Abstract

In this paper we present a design concept for 3D plasmonic scatterers as high- efficiency transmissive metasurface (MS) building blocks. A genetic algorithm (GA) routine partitions the faces of the walls inside an open cavity into a M x N grid of voxels which can be either covered with metal or left bare, and optimizes the distribution of metal coverage needed to generate electric and magnetic modes of equal strength with a targeted phase delay (Φt) at the design wavelength. Even though the electric and magnetic modes can be more complicated than typical low order modes, with their spectral overlap and equal strengths, they act as a Huygens source, with the accompanying low reflection magnitude. Square/hexagonal voxels inside square/rectangular cavities are thoroughly analyzed for operation at 8 µm, although the technique can be applied to different cavity geometries for operation across the electromagnetic spectrum. Results from full-wave simulations show the GA routine can repeatedly pinpoint scatterer geometries emitting at any Φt value across 2π phase space with transmittances of at least 60%, making these MS building blocks an attractive plasmonic alternative for practical optical applications. Full-scale metasurface devices are calculated from near-fields of the individual elements to validate the optical functionality.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Huygens’ metasurfaces via the equivalence principle: design and applications

Ariel Epstein and George V. Eleftheriades
J. Opt. Soc. Am. B 33(2) A31-A50 (2016)

High-efficiency metasurface grating constituted by new Huygens particles with wide tuning ranges of transmission magnitudes and phases

Yang Xu, Nianxi Xu, Hai Liu, Dongzhi Shan, Naitao Song, and Jinsong Gao
J. Opt. Soc. Am. B 35(6) 1248-1254 (2018)

Metallic metasurface for high efficiency optical phase control in transmission mode

Xiaobin Hu and Xin Wei
Opt. Express 25(13) 15208-15215 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. McGrath, “Planar three-dimensional constrained lenses,” IRE Trans. Antennas Propag. 34(1), 46–50 (1986).
    [Crossref]
  2. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref]
  3. F. Aieta, A. Kabiri, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Reflection and refraction of light from metasurfaces with phase discontinuities,” J. Nanophotonics 6(1), 063532 (2012).
    [Crossref]
  4. R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale v-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
    [Crossref]
  5. W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011).
    [Crossref]
  6. X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin pancharatnam–berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
    [Crossref]
  7. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
    [Crossref]
  8. J. Neu, B. Krolla, O. Paul, B. Reinhard, R. Beigang, and M. Rahm, “Metamaterial-based gradient index lens with strong focusing in the thz frequency range,” Opt. Express 18(26), 27748–27757 (2010).
    [Crossref]
  9. X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on c-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
    [Crossref]
  10. X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2(4), e72 (2013).
    [Crossref]
  11. A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013). PMID: 23343380.
    [Crossref]
  12. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
    [Crossref]
  13. L. Huang, X. Chen, H. MuÌĹhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
    [Crossref]
  14. H. Hou, G. Wang, H. Li, W. Guo, and T. Li, “Highly efficient multifunctional metasurface for high-gain lens antenna application,” Appl. Phys. A 123(7), 460 (2017).
    [Crossref]
  15. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref]
  16. L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
    [Crossref]
  17. M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
    [Crossref]
  18. L. Hsu, M. Dupré, A. Ndao, J. Yellowhair, and B. Kanté, “Local phase method for designing and optimizing metasurface devices,” Opt. Express 25(21), 24974–24982 (2017).
    [Crossref]
  19. A. Ozdemir, Z. Hayran, Y. Takashima, and H. Kurt, “Polarization independent high transmission large numerical aperture laser beam focusing and deflection by dielectric huygens’ metasurfaces,” Opt. Commun. 401, 46–53 (2017).
    [Crossref]
  20. F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
    [Crossref]
  21. A. Arbabi and A. Faraon, “Fundamental limits of ultrathin metasurfaces,” arXiv preprint arXiv:1411.2537 (2014).
  22. S. R. Rengarajan and Y. Rahmat-Samii, “The field equivalence principle: Illustration of the establishment of the non-intuitive null fields,” IEEE Antennas Propag. Mag. 42(4), 122–128 (2000).
    [Crossref]
  23. B. Memarzadeh and H. Mosallaei, “Array of planar plasmonic scatterers functioning as light concentrator,” Opt. Lett. 36(13), 2569–2571 (2011).
    [Crossref]
  24. C. Pfeiffer and A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
    [Crossref]
  25. C. Pfeiffer and A. Grbic, “Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis,” Phys. Rev. Appl. 2(4), 044011 (2014).
    [Crossref]
  26. Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, and W. Zhang, “Efficient flat metasurface lens for terahertz imaging,” Opt. Express 22(21), 25931–25939 (2014).
    [Crossref]
  27. B. O. Zhu and Y. Feng, “Passive metasurface for reflectionless and arbitary control of electromagnetic wave transmission,” IEEE Trans. Antennas Propag. 63(12), 5500–5511 (2015).
    [Crossref]
  28. A. A. Elsakka, V. S. Asadchy, I. A. Faniayeu, S. N. Tcvetkova, and S. A. Tretyakov, “Multifunctional cascaded metamaterials: Integrated transmitarrays,” IEEE Trans. Antennas Propag. 64(10), 4266–4276 (2016).
    [Crossref]
  29. B.-C. Lin, G.-M. Wang, and T. Cai, “Transmissive focusing meta-surface with nearly 100% efficiency,” Appl. Phys. A 123(10), 630 (2017).
    [Crossref]
  30. A. Boubakri, F. Choubeni, T. H. Vuong, and J. David, “A near zero refractive index metalens to focus electromagnetic waves with phase compensation metasurface,” Opt. Mater. 69, 432–436 (2017).
    [Crossref]
  31. C. Liu, Y. Bai, L. Jing, Y. Yang, H. Chen, J. Zhou, Q. Zhao, and L. Qiao, “Equivalent energy level hybridization approach for high-performance metamaterials design,” Acta Mater. 135, 144–149 (2017).
    [Crossref]
  32. C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
    [Crossref]
  33. C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
    [Crossref]
  34. X. Hu and X. Wei, “High efficiency broadband- 90° to 90° arbitrary optical rotation realized with meta reflectarray,” Opt. Express 25(5), 5641–5650 (2017).
    [Crossref]
  35. J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
    [Crossref]
  36. R. L. Haupt and D. H. Werner, Genetic algorithms in electromagnetics (John Wiley & Sons, 2007).
  37. Y. Rahmat-Samii and E. Michielssen, “Electromagnetic optimization by genetic algorithms,” Microw. J. 42, 232 (1999).
  38. J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas Propag. 54(4), 1265–1276 (2006).
    [Crossref]
  39. D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, and et al., “Adaptive phase change metamaterials for infrared aperture control,” in Unconventional Imaging, Wavefront Sensing, and Adaptive Coded Aperture Imaging and Non-Imaging Sensor Systems, (International Society for Optics and Photonics, 2011, vol. 8165), p. 81651H.
  40. S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive genetic algorithm for optical metasurfaces design,” Sci. Rep. 8(1), 11040 (2018).
    [Crossref]
  41. P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2017).
    [Crossref]
  42. S. Inampudi and H. Mosallaei, “Neural network based design of metagratings,” Appl. Phys. Lett. 112(24), 241102 (2018).
    [Crossref]
  43. D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. 22(44), 5053–5057 (2010).
    [Crossref]
  44. D. B. Burckel, P. J. Resnick, P. S. Finnegan, M. B. Sinclair, and P. S. Davids, “Micrometer-scale Fabrication of complex three-dimensional lattice + basis structures in silicon,” Opt. Mater. Express 5(10), 2231–2239 (2015).
    [Crossref]

2018 (2)

S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive genetic algorithm for optical metasurfaces design,” Sci. Rep. 8(1), 11040 (2018).
[Crossref]

S. Inampudi and H. Mosallaei, “Neural network based design of metagratings,” Appl. Phys. Lett. 112(24), 241102 (2018).
[Crossref]

2017 (9)

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2017).
[Crossref]

X. Hu and X. Wei, “High efficiency broadband- 90° to 90° arbitrary optical rotation realized with meta reflectarray,” Opt. Express 25(5), 5641–5650 (2017).
[Crossref]

B.-C. Lin, G.-M. Wang, and T. Cai, “Transmissive focusing meta-surface with nearly 100% efficiency,” Appl. Phys. A 123(10), 630 (2017).
[Crossref]

A. Boubakri, F. Choubeni, T. H. Vuong, and J. David, “A near zero refractive index metalens to focus electromagnetic waves with phase compensation metasurface,” Opt. Mater. 69, 432–436 (2017).
[Crossref]

C. Liu, Y. Bai, L. Jing, Y. Yang, H. Chen, J. Zhou, Q. Zhao, and L. Qiao, “Equivalent energy level hybridization approach for high-performance metamaterials design,” Acta Mater. 135, 144–149 (2017).
[Crossref]

H. Hou, G. Wang, H. Li, W. Guo, and T. Li, “Highly efficient multifunctional metasurface for high-gain lens antenna application,” Appl. Phys. A 123(7), 460 (2017).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref]

L. Hsu, M. Dupré, A. Ndao, J. Yellowhair, and B. Kanté, “Local phase method for designing and optimizing metasurface devices,” Opt. Express 25(21), 24974–24982 (2017).
[Crossref]

A. Ozdemir, Z. Hayran, Y. Takashima, and H. Kurt, “Polarization independent high transmission large numerical aperture laser beam focusing and deflection by dielectric huygens’ metasurfaces,” Opt. Commun. 401, 46–53 (2017).
[Crossref]

2016 (2)

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

A. A. Elsakka, V. S. Asadchy, I. A. Faniayeu, S. N. Tcvetkova, and S. A. Tretyakov, “Multifunctional cascaded metamaterials: Integrated transmitarrays,” IEEE Trans. Antennas Propag. 64(10), 4266–4276 (2016).
[Crossref]

2015 (4)

B. O. Zhu and Y. Feng, “Passive metasurface for reflectionless and arbitary control of electromagnetic wave transmission,” IEEE Trans. Antennas Propag. 63(12), 5500–5511 (2015).
[Crossref]

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin pancharatnam–berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

D. B. Burckel, P. J. Resnick, P. S. Finnegan, M. B. Sinclair, and P. S. Davids, “Micrometer-scale Fabrication of complex three-dimensional lattice + basis structures in silicon,” Opt. Mater. Express 5(10), 2231–2239 (2015).
[Crossref]

2014 (4)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref]

C. Pfeiffer and A. Grbic, “Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis,” Phys. Rev. Appl. 2(4), 044011 (2014).
[Crossref]

Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, and W. Zhang, “Efficient flat metasurface lens for terahertz imaging,” Opt. Express 22(21), 25931–25939 (2014).
[Crossref]

2013 (6)

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
[Crossref]

C. Pfeiffer and A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on c-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2(4), e72 (2013).
[Crossref]

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013). PMID: 23343380.
[Crossref]

2012 (5)

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

L. Huang, X. Chen, H. MuÌĹhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

F. Aieta, A. Kabiri, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Reflection and refraction of light from metasurfaces with phase discontinuities,” J. Nanophotonics 6(1), 063532 (2012).
[Crossref]

R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale v-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

2011 (3)

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

B. Memarzadeh and H. Mosallaei, “Array of planar plasmonic scatterers functioning as light concentrator,” Opt. Lett. 36(13), 2569–2571 (2011).
[Crossref]

2010 (2)

J. Neu, B. Krolla, O. Paul, B. Reinhard, R. Beigang, and M. Rahm, “Metamaterial-based gradient index lens with strong focusing in the thz frequency range,” Opt. Express 18(26), 27748–27757 (2010).
[Crossref]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. 22(44), 5053–5057 (2010).
[Crossref]

2006 (1)

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas Propag. 54(4), 1265–1276 (2006).
[Crossref]

2000 (1)

S. R. Rengarajan and Y. Rahmat-Samii, “The field equivalence principle: Illustration of the establishment of the non-intuitive null fields,” IEEE Antennas Propag. Mag. 42(4), 122–128 (2000).
[Crossref]

1999 (1)

Y. Rahmat-Samii and E. Michielssen, “Electromagnetic optimization by genetic algorithms,” Microw. J. 42, 232 (1999).

1986 (1)

D. McGrath, “Planar three-dimensional constrained lenses,” IRE Trans. Antennas Propag. 34(1), 46–50 (1986).
[Crossref]

Aieta, F.

F. Aieta, A. Kabiri, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Reflection and refraction of light from metasurfaces with phase discontinuities,” J. Nanophotonics 6(1), 063532 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Alù, A.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin pancharatnam–berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref]

Aoust, G.

R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale v-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

Arbabi, A.

A. Arbabi and A. Faraon, “Fundamental limits of ultrathin metasurfaces,” arXiv preprint arXiv:1411.2537 (2014).

Arbouet, A.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2017).
[Crossref]

Asadchy, V. S.

A. A. Elsakka, V. S. Asadchy, I. A. Faniayeu, S. N. Tcvetkova, and S. A. Tretyakov, “Multifunctional cascaded metamaterials: Integrated transmitarrays,” IEEE Trans. Antennas Propag. 64(10), 4266–4276 (2016).
[Crossref]

Bai, B.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

L. Huang, X. Chen, H. MuÌĹhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Bai, Y.

C. Liu, Y. Bai, L. Jing, Y. Yang, H. Chen, J. Zhou, Q. Zhao, and L. Qiao, “Equivalent energy level hybridization approach for high-performance metamaterials design,” Acta Mater. 135, 144–149 (2017).
[Crossref]

Beigang, R.

Blanchard, R.

R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale v-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

Boltasseva, A.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref]

Bossard, J. A.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas Propag. 54(4), 1265–1276 (2006).
[Crossref]

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, and et al., “Adaptive phase change metamaterials for infrared aperture control,” in Unconventional Imaging, Wavefront Sensing, and Adaptive Coded Aperture Imaging and Non-Imaging Sensor Systems, (International Society for Optics and Photonics, 2011, vol. 8165), p. 81651H.

Boubakri, A.

A. Boubakri, F. Choubeni, T. H. Vuong, and J. David, “A near zero refractive index metalens to focus electromagnetic waves with phase compensation metasurface,” Opt. Mater. 69, 432–436 (2017).
[Crossref]

Bozhevolnyi, S. I.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013). PMID: 23343380.
[Crossref]

Brener, I.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. 22(44), 5053–5057 (2010).
[Crossref]

Burckel, D. B.

D. B. Burckel, P. J. Resnick, P. S. Finnegan, M. B. Sinclair, and P. S. Davids, “Micrometer-scale Fabrication of complex three-dimensional lattice + basis structures in silicon,” Opt. Mater. Express 5(10), 2231–2239 (2015).
[Crossref]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. 22(44), 5053–5057 (2010).
[Crossref]

Burokur, S. N.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin pancharatnam–berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

Cai, T.

B.-C. Lin, G.-M. Wang, and T. Cai, “Transmissive focusing meta-surface with nearly 100% efficiency,” Appl. Phys. A 123(10), 630 (2017).
[Crossref]

Capasso, F.

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale v-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

F. Aieta, A. Kabiri, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Reflection and refraction of light from metasurfaces with phase discontinuities,” J. Nanophotonics 6(1), 063532 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Chen, H.

C. Liu, Y. Bai, L. Jing, Y. Yang, H. Chen, J. Zhou, Q. Zhao, and L. Qiao, “Equivalent energy level hybridization approach for high-performance metamaterials design,” Acta Mater. 135, 144–149 (2017).
[Crossref]

Chen, H.-T.

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

Chen, S.

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

Chen, X.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

L. Huang, X. Chen, H. MuÌĹhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Cheng, H.

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

Choubeni, F.

A. Boubakri, F. Choubeni, T. H. Vuong, and J. David, “A near zero refractive index metalens to focus electromagnetic waves with phase compensation metasurface,” Opt. Mater. 69, 432–436 (2017).
[Crossref]

David, J.

A. Boubakri, F. Choubeni, T. H. Vuong, and J. David, “A near zero refractive index metalens to focus electromagnetic waves with phase compensation metasurface,” Opt. Mater. 69, 432–436 (2017).
[Crossref]

Davids, P. S.

de Lustrac, A.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin pancharatnam–berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

Ding, X.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin pancharatnam–berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

Drupp, R. P.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas Propag. 54(4), 1265–1276 (2006).
[Crossref]

Dupré, M.

Ellis, A. R.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. 22(44), 5053–5057 (2010).
[Crossref]

Elsakka, A. A.

A. A. Elsakka, V. S. Asadchy, I. A. Faniayeu, S. N. Tcvetkova, and S. A. Tretyakov, “Multifunctional cascaded metamaterials: Integrated transmitarrays,” IEEE Trans. Antennas Propag. 64(10), 4266–4276 (2016).
[Crossref]

Emani, N. K.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref]

Eriksen, R. L.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013). PMID: 23343380.
[Crossref]

Estakhri, N. M.

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref]

Faniayeu, I. A.

A. A. Elsakka, V. S. Asadchy, I. A. Faniayeu, S. N. Tcvetkova, and S. A. Tretyakov, “Multifunctional cascaded metamaterials: Integrated transmitarrays,” IEEE Trans. Antennas Propag. 64(10), 4266–4276 (2016).
[Crossref]

Faraon, A.

A. Arbabi and A. Faraon, “Fundamental limits of ultrathin metasurfaces,” arXiv preprint arXiv:1411.2537 (2014).

Feng, Y.

B. O. Zhu and Y. Feng, “Passive metasurface for reflectionless and arbitary control of electromagnetic wave transmission,” IEEE Trans. Antennas Propag. 63(12), 5500–5511 (2015).
[Crossref]

Finnegan, P. S.

Gaburro, Z.

R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale v-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

F. Aieta, A. Kabiri, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Reflection and refraction of light from metasurfaces with phase discontinuities,” J. Nanophotonics 6(1), 063532 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Gao, D.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin pancharatnam–berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

Genevet, P.

R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale v-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

F. Aieta, A. Kabiri, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Reflection and refraction of light from metasurfaces with phase discontinuities,” J. Nanophotonics 6(1), 063532 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Ginn, J. C.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. 22(44), 5053–5057 (2010).
[Crossref]

Girard, C.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2017).
[Crossref]

Grbic, A.

C. Pfeiffer and A. Grbic, “Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis,” Phys. Rev. Appl. 2(4), 044011 (2014).
[Crossref]

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref]

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
[Crossref]

C. Pfeiffer and A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref]

Gu, C.

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

Gu, J.

Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, and W. Zhang, “Efficient flat metasurface lens for terahertz imaging,” Opt. Express 22(21), 25931–25939 (2014).
[Crossref]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on c-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

Guo, W.

H. Hou, G. Wang, H. Li, W. Guo, and T. Li, “Highly efficient multifunctional metasurface for high-gain lens antenna application,” Appl. Phys. A 123(7), 460 (2017).
[Crossref]

Han, J.

Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, and W. Zhang, “Efficient flat metasurface lens for terahertz imaging,” Opt. Express 22(21), 25931–25939 (2014).
[Crossref]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on c-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

Hao, J.

Haupt, R. L.

R. L. Haupt and D. H. Werner, Genetic algorithms in electromagnetics (John Wiley & Sons, 2007).

Hayran, Z.

A. Ozdemir, Z. Hayran, Y. Takashima, and H. Kurt, “Polarization independent high transmission large numerical aperture laser beam focusing and deflection by dielectric huygens’ metasurfaces,” Opt. Commun. 401, 46–53 (2017).
[Crossref]

He, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011).
[Crossref]

Hou, H.

H. Hou, G. Wang, H. Li, W. Guo, and T. Li, “Highly efficient multifunctional metasurface for high-gain lens antenna application,” Appl. Phys. A 123(7), 460 (2017).
[Crossref]

Hsu, L.

Hu, X.

Huang, K.

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

Huang, L.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

L. Huang, X. Chen, H. MuÌĹhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Inampudi, S.

S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive genetic algorithm for optical metasurfaces design,” Sci. Rep. 8(1), 11040 (2018).
[Crossref]

S. Inampudi and H. Mosallaei, “Neural network based design of metagratings,” Appl. Phys. Lett. 112(24), 241102 (2018).
[Crossref]

Ishii, S.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2(4), e72 (2013).
[Crossref]

Jafar-Zanjani, S.

S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive genetic algorithm for optical metasurfaces design,” Sci. Rep. 8(1), 11040 (2018).
[Crossref]

Jin, G.

L. Huang, X. Chen, H. MuÌĹhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Jing, L.

C. Liu, Y. Bai, L. Jing, Y. Yang, H. Chen, J. Zhou, Q. Zhao, and L. Qiao, “Equivalent energy level hybridization approach for high-performance metamaterials design,” Acta Mater. 135, 144–149 (2017).
[Crossref]

Kabiri, A.

F. Aieta, A. Kabiri, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Reflection and refraction of light from metasurfaces with phase discontinuities,” J. Nanophotonics 6(1), 063532 (2012).
[Crossref]

Kanté, B.

Kats, M. A.

F. Aieta, A. Kabiri, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Reflection and refraction of light from metasurfaces with phase discontinuities,” J. Nanophotonics 6(1), 063532 (2012).
[Crossref]

R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale v-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref]

Kildishev, A. V.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2(4), e72 (2013).
[Crossref]

Krolla, B.

Kurt, H.

A. Ozdemir, Z. Hayran, Y. Takashima, and H. Kurt, “Polarization independent high transmission large numerical aperture laser beam focusing and deflection by dielectric huygens’ metasurfaces,” Opt. Commun. 401, 46–53 (2017).
[Crossref]

Larrieu, G.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2017).
[Crossref]

Lecestre, A.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2017).
[Crossref]

Li, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

L. Huang, X. Chen, H. MuÌĹhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Li, H.

H. Hou, G. Wang, H. Li, W. Guo, and T. Li, “Highly efficient multifunctional metasurface for high-gain lens antenna application,” Appl. Phys. A 123(7), 460 (2017).
[Crossref]

Li, J.

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

Li, L.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas Propag. 54(4), 1265–1276 (2006).
[Crossref]

Li, T.

H. Hou, G. Wang, H. Li, W. Guo, and T. Li, “Highly efficient multifunctional metasurface for high-gain lens antenna application,” Appl. Phys. A 123(7), 460 (2017).
[Crossref]

Li, X.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Lin, B.-C.

B.-C. Lin, G.-M. Wang, and T. Cai, “Transmissive focusing meta-surface with nearly 100% efficiency,” Appl. Phys. A 123(10), 630 (2017).
[Crossref]

Liu, C.

C. Liu, Y. Bai, L. Jing, Y. Yang, H. Chen, J. Zhou, Q. Zhao, and L. Qiao, “Equivalent energy level hybridization approach for high-performance metamaterials design,” Acta Mater. 135, 144–149 (2017).
[Crossref]

Mayer, T. S.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas Propag. 54(4), 1265–1276 (2006).
[Crossref]

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, and et al., “Adaptive phase change metamaterials for infrared aperture control,” in Unconventional Imaging, Wavefront Sensing, and Adaptive Coded Aperture Imaging and Non-Imaging Sensor Systems, (International Society for Optics and Photonics, 2011, vol. 8165), p. 81651H.

McGrath, D.

D. McGrath, “Planar three-dimensional constrained lenses,” IRE Trans. Antennas Propag. 34(1), 46–50 (1986).
[Crossref]

Mei, S.

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

Memarzadeh, B.

Michielssen, E.

Y. Rahmat-Samii and E. Michielssen, “Electromagnetic optimization by genetic algorithms,” Microw. J. 42, 232 (1999).

Monticone, F.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin pancharatnam–berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref]

Mosallaei, H.

S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive genetic algorithm for optical metasurfaces design,” Sci. Rep. 8(1), 11040 (2018).
[Crossref]

S. Inampudi and H. Mosallaei, “Neural network based design of metagratings,” Appl. Phys. Lett. 112(24), 241102 (2018).
[Crossref]

B. Memarzadeh and H. Mosallaei, “Array of planar plasmonic scatterers functioning as light concentrator,” Opt. Lett. 36(13), 2569–2571 (2011).
[Crossref]

Mühlenbernd, H.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

MuÌLhlenbernd, H.

L. Huang, X. Chen, H. MuÌĹhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Musgraves, J. D.

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, and et al., “Adaptive phase change metamaterials for infrared aperture control,” in Unconventional Imaging, Wavefront Sensing, and Adaptive Coded Aperture Imaging and Non-Imaging Sensor Systems, (International Society for Optics and Photonics, 2011, vol. 8165), p. 81651H.

Ndao, A.

Neu, J.

Ni, X.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2(4), e72 (2013).
[Crossref]

Nielsen, M. G.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013). PMID: 23343380.
[Crossref]

Ouyang, C.

Ozdemir, A.

A. Ozdemir, Z. Hayran, Y. Takashima, and H. Kurt, “Polarization independent high transmission large numerical aperture laser beam focusing and deflection by dielectric huygens’ metasurfaces,” Opt. Commun. 401, 46–53 (2017).
[Crossref]

Paillard, V.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2017).
[Crossref]

Paul, O.

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis,” Phys. Rev. Appl. 2(4), 044011 (2014).
[Crossref]

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref]

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
[Crossref]

C. Pfeiffer and A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref]

Podraza, N.

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, and et al., “Adaptive phase change metamaterials for infrared aperture control,” in Unconventional Imaging, Wavefront Sensing, and Adaptive Coded Aperture Imaging and Non-Imaging Sensor Systems, (International Society for Optics and Photonics, 2011, vol. 8165), p. 81651H.

Pogrebnyakov, A.

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, and et al., “Adaptive phase change metamaterials for infrared aperture control,” in Unconventional Imaging, Wavefront Sensing, and Adaptive Coded Aperture Imaging and Non-Imaging Sensor Systems, (International Society for Optics and Photonics, 2011, vol. 8165), p. 81651H.

Pors, A.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013). PMID: 23343380.
[Crossref]

Qiao, L.

C. Liu, Y. Bai, L. Jing, Y. Yang, H. Chen, J. Zhou, Q. Zhao, and L. Qiao, “Equivalent energy level hybridization approach for high-performance metamaterials design,” Acta Mater. 135, 144–149 (2017).
[Crossref]

Qiu, C.-W.

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin pancharatnam–berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Rahm, M.

Rahmat-Samii, Y.

S. R. Rengarajan and Y. Rahmat-Samii, “The field equivalence principle: Illustration of the establishment of the non-intuitive null fields,” IEEE Antennas Propag. Mag. 42(4), 122–128 (2000).
[Crossref]

Y. Rahmat-Samii and E. Michielssen, “Electromagnetic optimization by genetic algorithms,” Microw. J. 42, 232 (1999).

Reinhard, B.

Rengarajan, S. R.

S. R. Rengarajan and Y. Rahmat-Samii, “The field equivalence principle: Illustration of the establishment of the non-intuitive null fields,” IEEE Antennas Propag. Mag. 42(4), 122–128 (2000).
[Crossref]

Resnick, P. J.

Richardson, K.

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, and et al., “Adaptive phase change metamaterials for infrared aperture control,” in Unconventional Imaging, Wavefront Sensing, and Adaptive Coded Aperture Imaging and Non-Imaging Sensor Systems, (International Society for Optics and Photonics, 2011, vol. 8165), p. 81651H.

Rivero-Baleine, C.

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, and et al., “Adaptive phase change metamaterials for infrared aperture control,” in Unconventional Imaging, Wavefront Sensing, and Adaptive Coded Aperture Imaging and Non-Imaging Sensor Systems, (International Society for Optics and Photonics, 2011, vol. 8165), p. 81651H.

Shalaev, V. M.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref]

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2(4), e72 (2013).
[Crossref]

Shaltout, A. M.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref]

Shin, H. J.

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, and et al., “Adaptive phase change metamaterials for infrared aperture control,” in Unconventional Imaging, Wavefront Sensing, and Adaptive Coded Aperture Imaging and Non-Imaging Sensor Systems, (International Society for Optics and Photonics, 2011, vol. 8165), p. 81651H.

Sinclair, M. B.

D. B. Burckel, P. J. Resnick, P. S. Finnegan, M. B. Sinclair, and P. S. Davids, “Micrometer-scale Fabrication of complex three-dimensional lattice + basis structures in silicon,” Opt. Mater. Express 5(10), 2231–2239 (2015).
[Crossref]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. 22(44), 5053–5057 (2010).
[Crossref]

Singh, R.

Smith, J. A.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas Propag. 54(4), 1265–1276 (2006).
[Crossref]

Sun, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Sun, W.

Takashima, Y.

A. Ozdemir, Z. Hayran, Y. Takashima, and H. Kurt, “Polarization independent high transmission large numerical aperture laser beam focusing and deflection by dielectric huygens’ metasurfaces,” Opt. Commun. 401, 46–53 (2017).
[Crossref]

Tan, Q.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

L. Huang, X. Chen, H. MuÌĹhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Tang, Y. U.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas Propag. 54(4), 1265–1276 (2006).
[Crossref]

Tcvetkova, S. N.

A. A. Elsakka, V. S. Asadchy, I. A. Faniayeu, S. N. Tcvetkova, and S. A. Tretyakov, “Multifunctional cascaded metamaterials: Integrated transmitarrays,” IEEE Trans. Antennas Propag. 64(10), 4266–4276 (2016).
[Crossref]

Ten Eyck, G. A.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. 22(44), 5053–5057 (2010).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Tian, J.

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

Tian, Z.

Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, and W. Zhang, “Efficient flat metasurface lens for terahertz imaging,” Opt. Express 22(21), 25931–25939 (2014).
[Crossref]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on c-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

Tretyakov, S. A.

A. A. Elsakka, V. S. Asadchy, I. A. Faniayeu, S. N. Tcvetkova, and S. A. Tretyakov, “Multifunctional cascaded metamaterials: Integrated transmitarrays,” IEEE Trans. Antennas Propag. 64(10), 4266–4276 (2016).
[Crossref]

Turpin, J.

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, and et al., “Adaptive phase change metamaterials for infrared aperture control,” in Unconventional Imaging, Wavefront Sensing, and Adaptive Coded Aperture Imaging and Non-Imaging Sensor Systems, (International Society for Optics and Photonics, 2011, vol. 8165), p. 81651H.

Vuong, T. H.

A. Boubakri, F. Choubeni, T. H. Vuong, and J. David, “A near zero refractive index metalens to focus electromagnetic waves with phase compensation metasurface,” Opt. Mater. 69, 432–436 (2017).
[Crossref]

Wang, D.

Wang, G.

H. Hou, G. Wang, H. Li, W. Guo, and T. Li, “Highly efficient multifunctional metasurface for high-gain lens antenna application,” Appl. Phys. A 123(7), 460 (2017).
[Crossref]

Wang, G.-M.

B.-C. Lin, G.-M. Wang, and T. Cai, “Transmissive focusing meta-surface with nearly 100% efficiency,” Appl. Phys. A 123(10), 630 (2017).
[Crossref]

Wei, X.

Wendt, J. R.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. 22(44), 5053–5057 (2010).
[Crossref]

Werner, D. H.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas Propag. 54(4), 1265–1276 (2006).
[Crossref]

R. L. Haupt and D. H. Werner, Genetic algorithms in electromagnetics (John Wiley & Sons, 2007).

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, and et al., “Adaptive phase change metamaterials for infrared aperture control,” in Unconventional Imaging, Wavefront Sensing, and Adaptive Coded Aperture Imaging and Non-Imaging Sensor Systems, (International Society for Optics and Photonics, 2011, vol. 8165), p. 81651H.

Wiecha, P. R.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2017).
[Crossref]

Wu, Q.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin pancharatnam–berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

Xiao, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Xu, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Yang, H.

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

Yang, Q.

Yang, Y.

C. Liu, Y. Bai, L. Jing, Y. Yang, H. Chen, J. Zhou, Q. Zhao, and L. Qiao, “Equivalent energy level hybridization approach for high-performance metamaterials design,” Acta Mater. 135, 144–149 (2017).
[Crossref]

Yellowhair, J.

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale v-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

F. Aieta, A. Kabiri, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Reflection and refraction of light from metasurfaces with phase discontinuities,” J. Nanophotonics 6(1), 063532 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Yu, P.

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

Yue, W.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on c-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

Zentgraf, T.

L. Huang, X. Chen, H. MuÌĹhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Zhang, K.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin pancharatnam–berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

Zhang, L.

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin pancharatnam–berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

Zhang, S.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on c-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

L. Huang, X. Chen, H. MuÌĹhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Zhang, W.

Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, and W. Zhang, “Efficient flat metasurface lens for terahertz imaging,” Opt. Express 22(21), 25931–25939 (2014).
[Crossref]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on c-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

Zhang, X.

Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, and W. Zhang, “Efficient flat metasurface lens for terahertz imaging,” Opt. Express 22(21), 25931–25939 (2014).
[Crossref]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on c-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

Zhao, Q.

C. Liu, Y. Bai, L. Jing, Y. Yang, H. Chen, J. Zhou, Q. Zhao, and L. Qiao, “Equivalent energy level hybridization approach for high-performance metamaterials design,” Acta Mater. 135, 144–149 (2017).
[Crossref]

Zhou, J.

C. Liu, Y. Bai, L. Jing, Y. Yang, H. Chen, J. Zhou, Q. Zhao, and L. Qiao, “Equivalent energy level hybridization approach for high-performance metamaterials design,” Acta Mater. 135, 144–149 (2017).
[Crossref]

Zhou, L.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011).
[Crossref]

Zhu, B. O.

B. O. Zhu and Y. Feng, “Passive metasurface for reflectionless and arbitary control of electromagnetic wave transmission,” IEEE Trans. Antennas Propag. 63(12), 5500–5511 (2015).
[Crossref]

Acta Mater. (1)

C. Liu, Y. Bai, L. Jing, Y. Yang, H. Chen, J. Zhou, Q. Zhao, and L. Qiao, “Equivalent energy level hybridization approach for high-performance metamaterials design,” Acta Mater. 135, 144–149 (2017).
[Crossref]

Adv. Funct. Mater. (1)

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

Adv. Mater. (3)

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on c-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin pancharatnam–berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. 22(44), 5053–5057 (2010).
[Crossref]

Adv. Opt. Mater. (1)

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

Appl. Phys. A (2)

H. Hou, G. Wang, H. Li, W. Guo, and T. Li, “Highly efficient multifunctional metasurface for high-gain lens antenna application,” Appl. Phys. A 123(7), 460 (2017).
[Crossref]

B.-C. Lin, G.-M. Wang, and T. Cai, “Transmissive focusing meta-surface with nearly 100% efficiency,” Appl. Phys. A 123(10), 630 (2017).
[Crossref]

Appl. Phys. Lett. (2)

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
[Crossref]

S. Inampudi and H. Mosallaei, “Neural network based design of metagratings,” Appl. Phys. Lett. 112(24), 241102 (2018).
[Crossref]

IEEE Antennas Propag. Mag. (1)

S. R. Rengarajan and Y. Rahmat-Samii, “The field equivalence principle: Illustration of the establishment of the non-intuitive null fields,” IEEE Antennas Propag. Mag. 42(4), 122–128 (2000).
[Crossref]

IEEE Trans. Antennas Propag. (3)

B. O. Zhu and Y. Feng, “Passive metasurface for reflectionless and arbitary control of electromagnetic wave transmission,” IEEE Trans. Antennas Propag. 63(12), 5500–5511 (2015).
[Crossref]

A. A. Elsakka, V. S. Asadchy, I. A. Faniayeu, S. N. Tcvetkova, and S. A. Tretyakov, “Multifunctional cascaded metamaterials: Integrated transmitarrays,” IEEE Trans. Antennas Propag. 64(10), 4266–4276 (2016).
[Crossref]

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antennas Propag. 54(4), 1265–1276 (2006).
[Crossref]

IRE Trans. Antennas Propag. (1)

D. McGrath, “Planar three-dimensional constrained lenses,” IRE Trans. Antennas Propag. 34(1), 46–50 (1986).
[Crossref]

J. Nanophotonics (1)

F. Aieta, A. Kabiri, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Reflection and refraction of light from metasurfaces with phase discontinuities,” J. Nanophotonics 6(1), 063532 (2012).
[Crossref]

Light: Sci. Appl. (1)

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2(4), e72 (2013).
[Crossref]

Microw. J. (1)

Y. Rahmat-Samii and E. Michielssen, “Electromagnetic optimization by genetic algorithms,” Microw. J. 42, 232 (1999).

Nano Lett. (3)

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013). PMID: 23343380.
[Crossref]

L. Huang, X. Chen, H. MuÌĹhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref]

Nat. Commun. (1)

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Nat. Mater. (2)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

Nat. Nanotechnol. (1)

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2017).
[Crossref]

Opt. Commun. (1)

A. Ozdemir, Z. Hayran, Y. Takashima, and H. Kurt, “Polarization independent high transmission large numerical aperture laser beam focusing and deflection by dielectric huygens’ metasurfaces,” Opt. Commun. 401, 46–53 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. (1)

A. Boubakri, F. Choubeni, T. H. Vuong, and J. David, “A near zero refractive index metalens to focus electromagnetic waves with phase compensation metasurface,” Opt. Mater. 69, 432–436 (2017).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. Appl. (1)

C. Pfeiffer and A. Grbic, “Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis,” Phys. Rev. Appl. 2(4), 044011 (2014).
[Crossref]

Phys. Rev. B (1)

R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale v-shaped antennas for the design of optical phased arrays,” Phys. Rev. B 85(15), 155457 (2012).
[Crossref]

Phys. Rev. Lett. (2)

C. Pfeiffer and A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref]

Sci. Rep. (1)

S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive genetic algorithm for optical metasurfaces design,” Sci. Rep. 8(1), 11040 (2018).
[Crossref]

Science (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref]

Other (3)

A. Arbabi and A. Faraon, “Fundamental limits of ultrathin metasurfaces,” arXiv preprint arXiv:1411.2537 (2014).

R. L. Haupt and D. H. Werner, Genetic algorithms in electromagnetics (John Wiley & Sons, 2007).

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, and et al., “Adaptive phase change metamaterials for infrared aperture control,” in Unconventional Imaging, Wavefront Sensing, and Adaptive Coded Aperture Imaging and Non-Imaging Sensor Systems, (International Society for Optics and Photonics, 2011, vol. 8165), p. 81651H.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Model of the 3D unit cell, with identical 7 × 9 square voxel layouts on two Si walls and the floor of a cubic cavity. Examples of the (b) hexagonal and (c) brick voxel layouts. (d) Fitness function F from Eq. 1 as a function of phase (Φ) and transmittance (T) Φ0 = 62°. The contours of a particular solution are shown in black lines. The trajectory tends to follow segments of constant fitness (denoted by =) and segments of increasing fitness (+).
Fig. 2.
Fig. 2. Results of GA optimizations of a 5 × 8 hex grid, targeted for 45° relative phase shifts from the reference phase of Φ0 = 62° (blue dash),(a) -150°, -105°; (b) -60°; (c) -15°; (d)30, 75° and 120°; (e) 165°;Their associated grid designs are shown at the bottom. (f) No element generated a smaller transmittance than T = 0.60 nor a reflectance larger than R = 0.075, and all phase targets were reached to within 1°.
Fig. 3.
Fig. 3. Near field distributions for the (a) transverse magnetic (Hx) and (c) co-polarized electric fields (Ez) of an example optimized design, along with zoomed unit cells of (b) Hx and (d) the normalized E. All fields are shown in terms of V /m to show that the electric and magnetic modes are resonating at near-equal relative strengths, with (b,d) scaled down 4x to better detail gradients in the modes.
Fig. 4.
Fig. 4. Evolutions of the voxel layouts (gold) from the highest F designs from an example GA routine, from the initial population (i = 1) to where the “best” solution was determined at generation i = 39. The transverse Hx field strength is underlaid. As voxel density increases and coalesces into the early framework of scattering geometries, mode formation and strength increases, and greater phase shifts are attained.
Fig. 5.
Fig. 5. Calculated full-scale devices derived from far-field projections of near-field simulations, at λ0 = 8 µm. (a) The 2 mm beamsteerer is 9% off the designed angle of 23.5°, and (b) the 3.8 mm diameter lens is 2% off the designed focal length of 7.5 mm, both due to truncation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F ( Φ , T ) = ( w Φ σ 2 | Φ Φ t | 2 + σ 2 + w T | Φ Φ 0 | | Φ t Φ 0 | ) T T l o w T 0 T l o w
E ¯ ( r ¯ ) = r ^ × i 1 2 λ [ n ^ × E ¯ Z r ^ × ( n ^ × H ¯ ) ] e i 2 π λ r ¯ r ^ d S ¯
E ¯ k ( x , y , z ) = i e i 2 π λ 0 y 2 + ( z z k ) 2 2 λ 0 ( y 2 + ( z z k ) 2 ) Δ x Δ z × i , j = 1 5 { ( E x i , j y + z y 2 + ( z z k ) 2 H z i , j ( y 2 + ( z z k ) 2 ) ) x ^ ( E z i , j ( z z k ) + z y 2 + ( z z k ) 2 H x i , j y ( z z k ) ) y ^ ( E z i , j y z y 2 + ( z z k ) 2 H x i , j y 2 ) z ^ }