Abstract

With growing data demands, the capacity of the single-mode fiber will reach its limit. Cylindrical vector beams (CVBs) as the eigenmodes of fiber have been demonstrated to increase the capacity in multiplexing optical communication. As a key component of CVB multiplexing, the sorter based on spin-dependent optical geometric transformation has the advantages of high efficiency and a large channel number. However, the demonstrated spatial resolution of the CVB sorter was not sufficient to separate the adjacent CVB orders. Therefore, there were still serious crosstalk issues for the CVB multiplexing channels. Here, we propose and demonstrate the high-resolution CVBs sorting by introducing fan-out structures in the spin-dependent optical geometric transformation. The crosstalk among the CVBs are suppressed compared with the original design. In addition, a cylindrical lens is used to modify the output beams to Gaussian shape. We experimentally demonstrate the sorting of 4 coaxial CVB channels to standard multimode fiber array. In the numerical modeling, we also design the CVB sorter for free space to integrated waveguide array demultiplexing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Pancharatnam-Berry optical element sorter of full angular momentum eigenstate

Gary F. Walsh
Opt. Express 24(6) 6689-6704 (2016)

Generalized optical angular momentum sorter and its application to high-dimensional quantum cryptography

Hugo Larocque, Jérémie Gagnon-Bischoff, Dominic Mortimer, Yingwen Zhang, Frédéric Bouchard, Jeremy Upham, Vincenzo Grillo, Robert W. Boyd, and Ebrahim Karimi
Opt. Express 25(17) 19832-19843 (2017)

Approach to multiplexing fiber communication with cylindrical vector beams

Wen Qiao, Ting Lei, Zhentian Wu, Shecheng Gao, Zhaohui Li, and Xiaocong Yuan
Opt. Lett. 42(13) 2579-2582 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R.-J. Essiambre and R. W. Tkach, “Capacity Trends and Limits of Optical Communication Networks,” Proc. IEEE 100(5), 1035–1055 (2012).
    [Crossref]
  2. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  3. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  4. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  5. H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
    [Crossref] [PubMed]
  6. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  7. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]
  8. Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express 18(10), 10828–10833 (2010).
    [Crossref] [PubMed]
  9. F. Lu, T. Huang, L. Han, H. Su, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-Enhanced Raman Spectroscopy with High-Order Fiber Vector Beam Excitation,” Sensors (Basel) 18(11), 3841 (2018).
    [Crossref] [PubMed]
  10. M. Liu, F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach,” Nanophotonics 8(5), 921–929 (2019).
    [Crossref]
  11. M. Liu, W. D. Zhang, F. F. Lu, T. Y. Xue, X. Li, L. Zhang, D. Mao, L. G. Huang, F. Gao, T. Mei, and J. L. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7(5), 526–531 (2019).
    [Crossref]
  12. F. K. Fatemi, “Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems,” Opt. Express 19(25), 25143–25150 (2011).
    [Crossref] [PubMed]
  13. G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. R. Alfano, “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40(21), 4887–4890 (2015).
    [Crossref] [PubMed]
  14. B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, and A. Forbes, “Creation and Detection of Vector Vortex Modes for Classical and Quantum Communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
    [Crossref]
  15. W. Qiao, T. Lei, Z. Wu, S. Gao, Z. Li, and X. Yuan, “Approach to multiplexing fiber communication with cylindrical vector beams,” Opt. Lett. 42(13), 2579–2582 (2017).
    [Crossref] [PubMed]
  16. Z. Xie, T. Lei, X. Weng, L. Du, S. Gao, Y. Yuan, S. Feng, Y. Zhang, and X. Yuan, “A Miniaturized Polymer Grating for Topological Order Detection of Cylindrical Vector Beams,” IEEE Photonics Technol. Lett. 28(24), 2799–2802 (2016).
    [Crossref]
  17. Z. Xie, S. Gao, T. Lei, S. Feng, Y. Zhang, F. Li, J. Zhang, Z. Li, and X. Yuan, “Integrated (de)multiplexer for orbital angular momentum fiber communication,” Photon. Res. 6(7), 743–749 (2018).
    [Crossref]
  18. T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
    [Crossref]
  19. G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient Sorting of Orbital Angular Momentum States of Light,” Phys. Rev. Lett. 105(15), 153601 (2010).
    [Crossref] [PubMed]
  20. G. F. Walsh, “Pancharatnam-Berry optical element sorter of full angular momentum eigenstate,” Opt. Express 24(6), 6689–6704 (2016).
    [Crossref] [PubMed]
  21. G. F. Walsh, L. Sio, D. E. Roberts, N. Tabiryan, F. J. Aranda, and B. R. Kimball, “Parallel sorting of orbital and spin angular momenta of light in a record large number of channels,” Opt. Lett. 43(10), 2256–2259 (2018).
    [Crossref] [PubMed]
  22. J. Fang, Z. Xie, T. Lei, C. Min, L. Du, Z. Li, and X. Yuan, “Spin-Dependent Optical Geometric Transformation for Cylindrical Vector Beam Multiplexing Communication,” ACS Photonics 5(9), 3478–3484 (2018).
    [Crossref]
  23. P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu, and Y.-Q. Lu, “Digitalized Geometric Phases for Parallel Optical Spin and Orbital Angular Momentum Encoding,” ACS Photonics 4(6), 1333–1338 (2017).
    [Crossref]
  24. P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
    [Crossref] [PubMed]
  25. M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4(1), 2781 (2013).
    [Crossref] [PubMed]
  26. Y. Wen, I. Chremmos, Y. Chen, J. Zhu, Y. Zhang, and S. Yu, “Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes,” Phys. Rev. Lett. 120(19), 193904 (2018).
    [Crossref] [PubMed]
  27. C. Wan, J. Chen, and Q. Zhan, “Compact and high-resolution optical orbital angular momentum sorter,” APL Photonics 2(3), 031302 (2017).
    [Crossref]
  28. S. Zheng, X. Zeng, H. Shangguan, Y. Cai, X. Pan, S. Xu, X. Yuan, and D. Fan, “Improve polarization topological order sorting with the diffractive splitting method,” Opt. Lett. 44(4), 795–798 (2019).
    [Crossref] [PubMed]
  29. G. Ruffato, M. Girardi, M. Massari, E. Mafakheri, B. Sephton, P. Capaldo, A. Forbes, and F. Romanato, “A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams,” Sci. Rep. 8(1), 10248 (2018).
    [Crossref] [PubMed]
  30. M. N. O’Sullivan, M. Mirhosseini, M. Malik, and R. W. Boyd, “Near-perfect sorting of orbital angular momentum and angular position states of light,” Opt. Express 20(22), 24444–24449 (2012).
    [Crossref] [PubMed]
  31. J. Yang, Z. Liu, S. Gao, X. Huang, Y. Feng, W. Liu, and Z. Li, “Two-dimension and high-resolution demultiplexing of coaxial multiple orbital angular momentum beams,” Opt. Express 27(4), 4338–4345 (2019).
    [Crossref] [PubMed]
  32. M. Malik, M. Mirhosseini, M. P. J. Lavery, J. Leach, M. J. Padgett, and R. W. Boyd, “Direct measurement of a 27-dimensional orbital-angular-momentum state vector,” Nat. Commun. 5(1), 3115 (2014).
    [Crossref] [PubMed]
  33. G. Ruffato, P. Capaldo, M. Massari, E. Mafakheri, and F. Romanato, “Total angular momentum sorting in the telecom infrared with silicon Pancharatnam-Berry transformation optics,” Opt. Express 27(11), 15750–15764 (2019).
    [Crossref] [PubMed]

2019 (5)

2018 (8)

G. Ruffato, M. Girardi, M. Massari, E. Mafakheri, B. Sephton, P. Capaldo, A. Forbes, and F. Romanato, “A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams,” Sci. Rep. 8(1), 10248 (2018).
[Crossref] [PubMed]

Y. Wen, I. Chremmos, Y. Chen, J. Zhu, Y. Zhang, and S. Yu, “Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes,” Phys. Rev. Lett. 120(19), 193904 (2018).
[Crossref] [PubMed]

G. F. Walsh, L. Sio, D. E. Roberts, N. Tabiryan, F. J. Aranda, and B. R. Kimball, “Parallel sorting of orbital and spin angular momenta of light in a record large number of channels,” Opt. Lett. 43(10), 2256–2259 (2018).
[Crossref] [PubMed]

J. Fang, Z. Xie, T. Lei, C. Min, L. Du, Z. Li, and X. Yuan, “Spin-Dependent Optical Geometric Transformation for Cylindrical Vector Beam Multiplexing Communication,” ACS Photonics 5(9), 3478–3484 (2018).
[Crossref]

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, and A. Forbes, “Creation and Detection of Vector Vortex Modes for Classical and Quantum Communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
[Crossref]

Z. Xie, S. Gao, T. Lei, S. Feng, Y. Zhang, F. Li, J. Zhang, Z. Li, and X. Yuan, “Integrated (de)multiplexer for orbital angular momentum fiber communication,” Photon. Res. 6(7), 743–749 (2018).
[Crossref]

F. Lu, T. Huang, L. Han, H. Su, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-Enhanced Raman Spectroscopy with High-Order Fiber Vector Beam Excitation,” Sensors (Basel) 18(11), 3841 (2018).
[Crossref] [PubMed]

2017 (3)

W. Qiao, T. Lei, Z. Wu, S. Gao, Z. Li, and X. Yuan, “Approach to multiplexing fiber communication with cylindrical vector beams,” Opt. Lett. 42(13), 2579–2582 (2017).
[Crossref] [PubMed]

P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu, and Y.-Q. Lu, “Digitalized Geometric Phases for Parallel Optical Spin and Orbital Angular Momentum Encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

C. Wan, J. Chen, and Q. Zhan, “Compact and high-resolution optical orbital angular momentum sorter,” APL Photonics 2(3), 031302 (2017).
[Crossref]

2016 (2)

Z. Xie, T. Lei, X. Weng, L. Du, S. Gao, Y. Yuan, S. Feng, Y. Zhang, and X. Yuan, “A Miniaturized Polymer Grating for Topological Order Detection of Cylindrical Vector Beams,” IEEE Photonics Technol. Lett. 28(24), 2799–2802 (2016).
[Crossref]

G. F. Walsh, “Pancharatnam-Berry optical element sorter of full angular momentum eigenstate,” Opt. Express 24(6), 6689–6704 (2016).
[Crossref] [PubMed]

2015 (2)

G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. R. Alfano, “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40(21), 4887–4890 (2015).
[Crossref] [PubMed]

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

2014 (2)

2013 (3)

M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4(1), 2781 (2013).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

2012 (3)

R.-J. Essiambre and R. W. Tkach, “Capacity Trends and Limits of Optical Communication Networks,” Proc. IEEE 100(5), 1035–1055 (2012).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

M. N. O’Sullivan, M. Mirhosseini, M. Malik, and R. W. Boyd, “Near-perfect sorting of orbital angular momentum and angular position states of light,” Opt. Express 20(22), 24444–24449 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient Sorting of Orbital Angular Momentum States of Light,” Phys. Rev. Lett. 105(15), 153601 (2010).
[Crossref] [PubMed]

Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express 18(10), 10828–10833 (2010).
[Crossref] [PubMed]

2009 (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Ahmed, N.

Alfano, R. R.

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Aranda, F. J.

Beijersbergen, M. W.

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient Sorting of Orbital Angular Momentum States of Light,” Phys. Rev. Lett. 105(15), 153601 (2010).
[Crossref] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Berkhout, G. C. G.

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient Sorting of Orbital Angular Momentum States of Light,” Phys. Rev. Lett. 105(15), 153601 (2010).
[Crossref] [PubMed]

Birnbaum, K. M.

Boyd, R. W.

M. Malik, M. Mirhosseini, M. P. J. Lavery, J. Leach, M. J. Padgett, and R. W. Boyd, “Direct measurement of a 27-dimensional orbital-angular-momentum state vector,” Nat. Commun. 5(1), 3115 (2014).
[Crossref] [PubMed]

M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4(1), 2781 (2013).
[Crossref] [PubMed]

M. N. O’Sullivan, M. Mirhosseini, M. Malik, and R. W. Boyd, “Near-perfect sorting of orbital angular momentum and angular position states of light,” Opt. Express 20(22), 24444–24449 (2012).
[Crossref] [PubMed]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Cai, Y.

Capaldo, P.

G. Ruffato, P. Capaldo, M. Massari, E. Mafakheri, and F. Romanato, “Total angular momentum sorting in the telecom infrared with silicon Pancharatnam-Berry transformation optics,” Opt. Express 27(11), 15750–15764 (2019).
[Crossref] [PubMed]

G. Ruffato, M. Girardi, M. Massari, E. Mafakheri, B. Sephton, P. Capaldo, A. Forbes, and F. Romanato, “A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams,” Sci. Rep. 8(1), 10248 (2018).
[Crossref] [PubMed]

Chen, J.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

C. Wan, J. Chen, and Q. Zhan, “Compact and high-resolution optical orbital angular momentum sorter,” APL Photonics 2(3), 031302 (2017).
[Crossref]

Chen, P.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu, and Y.-Q. Lu, “Digitalized Geometric Phases for Parallel Optical Spin and Orbital Angular Momentum Encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

Chen, Y.

Y. Wen, I. Chremmos, Y. Chen, J. Zhu, Y. Zhang, and S. Yu, “Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes,” Phys. Rev. Lett. 120(19), 193904 (2018).
[Crossref] [PubMed]

Chremmos, I.

Y. Wen, I. Chremmos, Y. Chen, J. Zhu, Y. Zhang, and S. Yu, “Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes,” Phys. Rev. Lett. 120(19), 193904 (2018).
[Crossref] [PubMed]

Courtial, J.

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient Sorting of Orbital Angular Momentum States of Light,” Phys. Rev. Lett. 105(15), 153601 (2010).
[Crossref] [PubMed]

Cox, M. A.

Cui, G.-X.

P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu, and Y.-Q. Lu, “Digitalized Geometric Phases for Parallel Optical Spin and Orbital Angular Momentum Encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

Dolinar, S.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Dolinar, S. J.

Du, L.

J. Fang, Z. Xie, T. Lei, C. Min, L. Du, Z. Li, and X. Yuan, “Spin-Dependent Optical Geometric Transformation for Cylindrical Vector Beam Multiplexing Communication,” ACS Photonics 5(9), 3478–3484 (2018).
[Crossref]

Z. Xie, T. Lei, X. Weng, L. Du, S. Gao, Y. Yuan, S. Feng, Y. Zhang, and X. Yuan, “A Miniaturized Polymer Grating for Topological Order Detection of Cylindrical Vector Beams,” IEEE Photonics Technol. Lett. 28(24), 2799–2802 (2016).
[Crossref]

Duan, W.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu, and Y.-Q. Lu, “Digitalized Geometric Phases for Parallel Optical Spin and Orbital Angular Momentum Encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

Erkmen, B. I.

Essiambre, R.-J.

R.-J. Essiambre and R. W. Tkach, “Capacity Trends and Limits of Optical Communication Networks,” Proc. IEEE 100(5), 1035–1055 (2012).
[Crossref]

Fan, D.

Fang, J.

J. Fang, Z. Xie, T. Lei, C. Min, L. Du, Z. Li, and X. Yuan, “Spin-Dependent Optical Geometric Transformation for Cylindrical Vector Beam Multiplexing Communication,” ACS Photonics 5(9), 3478–3484 (2018).
[Crossref]

Fatemi, F. K.

Fazal, I. M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Feng, S.

Z. Xie, S. Gao, T. Lei, S. Feng, Y. Zhang, F. Li, J. Zhang, Z. Li, and X. Yuan, “Integrated (de)multiplexer for orbital angular momentum fiber communication,” Photon. Res. 6(7), 743–749 (2018).
[Crossref]

Z. Xie, T. Lei, X. Weng, L. Du, S. Gao, Y. Yuan, S. Feng, Y. Zhang, and X. Yuan, “A Miniaturized Polymer Grating for Topological Order Detection of Cylindrical Vector Beams,” IEEE Photonics Technol. Lett. 28(24), 2799–2802 (2016).
[Crossref]

Feng, Y.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Forbes, A.

G. Ruffato, M. Girardi, M. Massari, E. Mafakheri, B. Sephton, P. Capaldo, A. Forbes, and F. Romanato, “A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams,” Sci. Rep. 8(1), 10248 (2018).
[Crossref] [PubMed]

B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, and A. Forbes, “Creation and Detection of Vector Vortex Modes for Classical and Quantum Communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
[Crossref]

Gao, F.

M. Liu, W. D. Zhang, F. F. Lu, T. Y. Xue, X. Li, L. Zhang, D. Mao, L. G. Huang, F. Gao, T. Mei, and J. L. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7(5), 526–531 (2019).
[Crossref]

M. Liu, F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach,” Nanophotonics 8(5), 921–929 (2019).
[Crossref]

Gao, S.

Gao, W.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Ge, S.-J.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu, and Y.-Q. Lu, “Digitalized Geometric Phases for Parallel Optical Spin and Orbital Angular Momentum Encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

Girardi, M.

G. Ruffato, M. Girardi, M. Massari, E. Mafakheri, B. Sephton, P. Capaldo, A. Forbes, and F. Romanato, “A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams,” Sci. Rep. 8(1), 10248 (2018).
[Crossref] [PubMed]

Han, L.

F. Lu, T. Huang, L. Han, H. Su, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-Enhanced Raman Spectroscopy with High-Order Fiber Vector Beam Excitation,” Sensors (Basel) 18(11), 3841 (2018).
[Crossref] [PubMed]

Hu, W.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu, and Y.-Q. Lu, “Digitalized Geometric Phases for Parallel Optical Spin and Orbital Angular Momentum Encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

Huang, H.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Huang, L. G.

M. Liu, F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach,” Nanophotonics 8(5), 921–929 (2019).
[Crossref]

M. Liu, W. D. Zhang, F. F. Lu, T. Y. Xue, X. Li, L. Zhang, D. Mao, L. G. Huang, F. Gao, T. Mei, and J. L. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7(5), 526–531 (2019).
[Crossref]

Huang, T.

F. Lu, T. Huang, L. Han, H. Su, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-Enhanced Raman Spectroscopy with High-Order Fiber Vector Beam Excitation,” Sensors (Basel) 18(11), 3841 (2018).
[Crossref] [PubMed]

Huang, X.

Jia, P.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Kimball, B. R.

Kozawa, Y.

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Lavery, M. P. J.

M. Malik, M. Mirhosseini, M. P. J. Lavery, J. Leach, M. J. Padgett, and R. W. Boyd, “Direct measurement of a 27-dimensional orbital-angular-momentum state vector,” Nat. Commun. 5(1), 3115 (2014).
[Crossref] [PubMed]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient Sorting of Orbital Angular Momentum States of Light,” Phys. Rev. Lett. 105(15), 153601 (2010).
[Crossref] [PubMed]

Leach, J.

G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. R. Alfano, “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40(21), 4887–4890 (2015).
[Crossref] [PubMed]

M. Malik, M. Mirhosseini, M. P. J. Lavery, J. Leach, M. J. Padgett, and R. W. Boyd, “Direct measurement of a 27-dimensional orbital-angular-momentum state vector,” Nat. Commun. 5(1), 3115 (2014).
[Crossref] [PubMed]

Lei, T.

J. Fang, Z. Xie, T. Lei, C. Min, L. Du, Z. Li, and X. Yuan, “Spin-Dependent Optical Geometric Transformation for Cylindrical Vector Beam Multiplexing Communication,” ACS Photonics 5(9), 3478–3484 (2018).
[Crossref]

Z. Xie, S. Gao, T. Lei, S. Feng, Y. Zhang, F. Li, J. Zhang, Z. Li, and X. Yuan, “Integrated (de)multiplexer for orbital angular momentum fiber communication,” Photon. Res. 6(7), 743–749 (2018).
[Crossref]

W. Qiao, T. Lei, Z. Wu, S. Gao, Z. Li, and X. Yuan, “Approach to multiplexing fiber communication with cylindrical vector beams,” Opt. Lett. 42(13), 2579–2582 (2017).
[Crossref] [PubMed]

Z. Xie, T. Lei, X. Weng, L. Du, S. Gao, Y. Yuan, S. Feng, Y. Zhang, and X. Yuan, “A Miniaturized Polymer Grating for Topological Order Detection of Cylindrical Vector Beams,” IEEE Photonics Technol. Lett. 28(24), 2799–2802 (2016).
[Crossref]

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Li, F.

Li, T.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Li, X.

Li, Y.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Li, Z.

J. Yang, Z. Liu, S. Gao, X. Huang, Y. Feng, W. Liu, and Z. Li, “Two-dimension and high-resolution demultiplexing of coaxial multiple orbital angular momentum beams,” Opt. Express 27(4), 4338–4345 (2019).
[Crossref] [PubMed]

Z. Xie, S. Gao, T. Lei, S. Feng, Y. Zhang, F. Li, J. Zhang, Z. Li, and X. Yuan, “Integrated (de)multiplexer for orbital angular momentum fiber communication,” Photon. Res. 6(7), 743–749 (2018).
[Crossref]

J. Fang, Z. Xie, T. Lei, C. Min, L. Du, Z. Li, and X. Yuan, “Spin-Dependent Optical Geometric Transformation for Cylindrical Vector Beam Multiplexing Communication,” ACS Photonics 5(9), 3478–3484 (2018).
[Crossref]

W. Qiao, T. Lei, Z. Wu, S. Gao, Z. Li, and X. Yuan, “Approach to multiplexing fiber communication with cylindrical vector beams,” Opt. Lett. 42(13), 2579–2582 (2017).
[Crossref] [PubMed]

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Liang, S. H.

M. Liu, F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach,” Nanophotonics 8(5), 921–929 (2019).
[Crossref]

Lin, J.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Liu, G. N.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Liu, M.

M. Liu, F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach,” Nanophotonics 8(5), 921–929 (2019).
[Crossref]

M. Liu, W. D. Zhang, F. F. Lu, T. Y. Xue, X. Li, L. Zhang, D. Mao, L. G. Huang, F. Gao, T. Mei, and J. L. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7(5), 526–531 (2019).
[Crossref]

F. Lu, T. Huang, L. Han, H. Su, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-Enhanced Raman Spectroscopy with High-Order Fiber Vector Beam Excitation,” Sensors (Basel) 18(11), 3841 (2018).
[Crossref] [PubMed]

Liu, W.

Liu, Z.

Lu, F.

F. Lu, T. Huang, L. Han, H. Su, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-Enhanced Raman Spectroscopy with High-Order Fiber Vector Beam Excitation,” Sensors (Basel) 18(11), 3841 (2018).
[Crossref] [PubMed]

Lu, F. F.

M. Liu, F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach,” Nanophotonics 8(5), 921–929 (2019).
[Crossref]

M. Liu, W. D. Zhang, F. F. Lu, T. Y. Xue, X. Li, L. Zhang, D. Mao, L. G. Huang, F. Gao, T. Mei, and J. L. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7(5), 526–531 (2019).
[Crossref]

Lu, Y.-Q.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu, and Y.-Q. Lu, “Digitalized Geometric Phases for Parallel Optical Spin and Orbital Angular Momentum Encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

Ma, L.-L.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Mafakheri, E.

G. Ruffato, P. Capaldo, M. Massari, E. Mafakheri, and F. Romanato, “Total angular momentum sorting in the telecom infrared with silicon Pancharatnam-Berry transformation optics,” Opt. Express 27(11), 15750–15764 (2019).
[Crossref] [PubMed]

G. Ruffato, M. Girardi, M. Massari, E. Mafakheri, B. Sephton, P. Capaldo, A. Forbes, and F. Romanato, “A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams,” Sci. Rep. 8(1), 10248 (2018).
[Crossref] [PubMed]

Malik, M.

M. Malik, M. Mirhosseini, M. P. J. Lavery, J. Leach, M. J. Padgett, and R. W. Boyd, “Direct measurement of a 27-dimensional orbital-angular-momentum state vector,” Nat. Commun. 5(1), 3115 (2014).
[Crossref] [PubMed]

M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4(1), 2781 (2013).
[Crossref] [PubMed]

M. N. O’Sullivan, M. Mirhosseini, M. Malik, and R. W. Boyd, “Near-perfect sorting of orbital angular momentum and angular position states of light,” Opt. Express 20(22), 24444–24449 (2012).
[Crossref] [PubMed]

Mao, D.

M. Liu, W. D. Zhang, F. F. Lu, T. Y. Xue, X. Li, L. Zhang, D. Mao, L. G. Huang, F. Gao, T. Mei, and J. L. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7(5), 526–531 (2019).
[Crossref]

M. Liu, F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach,” Nanophotonics 8(5), 921–929 (2019).
[Crossref]

Massari, M.

G. Ruffato, P. Capaldo, M. Massari, E. Mafakheri, and F. Romanato, “Total angular momentum sorting in the telecom infrared with silicon Pancharatnam-Berry transformation optics,” Opt. Express 27(11), 15750–15764 (2019).
[Crossref] [PubMed]

G. Ruffato, M. Girardi, M. Massari, E. Mafakheri, B. Sephton, P. Capaldo, A. Forbes, and F. Romanato, “A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams,” Sci. Rep. 8(1), 10248 (2018).
[Crossref] [PubMed]

Mei, T.

M. Liu, F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach,” Nanophotonics 8(5), 921–929 (2019).
[Crossref]

M. Liu, W. D. Zhang, F. F. Lu, T. Y. Xue, X. Li, L. Zhang, D. Mao, L. G. Huang, F. Gao, T. Mei, and J. L. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7(5), 526–531 (2019).
[Crossref]

F. Lu, T. Huang, L. Han, H. Su, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-Enhanced Raman Spectroscopy with High-Order Fiber Vector Beam Excitation,” Sensors (Basel) 18(11), 3841 (2018).
[Crossref] [PubMed]

Milione, G.

Min, C.

J. Fang, Z. Xie, T. Lei, C. Min, L. Du, Z. Li, and X. Yuan, “Spin-Dependent Optical Geometric Transformation for Cylindrical Vector Beam Multiplexing Communication,” ACS Photonics 5(9), 3478–3484 (2018).
[Crossref]

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Mirhosseini, M.

M. Malik, M. Mirhosseini, M. P. J. Lavery, J. Leach, M. J. Padgett, and R. W. Boyd, “Direct measurement of a 27-dimensional orbital-angular-momentum state vector,” Nat. Commun. 5(1), 3115 (2014).
[Crossref] [PubMed]

M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4(1), 2781 (2013).
[Crossref] [PubMed]

M. N. O’Sullivan, M. Mirhosseini, M. Malik, and R. W. Boyd, “Near-perfect sorting of orbital angular momentum and angular position states of light,” Opt. Express 20(22), 24444–24449 (2012).
[Crossref] [PubMed]

Nape, I.

Ndagano, B.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Nguyen, T. A.

Niu, H.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Nolan, D. A.

O’Sullivan, M. N.

Padgett, M. J.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

M. Malik, M. Mirhosseini, M. P. J. Lavery, J. Leach, M. J. Padgett, and R. W. Boyd, “Direct measurement of a 27-dimensional orbital-angular-momentum state vector,” Nat. Commun. 5(1), 3115 (2014).
[Crossref] [PubMed]

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient Sorting of Orbital Angular Momentum States of Light,” Phys. Rev. Lett. 105(15), 153601 (2010).
[Crossref] [PubMed]

Pan, X.

Qiao, W.

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Ren, Y.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Roberts, D. E.

Rogawski, D.

Romanato, F.

G. Ruffato, P. Capaldo, M. Massari, E. Mafakheri, and F. Romanato, “Total angular momentum sorting in the telecom infrared with silicon Pancharatnam-Berry transformation optics,” Opt. Express 27(11), 15750–15764 (2019).
[Crossref] [PubMed]

G. Ruffato, M. Girardi, M. Massari, E. Mafakheri, B. Sephton, P. Capaldo, A. Forbes, and F. Romanato, “A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams,” Sci. Rep. 8(1), 10248 (2018).
[Crossref] [PubMed]

Rosales-Guzman, C.

Ruffato, G.

G. Ruffato, P. Capaldo, M. Massari, E. Mafakheri, and F. Romanato, “Total angular momentum sorting in the telecom infrared with silicon Pancharatnam-Berry transformation optics,” Opt. Express 27(11), 15750–15764 (2019).
[Crossref] [PubMed]

G. Ruffato, M. Girardi, M. Massari, E. Mafakheri, B. Sephton, P. Capaldo, A. Forbes, and F. Romanato, “A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams,” Sci. Rep. 8(1), 10248 (2018).
[Crossref] [PubMed]

Sato, S.

Sephton, B.

G. Ruffato, M. Girardi, M. Massari, E. Mafakheri, B. Sephton, P. Capaldo, A. Forbes, and F. Romanato, “A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams,” Sci. Rep. 8(1), 10248 (2018).
[Crossref] [PubMed]

Shangguan, H.

Shi, Z.

M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4(1), 2781 (2013).
[Crossref] [PubMed]

Sio, L.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Su, H.

F. Lu, T. Huang, L. Han, H. Su, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-Enhanced Raman Spectroscopy with High-Order Fiber Vector Beam Excitation,” Sensors (Basel) 18(11), 3841 (2018).
[Crossref] [PubMed]

Tabiryan, N.

Tang, M.-J.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Tkach, R. W.

R.-J. Essiambre and R. W. Tkach, “Capacity Trends and Limits of Optical Communication Networks,” Proc. IEEE 100(5), 1035–1055 (2012).
[Crossref]

Tur, M.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Walsh, G. F.

Wan, C.

C. Wan, J. Chen, and Q. Zhan, “Compact and high-resolution optical orbital angular momentum sorter,” APL Photonics 2(3), 031302 (2017).
[Crossref]

Wang, H.

F. Lu, T. Huang, L. Han, H. Su, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-Enhanced Raman Spectroscopy with High-Order Fiber Vector Beam Excitation,” Sensors (Basel) 18(11), 3841 (2018).
[Crossref] [PubMed]

Wang, J.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, X.

F. Lu, T. Huang, L. Han, H. Su, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-Enhanced Raman Spectroscopy with High-Order Fiber Vector Beam Excitation,” Sensors (Basel) 18(11), 3841 (2018).
[Crossref] [PubMed]

Wei, B.-Y.

P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu, and Y.-Q. Lu, “Digitalized Geometric Phases for Parallel Optical Spin and Orbital Angular Momentum Encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

Wen, Y.

Y. Wen, I. Chremmos, Y. Chen, J. Zhu, Y. Zhang, and S. Yu, “Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes,” Phys. Rev. Lett. 120(19), 193904 (2018).
[Crossref] [PubMed]

Weng, X.

Z. Xie, T. Lei, X. Weng, L. Du, S. Gao, Y. Yuan, S. Feng, Y. Zhang, and X. Yuan, “A Miniaturized Polymer Grating for Topological Order Detection of Cylindrical Vector Beams,” IEEE Photonics Technol. Lett. 28(24), 2799–2802 (2016).
[Crossref]

Willner, A. E.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Willner, M. J.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Wu, Z.

Xie, G.

Xie, Z.

J. Fang, Z. Xie, T. Lei, C. Min, L. Du, Z. Li, and X. Yuan, “Spin-Dependent Optical Geometric Transformation for Cylindrical Vector Beam Multiplexing Communication,” ACS Photonics 5(9), 3478–3484 (2018).
[Crossref]

Z. Xie, S. Gao, T. Lei, S. Feng, Y. Zhang, F. Li, J. Zhang, Z. Li, and X. Yuan, “Integrated (de)multiplexer for orbital angular momentum fiber communication,” Photon. Res. 6(7), 743–749 (2018).
[Crossref]

Z. Xie, T. Lei, X. Weng, L. Du, S. Gao, Y. Yuan, S. Feng, Y. Zhang, and X. Yuan, “A Miniaturized Polymer Grating for Topological Order Detection of Cylindrical Vector Beams,” IEEE Photonics Technol. Lett. 28(24), 2799–2802 (2016).
[Crossref]

Xu, R.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Xu, S.

Xu, X.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Xue, T. Y.

Yan, Y.

Yang, J.

Yang, J.-Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yu, C.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Yu, S.

Y. Wen, I. Chremmos, Y. Chen, J. Zhu, Y. Zhang, and S. Yu, “Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes,” Phys. Rev. Lett. 120(19), 193904 (2018).
[Crossref] [PubMed]

Yuan, X.

S. Zheng, X. Zeng, H. Shangguan, Y. Cai, X. Pan, S. Xu, X. Yuan, and D. Fan, “Improve polarization topological order sorting with the diffractive splitting method,” Opt. Lett. 44(4), 795–798 (2019).
[Crossref] [PubMed]

Z. Xie, S. Gao, T. Lei, S. Feng, Y. Zhang, F. Li, J. Zhang, Z. Li, and X. Yuan, “Integrated (de)multiplexer for orbital angular momentum fiber communication,” Photon. Res. 6(7), 743–749 (2018).
[Crossref]

J. Fang, Z. Xie, T. Lei, C. Min, L. Du, Z. Li, and X. Yuan, “Spin-Dependent Optical Geometric Transformation for Cylindrical Vector Beam Multiplexing Communication,” ACS Photonics 5(9), 3478–3484 (2018).
[Crossref]

W. Qiao, T. Lei, Z. Wu, S. Gao, Z. Li, and X. Yuan, “Approach to multiplexing fiber communication with cylindrical vector beams,” Opt. Lett. 42(13), 2579–2582 (2017).
[Crossref] [PubMed]

Z. Xie, T. Lei, X. Weng, L. Du, S. Gao, Y. Yuan, S. Feng, Y. Zhang, and X. Yuan, “A Miniaturized Polymer Grating for Topological Order Detection of Cylindrical Vector Beams,” IEEE Photonics Technol. Lett. 28(24), 2799–2802 (2016).
[Crossref]

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Yuan, Y.

Z. Xie, T. Lei, X. Weng, L. Du, S. Gao, Y. Yuan, S. Feng, Y. Zhang, and X. Yuan, “A Miniaturized Polymer Grating for Topological Order Detection of Cylindrical Vector Beams,” IEEE Photonics Technol. Lett. 28(24), 2799–2802 (2016).
[Crossref]

Yue, Y.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zeng, X.

Zhan, Q.

C. Wan, J. Chen, and Q. Zhan, “Compact and high-resolution optical orbital angular momentum sorter,” APL Photonics 2(3), 031302 (2017).
[Crossref]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Zhang, J.

Zhang, L.

Zhang, M.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Zhang, W.

F. Lu, T. Huang, L. Han, H. Su, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-Enhanced Raman Spectroscopy with High-Order Fiber Vector Beam Excitation,” Sensors (Basel) 18(11), 3841 (2018).
[Crossref] [PubMed]

Zhang, W. D.

M. Liu, F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach,” Nanophotonics 8(5), 921–929 (2019).
[Crossref]

M. Liu, W. D. Zhang, F. F. Lu, T. Y. Xue, X. Li, L. Zhang, D. Mao, L. G. Huang, F. Gao, T. Mei, and J. L. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7(5), 526–531 (2019).
[Crossref]

Zhang, Y.

Z. Xie, S. Gao, T. Lei, S. Feng, Y. Zhang, F. Li, J. Zhang, Z. Li, and X. Yuan, “Integrated (de)multiplexer for orbital angular momentum fiber communication,” Photon. Res. 6(7), 743–749 (2018).
[Crossref]

Y. Wen, I. Chremmos, Y. Chen, J. Zhu, Y. Zhang, and S. Yu, “Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes,” Phys. Rev. Lett. 120(19), 193904 (2018).
[Crossref] [PubMed]

Z. Xie, T. Lei, X. Weng, L. Du, S. Gao, Y. Yuan, S. Feng, Y. Zhang, and X. Yuan, “A Miniaturized Polymer Grating for Topological Order Detection of Cylindrical Vector Beams,” IEEE Photonics Technol. Lett. 28(24), 2799–2802 (2016).
[Crossref]

Zhao, J. L.

M. Liu, F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach,” Nanophotonics 8(5), 921–929 (2019).
[Crossref]

M. Liu, W. D. Zhang, F. F. Lu, T. Y. Xue, X. Li, L. Zhang, D. Mao, L. G. Huang, F. Gao, T. Mei, and J. L. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7(5), 526–531 (2019).
[Crossref]

Zheng, S.

Zhu, J.

Y. Wen, I. Chremmos, Y. Chen, J. Zhu, Y. Zhang, and S. Yu, “Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes,” Phys. Rev. Lett. 120(19), 193904 (2018).
[Crossref] [PubMed]

Zhu, Z.-H.

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

ACS Photonics (2)

J. Fang, Z. Xie, T. Lei, C. Min, L. Du, Z. Li, and X. Yuan, “Spin-Dependent Optical Geometric Transformation for Cylindrical Vector Beam Multiplexing Communication,” ACS Photonics 5(9), 3478–3484 (2018).
[Crossref]

P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu, and Y.-Q. Lu, “Digitalized Geometric Phases for Parallel Optical Spin and Orbital Angular Momentum Encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

Adv. Mater. (1)

P. Chen, L.-L. Ma, W. Duan, J. Chen, S.-J. Ge, Z.-H. Zhu, M.-J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y.-Q. Lu, “Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

APL Photonics (1)

C. Wan, J. Chen, and Q. Zhan, “Compact and high-resolution optical orbital angular momentum sorter,” APL Photonics 2(3), 031302 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z. Xie, T. Lei, X. Weng, L. Du, S. Gao, Y. Yuan, S. Feng, Y. Zhang, and X. Yuan, “A Miniaturized Polymer Grating for Topological Order Detection of Cylindrical Vector Beams,” IEEE Photonics Technol. Lett. 28(24), 2799–2802 (2016).
[Crossref]

J. Lightwave Technol. (1)

Light Sci. Appl. (1)

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Nanophotonics (1)

M. Liu, F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, and J. L. Zhao, “Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach,” Nanophotonics 8(5), 921–929 (2019).
[Crossref]

Nat. Commun. (2)

M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4(1), 2781 (2013).
[Crossref] [PubMed]

M. Malik, M. Mirhosseini, M. P. J. Lavery, J. Leach, M. J. Padgett, and R. W. Boyd, “Direct measurement of a 27-dimensional orbital-angular-momentum state vector,” Nat. Commun. 5(1), 3115 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Photon. Res. (2)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient Sorting of Orbital Angular Momentum States of Light,” Phys. Rev. Lett. 105(15), 153601 (2010).
[Crossref] [PubMed]

Y. Wen, I. Chremmos, Y. Chen, J. Zhu, Y. Zhang, and S. Yu, “Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes,” Phys. Rev. Lett. 120(19), 193904 (2018).
[Crossref] [PubMed]

Proc. IEEE (1)

R.-J. Essiambre and R. W. Tkach, “Capacity Trends and Limits of Optical Communication Networks,” Proc. IEEE 100(5), 1035–1055 (2012).
[Crossref]

Sci. Rep. (1)

G. Ruffato, M. Girardi, M. Massari, E. Mafakheri, B. Sephton, P. Capaldo, A. Forbes, and F. Romanato, “A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams,” Sci. Rep. 8(1), 10248 (2018).
[Crossref] [PubMed]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Sensors (Basel) (1)

F. Lu, T. Huang, L. Han, H. Su, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-Enhanced Raman Spectroscopy with High-Order Fiber Vector Beam Excitation,” Sensors (Basel) 18(11), 3841 (2018).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Scheme of the CVB sorting based on spin-dependent optical geometric transformation; P1, optical geometric transformation; P2, phase corrector; L1, focal lens f1; L2, focal lens f2. (b) Scheme of the high-resolution CVB sorting based on spin-dependent fan-out optical geometric transformation; P3, fan-out optical geometric transformation; P4, phase corrector; CL, cylindrical lens. (c)Calculated polarization images of PBOE device for the fan-out optical geometric transformation. (d) Calculated polarization images of the phase corrector. (e) Microscopic polarization image of the fabricated LC devices in the zoom-in area labeled in (c). (f) Microscopic polarization image of the fabricated LC devices in the zoom-in area labeled in (d).
Fig. 2
Fig. 2 (a) The setup for single CVB sorting characterization. COL, collimator; VWP, vortex wave plate; OBJ, objective. (b) Measured intensity distributions of the incident CVBs orders from −5 to + 5 after the linear polarizer. (c) Calculated high-resolution CVBs sorting results with displacements proportional to the incident CVBs orders. (d) Experimental results of high-resolution sorting captured by an infrared camera. (e) Calculated and (f) measured sorting results intensity distributions with orders from −5 to + 5. (g) Measured insertion loss for CVBs to fiber coupling with and without the cylindrical lens.
Fig. 3
Fig. 3 (a) The setup for sorting multiple coaxial CVB of orders −2, −1, 1, 2. HWP, half wave plate, BS; beam splitter; FA, fiber array. (b) Calculated and (c) experimental demonstrated high-resolution multiple coaxial CVBs sorting results. (d) Image of multimode fiber array. (e) Measured mode crosstalk matrix for the four CVB channels.
Fig. 4
Fig. 4 (a) The adjacent CVB separation distance and (b) the diameter of sorted light spot with f2 = 200 mm and d from 0.8 mm to 4 mm. (c) The adjacent CVB separation distance and (d) the diameter of sorted light spot with f2 = 20 mm and d from 0.8 mm to 4 mm. f2 = 20 mm and d from 0.8 mm to 4 mm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Jm=( cos( mφ+ϕ0 ) sin( mφ+ϕ0 ) )=( 1 2 ( e i(mφ+ϕ0) + e i(mφ+ϕ0) ) 1 2i ( e i(mφ+ϕ0) e i(mφ+ϕ0) ) )= 1 2 e i(mφ+ϕ0) ( 1 i )+ 1 2 e i(mφ+ϕ0) ( 1 i )
M(x,y)=[ cos2α(x,y) sin2α(x,y) sin2α(x,y) cos2α(x,y) ]
M( x,y )ELCP= E 0 M( x,y )[ 1; i ]= E 0 e i2α( x,y ) [ 1; i ]= e i2α( x,y ) ERCP
M( x,y )ERCP= E 0 M( x,y )[ 1; i ]= E 0 e i2α( x,y ) [ 1; i ]= e i2α( x,y ) ELCP
ϕ1(x,y)= d λ f 1 [ y tan 1 ( y x )xln( x 2 + y 2 b )+x ]+ tan 1 ( k=N N c k sin( 2πθ λ ky+ a k ) k=N N c k cos( 2πθ λ ky+ a k ) )
ϕ2(u,v)= k=N N rect( vkd d )( bd λ f 1 exp( 2π|u| d )cos( 2πv d )+ φ k ( k ) ) ,rect(x)={ 1,| x |<1/2 0,| x |1/2
tm= λ f 1 d m