Isotropic Magnetic Dipole Response in the Visible Range,” ACS Nano 5, 6586–6592 (2011).
    [Crossref] [PubMed]
  14. H. Yang and P. Jiang, “Large-Scale Colloidal Self-Assembly by Doctor Blade Coating,” Langmuir 26, 13173–13182 (2010).
    [Crossref] [PubMed]
  15. M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. express 19, 10206–10220 (2011).
    [Crossref] [PubMed]
  16. M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. 98, 191114 (2011).
    [Crossref]
  17. E. P. Goodwin and J. C. Wyant, Field Guide to Interferometric Optical Testing, SPIE Field Guides (SPIE, 2006).
    [Crossref]
  18. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504–2506 (1987).
    [Crossref] [PubMed]
  19. J. Hwang and W. Moerner, “Interferometry of a single nanoparticle using the Gouy phase of a focused laser beam,” Opt. Commun. 280, 487–491 (2007).
    [Crossref]
  20. P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, and V. Sandoghdar, “High-speed nanoscopic tracking of the position and orientation of a single virus,” Nat. Methods 6, 923 (2009).
    [Crossref] [PubMed]
  21. F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010).
    [Crossref] [PubMed]
  22. Y.-F. Huang, G.-Y. Zhuo, C.-Y. Chou, C.-H. Lin, W. Chang, and C.-L. Hsieh, “Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells,” ACS Nano 11, 2575–2585 (2017).
    [Crossref] [PubMed]
  23. R. K. Attota and H. Kang, “Parameter optimization for through-focus scanning optical microscopy,” Opt. Express 24, 14915–14924 (2016).
    [Crossref] [PubMed]
  24. J. W. Goodman, Introduction to Fourier Optics, McGraw - Hill Series in Electrical and Computer Engineering (McGraw - Hill, 1996), 2nd ed.
  25. Y.-L. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34, 4573–4588 (1995).
    [Crossref] [PubMed]
  26. D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11, 107–117 (1994).
    [Crossref]
  27. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
    [Crossref] [PubMed]

2018 (1)

N. R. Suryadharma and C. Rockstuhl, “Predicting Observable Quantities of Self-Assembled Metamaterials from the T-Matrix of Its Constituting Meta-Atom,” Materials 11 (2018).
[Crossref] [PubMed]

2017 (1)

Y.-F. Huang, G.-Y. Zhuo, C.-Y. Chou, C.-H. Lin, W. Chang, and C.-L. Hsieh, “Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells,” ACS Nano 11, 2575–2585 (2017).
[Crossref] [PubMed]

2016 (1)

2013 (2)

I. B. Vendik and O. G. Vendik, “Metamaterials and their application in microwaves: A review,” Tech. Phys. 58, 1–24 (2013).
[Crossref]

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2 (2013).
[Crossref]

2012 (3)

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311 (2012).
[Crossref] [PubMed]

H. Moser and C. Rockstuhl, “3d THz metamaterials from micro/nanomanufacturing,” Laser Photonics Rev. 6, 219–244 (2012).
[Crossref]

J. Dintinger, S. Mühlig, C. Rockstuhl, and T. Scharf, “A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles,” Opt. Mater. Express 2, 269–278 (2012).
[Crossref]

2011 (4)

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-Assembled Plasmonic Core-Shell Clusters with an Isotropic Magnetic Dipole Response in the Visible Range,” ACS Nano 5, 6586–6592 (2011).
[Crossref] [PubMed]

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. express 19, 10206–10220 (2011).
[Crossref] [PubMed]

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. 98, 191114 (2011).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics (2011).
[Crossref]

2010 (2)

2009 (1)

P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, and V. Sandoghdar, “High-speed nanoscopic tracking of the position and orientation of a single virus,” Nat. Methods 6, 923 (2009).
[Crossref] [PubMed]

2008 (1)

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref] [PubMed]

2007 (1)

J. Hwang and W. Moerner, “Interferometry of a single nanoparticle using the Gouy phase of a focused laser beam,” Opt. Commun. 280, 487–491 (2007).
[Crossref]

2006 (2)

C. Rockstuhl, I. Marki, T. Scharf, M. Salt, H. Peter Herzig, and R. Dändliker, “High resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2, 337–350 (2006).
[Crossref]

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich Method for Gold Nanoparticle Synthesis Revisited,” The J. Phys. Chem. B 110, 15700–15707 (2006).
[Crossref] [PubMed]

2005 (1)

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

2004 (1)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351 (2004).
[Crossref] [PubMed]

1995 (1)

1994 (1)

1987 (1)

1968 (1)

V. Veselago, “The electrodynamics of substances with simultaneously negative values of epsilon and mu,” Sov. Phys. Uspekhi 10, 509–514 (1968).
[Crossref]

Attota, R. K.

Ballot, H.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich Method for Gold Nanoparticle Synthesis Revisited,” The J. Phys. Chem. B 110, 15700–15707 (2006).
[Crossref] [PubMed]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

Bürgi, T.

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2 (2013).
[Crossref]

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-Assembled Plasmonic Core-Shell Clusters with an Isotropic Magnetic Dipole Response in the Visible Range,” ACS Nano 5, 6586–6592 (2011).
[Crossref] [PubMed]

Chang, W.

Y.-F. Huang, G.-Y. Zhuo, C.-Y. Chou, C.-H. Lin, W. Chang, and C.-L. Hsieh, “Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells,” ACS Nano 11, 2575–2585 (2017).
[Crossref] [PubMed]

Cheong, F. C.

Chou, C.-Y.

Y.-F. Huang, G.-Y. Zhuo, C.-Y. Chou, C.-H. Lin, W. Chang, and C.-L. Hsieh, “Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells,” ACS Nano 11, 2575–2585 (2017).
[Crossref] [PubMed]

Cunningham, A.

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2 (2013).
[Crossref]

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-Assembled Plasmonic Core-Shell Clusters with an Isotropic Magnetic Dipole Response in the Visible Range,” ACS Nano 5, 6586–6592 (2011).
[Crossref] [PubMed]

Dändliker, R.

C. Rockstuhl, I. Marki, T. Scharf, M. Salt, H. Peter Herzig, and R. Dändliker, “High resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2, 337–350 (2006).
[Crossref]

Dintinger, J.

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2 (2013).
[Crossref]

J. Dintinger, S. Mühlig, C. Rockstuhl, and T. Scharf, “A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles,” Opt. Mater. Express 2, 269–278 (2012).
[Crossref]

Eiju, T.

Enkrich, C.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351 (2004).
[Crossref] [PubMed]

Ewers, H.

P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, and V. Sandoghdar, “High-speed nanoscopic tracking of the position and orientation of a single virus,” Nat. Methods 6, 923 (2009).
[Crossref] [PubMed]

Fan, Z.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311 (2012).
[Crossref] [PubMed]

Funston, A. M.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref] [PubMed]

García de Abajo, F. J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref] [PubMed]

Ghiglia, D. C.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, McGraw - Hill Series in Electrical and Computer Engineering (McGraw - Hill, 1996), 2nd ed.

Goodwin, E. P.

E. P. Goodwin and J. C. Wyant, Field Guide to Interferometric Optical Testing, SPIE Field Guides (SPIE, 2006).
[Crossref]

Govorov, A. O.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311 (2012).
[Crossref] [PubMed]

Grier, D. G.

Hariharan, P.

Helenius, A.

P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, and V. Sandoghdar, “High-speed nanoscopic tracking of the position and orientation of a single virus,” Nat. Methods 6, 923 (2009).
[Crossref] [PubMed]

Herzig, H. P.

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. express 19, 10206–10220 (2011).
[Crossref] [PubMed]

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. 98, 191114 (2011).
[Crossref]

Högele, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311 (2012).
[Crossref] [PubMed]

Hsieh, C.-L.

Y.-F. Huang, G.-Y. Zhuo, C.-Y. Chou, C.-H. Lin, W. Chang, and C.-L. Hsieh, “Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells,” ACS Nano 11, 2575–2585 (2017).
[Crossref] [PubMed]

Huang, Y.-F.

Y.-F. Huang, G.-Y. Zhuo, C.-Y. Chou, C.-H. Lin, W. Chang, and C.-L. Hsieh, “Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells,” ACS Nano 11, 2575–2585 (2017).
[Crossref] [PubMed]

Hwang, J.

J. Hwang and W. Moerner, “Interferometry of a single nanoparticle using the Gouy phase of a focused laser beam,” Opt. Commun. 280, 487–491 (2007).
[Crossref]

Jiang, P.

H. Yang and P. Jiang, “Large-Scale Colloidal Self-Assembly by Doctor Blade Coating,” Langmuir 26, 13173–13182 (2010).
[Crossref] [PubMed]

Kang, H.

Kim, M.-S.

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. express 19, 10206–10220 (2011).
[Crossref] [PubMed]

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. 98, 191114 (2011).
[Crossref]

Kimling, J.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich Method for Gold Nanoparticle Synthesis Revisited,” The J. Phys. Chem. B 110, 15700–15707 (2006).
[Crossref] [PubMed]

Koschny, T.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351 (2004).
[Crossref] [PubMed]

Kotaidis, V.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich Method for Gold Nanoparticle Synthesis Revisited,” The J. Phys. Chem. B 110, 15700–15707 (2006).
[Crossref] [PubMed]

Krishnatreya, B. J.

Kukura, P.

P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, and V. Sandoghdar, “High-speed nanoscopic tracking of the position and orientation of a single virus,” Nat. Methods 6, 923 (2009).
[Crossref] [PubMed]

Kuzyk, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311 (2012).
[Crossref] [PubMed]

Lederer, F.

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2 (2013).
[Crossref]

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-Assembled Plasmonic Core-Shell Clusters with an Isotropic Magnetic Dipole Response in the Visible Range,” ACS Nano 5, 6586–6592 (2011).
[Crossref] [PubMed]

Liedl, T.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311 (2012).
[Crossref] [PubMed]

Lin, C.-H.

Y.-F. Huang, G.-Y. Zhuo, C.-Y. Chou, C.-H. Lin, W. Chang, and C.-L. Hsieh, “Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells,” ACS Nano 11, 2575–2585 (2017).
[Crossref] [PubMed]

Linden, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351 (2004).
[Crossref] [PubMed]

Liz-Marzán, L. M.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref] [PubMed]

Maier, M.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich Method for Gold Nanoparticle Synthesis Revisited,” The J. Phys. Chem. B 110, 15700–15707 (2006).
[Crossref] [PubMed]

Marki, I.

C. Rockstuhl, I. Marki, T. Scharf, M. Salt, H. Peter Herzig, and R. Dändliker, “High resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2, 337–350 (2006).
[Crossref]

Moerner, W.

J. Hwang and W. Moerner, “Interferometry of a single nanoparticle using the Gouy phase of a focused laser beam,” Opt. Commun. 280, 487–491 (2007).
[Crossref]

Moser, H.

H. Moser and C. Rockstuhl, “3d THz metamaterials from micro/nanomanufacturing,” Laser Photonics Rev. 6, 219–244 (2012).
[Crossref]

Mühlig, S.

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2 (2013).
[Crossref]

J. Dintinger, S. Mühlig, C. Rockstuhl, and T. Scharf, “A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles,” Opt. Mater. Express 2, 269–278 (2012).
[Crossref]

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. express 19, 10206–10220 (2011).
[Crossref] [PubMed]

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. 98, 191114 (2011).
[Crossref]

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-Assembled Plasmonic Core-Shell Clusters with an Isotropic Magnetic Dipole Response in the Visible Range,” ACS Nano 5, 6586–6592 (2011).
[Crossref] [PubMed]

Müller, C.

P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, and V. Sandoghdar, “High-speed nanoscopic tracking of the position and orientation of a single virus,” Nat. Methods 6, 923 (2009).
[Crossref] [PubMed]

Mulvaney, P.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref] [PubMed]

Myroshnychenko, V.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref] [PubMed]

Novo, C.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref] [PubMed]

Okenve, B.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich Method for Gold Nanoparticle Synthesis Revisited,” The J. Phys. Chem. B 110, 15700–15707 (2006).
[Crossref] [PubMed]

Oreb, B. F.

Pacholski, C.

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-Assembled Plasmonic Core-Shell Clusters with an Isotropic Magnetic Dipole Response in the Visible Range,” ACS Nano 5, 6586–6592 (2011).
[Crossref] [PubMed]

Pardatscher, G.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311 (2012).
[Crossref] [PubMed]

Pastoriza-Santos, I.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref] [PubMed]

Peter Herzig, H.

C. Rockstuhl, I. Marki, T. Scharf, M. Salt, H. Peter Herzig, and R. Dändliker, “High resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2, 337–350 (2006).
[Crossref]

Plech, A.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich Method for Gold Nanoparticle Synthesis Revisited,” The J. Phys. Chem. B 110, 15700–15707 (2006).
[Crossref] [PubMed]

Renn, A.

P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, and V. Sandoghdar, “High-speed nanoscopic tracking of the position and orientation of a single virus,” Nat. Methods 6, 923 (2009).
[Crossref] [PubMed]

Rockstuhl, C.

N. R. Suryadharma and C. Rockstuhl, “Predicting Observable Quantities of Self-Assembled Metamaterials from the T-Matrix of Its Constituting Meta-Atom,” Materials 11 (2018).
[Crossref] [PubMed]

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2 (2013).
[Crossref]

H. Moser and C. Rockstuhl, “3d THz metamaterials from micro/nanomanufacturing,” Laser Photonics Rev. 6, 219–244 (2012).
[Crossref]

J. Dintinger, S. Mühlig, C. Rockstuhl, and T. Scharf, “A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles,” Opt. Mater. Express 2, 269–278 (2012).
[Crossref]

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. express 19, 10206–10220 (2011).
[Crossref] [PubMed]

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. 98, 191114 (2011).
[Crossref]

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-Assembled Plasmonic Core-Shell Clusters with an Isotropic Magnetic Dipole Response in the Visible Range,” ACS Nano 5, 6586–6592 (2011).
[Crossref] [PubMed]

C. Rockstuhl, I. Marki, T. Scharf, M. Salt, H. Peter Herzig, and R. Dändliker, “High resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2, 337–350 (2006).
[Crossref]

Rodríguez-Fernández, J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref] [PubMed]

Roller, E.-M.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311 (2012).
[Crossref] [PubMed]

Romero, L. A.

Salt, M.

C. Rockstuhl, I. Marki, T. Scharf, M. Salt, H. Peter Herzig, and R. Dändliker, “High resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2, 337–350 (2006).
[Crossref]

Sandoghdar, V.

P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, and V. Sandoghdar, “High-speed nanoscopic tracking of the position and orientation of a single virus,” Nat. Methods 6, 923 (2009).
[Crossref] [PubMed]

Scharf, T.

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2 (2013).
[Crossref]

J. Dintinger, S. Mühlig, C. Rockstuhl, and T. Scharf, “A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles,” Opt. Mater. Express 2, 269–278 (2012).
[Crossref]

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. express 19, 10206–10220 (2011).
[Crossref] [PubMed]

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. 98, 191114 (2011).
[Crossref]

C. Rockstuhl, I. Marki, T. Scharf, M. Salt, H. Peter Herzig, and R. Dändliker, “High resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2, 337–350 (2006).
[Crossref]

Scheeler, S.

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-Assembled Plasmonic Core-Shell Clusters with an Isotropic Magnetic Dipole Response in the Visible Range,” ACS Nano 5, 6586–6592 (2011).
[Crossref] [PubMed]

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

Schreiber, R.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311 (2012).
[Crossref] [PubMed]

Simmel, F. C.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311 (2012).
[Crossref] [PubMed]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics (2011).
[Crossref]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351 (2004).
[Crossref] [PubMed]

Suryadharma, N. R.

N. R. Suryadharma and C. Rockstuhl, “Predicting Observable Quantities of Self-Assembled Metamaterials from the T-Matrix of Its Constituting Meta-Atom,” Materials 11 (2018).
[Crossref] [PubMed]

Vendik, I. B.

I. B. Vendik and O. G. Vendik, “Metamaterials and their application in microwaves: A review,” Tech. Phys. 58, 1–24 (2013).
[Crossref]

Vendik, O. G.

I. B. Vendik and O. G. Vendik, “Metamaterials and their application in microwaves: A review,” Tech. Phys. 58, 1–24 (2013).
[Crossref]

Veselago, V.

V. Veselago, “The electrodynamics of substances with simultaneously negative values of epsilon and mu,” Sov. Phys. Uspekhi 10, 509–514 (1968).
[Crossref]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics (2011).
[Crossref]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351 (2004).
[Crossref] [PubMed]

Wyant, J. C.

E. P. Goodwin and J. C. Wyant, Field Guide to Interferometric Optical Testing, SPIE Field Guides (SPIE, 2006).
[Crossref]

Xu, Y.-L.

Yang, H.

H. Yang and P. Jiang, “Large-Scale Colloidal Self-Assembly by Doctor Blade Coating,” Langmuir 26, 13173–13182 (2010).
[Crossref] [PubMed]

Zhou, J.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351 (2004).
[Crossref] [PubMed]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

Zhuo, G.-Y.

Y.-F. Huang, G.-Y. Zhuo, C.-Y. Chou, C.-H. Lin, W. Chang, and C.-L. Hsieh, “Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells,” ACS Nano 11, 2575–2585 (2017).
[Crossref] [PubMed]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

ACS Nano (2)

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-Assembled Plasmonic Core-Shell Clusters with an Isotropic Magnetic Dipole Response in the Visible Range,” ACS Nano 5, 6586–6592 (2011).
[Crossref] [PubMed]

Y.-F. Huang, G.-Y. Zhuo, C.-Y. Chou, C.-H. Lin, W. Chang, and C.-L. Hsieh, “Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells,” ACS Nano 11, 2575–2585 (2017).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. 98, 191114 (2011).
[Crossref]

Chem. Soc. Rev. (1)

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref] [PubMed]

Curr. Nanosci. (1)

C. Rockstuhl, I. Marki, T. Scharf, M. Salt, H. Peter Herzig, and R. Dändliker, “High resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2, 337–350 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

Langmuir (1)

H. Yang and P. Jiang, “Large-Scale Colloidal Self-Assembly by Doctor Blade Coating,” Langmuir 26, 13173–13182 (2010).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

H. Moser and C. Rockstuhl, “3d THz metamaterials from micro/nanomanufacturing,” Laser Photonics Rev. 6, 219–244 (2012).
[Crossref]

Materials (1)

N. R. Suryadharma and C. Rockstuhl, “Predicting Observable Quantities of Self-Assembled Metamaterials from the T-Matrix of Its Constituting Meta-Atom,” Materials 11 (2018).
[Crossref] [PubMed]

Nanophotonics (1)

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2 (2013).
[Crossref]

Nat. Methods (1)

P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, and V. Sandoghdar, “High-speed nanoscopic tracking of the position and orientation of a single virus,” Nat. Methods 6, 923 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics (2011).
[Crossref]

Nature (1)

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Hwang and W. Moerner, “Interferometry of a single nanoparticle using the Gouy phase of a focused laser beam,” Opt. Commun. 280, 487–491 (2007).
[Crossref]

Opt. express (1)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

Science (1)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351 (2004).
[Crossref] [PubMed]

Sov. Phys. Uspekhi (1)

V. Veselago, “The electrodynamics of substances with simultaneously negative values of epsilon and mu,” Sov. Phys. Uspekhi 10, 509–514 (1968).
[Crossref]

Tech. Phys. (1)

I. B. Vendik and O. G. Vendik, “Metamaterials and their application in microwaves: A review,” Tech. Phys. 58, 1–24 (2013).
[Crossref]

The J. Phys. Chem. B (1)

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich Method for Gold Nanoparticle Synthesis Revisited,” The J. Phys. Chem. B 110, 15700–15707 (2006).
[Crossref] [PubMed]

Other (2)

E. P. Goodwin and J. C. Wyant, Field Guide to Interferometric Optical Testing, SPIE Field Guides (SPIE, 2006).
[Crossref]

J. W. Goodman, Introduction to Fourier Optics, McGraw - Hill Series in Electrical and Computer Engineering (McGraw - Hill, 1996), 2nd ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Schematic diagram of the set-up. The interference microscope is based on the Mach-Zehnder design. VOF: variable optical filter, BS: beam splitter, M: mirror, MO: microscope objective, ODL: optical delay line, PM: piezo-mirror, CCD: charge-coupled device (camera).
Fig. 2
Fig. 2 Measured (left) and simulated (right) results of (a), (b) intensity and (c), (d) phase profile of a silica microsphere of diameter D = 304 nm, when illuminated by plane wave at wavelength of λ = 450 nm. The cross-section is along the x-axis in the middle of the particle and along the propagation direction (z-axis).
Fig. 3
Fig. 3 Comparison between raw and processed data for intensity (left) and phase (right). The sample under study is a gold nanoparticle of diameter D = 300 nm, illuminated by a plane wave at λ = 600 nm. The images show the cross-section in the xz plane through the middle of the particle.
Fig. 4
Fig. 4 On-axis values of the (a) simulated and (b) measured intensity profiles of the silica microsphere. The results are in good agreement. The peak after the particle is due to focusing, which occurs at the same position for all wavelengths, but decreases in strength as the wavelength increases.
Fig. 5
Fig. 5 On-axis values of the (a) simulated and (b) measured phase profiles of the silica microsphere. The profiles in both cases are similar, a pronounced phase change at the particle’s position. The maximum measured phase shift is −0.4π, while the maximum calculated is −0.5π, a reasonable difference between simulation and experiment. For the dielectric case, the phase profiles are smooth.
Fig. 6
Fig. 6 On-axis values of the (a) simulated and (b) measured intensity profiles of the gold sphere. The profiles are in satisfying agreement. The main features are the dip at the particle’s position and the absence of focusing effect that are the result of the metallic nature of the particle. This is in contrast to the results obtained for the dielectric sphere.
Fig. 7
Fig. 7 On-axis values of the (a) simulated and (b) measured phase profiles of the gold sphere. The agreement between the profiles is satisfactory, both showing a peak, immediately followed by a dip and an abrupt phase change between them. These sudden changes are in contrast to the dielectric case.
Fig. 8
Fig. 8 On-axis values of the (a) simulated and (b) measured intensity profiles of the core-shell cluster meta-atom. The profiles resemble strong those of the silica nanosphere, although the position and the intensity of the focus are not the same.
Fig. 9
Fig. 9 On-axis values of the (a) simulated and (b) measured phase profiles of the core-shell cluster meta-atom. The profiles resemble strong those of the silica nanosphere, showing a pronounced phase change at the particle’s position. However, the wavelength at which the phase accumulation changes more is different, showing the effect of the gold nanoparticles.
Fig. 10
Fig. 10 Scanning electron microscopy images of the sample. (a),(b): Dielectric core with gold nanoparticles attached to it and excessive nanoparticles around. (c): Larger overview showing individual dielectric cores (bright spots), with the excess of gold nanoparticles clearly visible.
Fig. 11
Fig. 11 Reflection microscopy. (a) Brightfield, (b) darkfield and (c) defocused darkfield images of a core-shell cluster meta-atom. The excessive gold nanoparticles around the dielectric core that dominates the response are shown. The defocused image shows that the core is indeed a silica sphere.
Fig. 12
Fig. 12 Measured on-axis (a) intensity and (b) phase values of silica microsphere (SiO2), core-shell cluster structure (Meta-atom) and gold sphere (Au). The illumination wavelength is λ = 450 nm. The meta-atom profile resembles strongly the silica sphere. The metallic particle can be distinguished both in intensity and phase measurements.
Fig. 13
Fig. 13 Measured on-axis (a) intensity and (b) phase values of silica microsphere (SiO2), core-shell cluster structure (Meta-atom) and gold sphere (Au). The illumination wavelength is λ = 500 nm. The dielectric sphere has accumulated less phase compared to the previous measurement (Fig. 12), while the meta-atom the same, due to the presence of the gold nanoparticles. In this case, the metallic sphere can be easier distinguished in the intensity regime.
Fig. 14
Fig. 14 Measured on-axis (a) intensity and (b) phase values of silica microsphere (SiO2), core-shell cluster structure (Meta-atom) and gold sphere (Au). The illumination wavelength is λ = 600 nm. The meta-atom and the silica sphere have almost identical responses, due to the small scattering cross-section of the gold nanoparticles. The intensity response of the gold sphere bears strong resemblance to the silica case, but the profiles in phase are easily distinguishable.

Metrics