Abstract

Germanium selenide (GeSe) has attracted considerable research interest due to its unique photoelectric characteristics: high abundance occurrence, low toxicity, high stability, and environmentally sustainable. To the best of our knowledge, less literature is available on the nonlinear optical (NLO) properties of GeSe and on its significance of the electronic structure. In this work, the GeSe nanoflake ethanol suspensions have been studied by using liquid phase exfoliation method and then characterized by Raman, transmission electron microscopy (TEM), transmittance and atomic force microscopy (AFM). The NLO properties of GeSe suspensions with different concentration are investigated by Z-scan and spatial self-phase modulation (SSPM) methods with continuous wave laser, which are coherent with the parameter nonlinear refractive index n2 and the third order nonlinear polarizabilities χ(3). The nonlinear refractive index n2 of GeSe dispersions basically occur in the order of 10−9 cm2/W for Z-scan methods and 10−6 cm2/W for SSPM technique, whereas the third-order nonlinear polarizabilities χ(3)total are within the range of 10−6 esu for SSPM method. On the basis of these substantial characteristics of the NLO response and high stability of the 2D GeSe, we have experimentally studied the applications of the GeSe suspensions on all-optical information conversion technique.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Intensity-dependent nonlinear refraction of antimonene dispersions in the visible and near-infrared region

Gaozhong Wang, Sean Higgins, Kangpeng Wang, Daniel Bennett, Nina Milosavljevic, John James Magan, Saifeng Zhang, Xiaoyan Zhang, Jun Wang, and Werner J. Blau
Appl. Opt. 57(22) E147-E153 (2018)

High third-order nonlinear optical susceptibility in new fluorinated poly(p-phenylenevinylene) copolymers measured with the Z-scan technique

T. Cassano, R. Tommasi, F. Babudri, A. Cardone, G. M. Farinola, and F. Naso
Opt. Lett. 27(24) 2176-2178 (2002)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  2. Y. Ye, Q. Guo, X. Liu, C. Liu, J. Wang, Y. Liu, and J. Qiu, “Two-dimensional GeSe as an isostructural and isoelectronic analogue of phosphorene: sonication-assisted synthesis, chemical stability, and optical properties,” Chem. Mater. 29(19), 8361–8368 (2017).
    [Crossref]
  3. Y. Ji, M. Yang, H. Dong, L. Wang, T. Hou, and Y. Li, “Monolayer group IVA monochalcogenides as potential and efficient catalysts for the oxygen reduction reaction from first-principles calculations,” J. Mater. Chem. A Mater. Energy Sustain. 5(4), 1734–1741 (2017).
    [Crossref]
  4. P. Mishra, H. Lohani, A. K. Kundu, R. Patel, G. K. Solanki, K. S. R. Menon, and B. R. Sekhar, “Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy,” Semicond. Sci. Technol. 30(7), 075001 (2015).
    [Crossref]
  5. D. J. Xue, J. Tan, J. S. Hu, W. Hu, Y. G. Guo, and L. J. Wan, “Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet,” Adv. Mater. 24(33), 4528–4533 (2012).
    [Crossref] [PubMed]
  6. Z.-Q. Fan, X.-W. Jiang, Z. Wei, J.-W. Luo, and S.-S. Li, “Tunable electronic structures of GeSe nanosheets and nanoribbons,” J. Phys. Chem. C 121(26), 14373–14379 (2017).
    [Crossref]
  7. L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, “Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals,” Nature 508(7496), 373–377 (2014).
    [Crossref] [PubMed]
  8. M. K. Forthaus, K. Sengupta, O. Heyer, N. E. Christensen, A. Svane, K. Syassen, D. I. Khomskii, T. Lorenz, and M. M. Abd-Elmeguid, “Superconductivity in SnO: A nonmagnetic analog to Fe-based superconductors?” Phys. Rev. Lett. 105(15), 157001 (2010).
    [Crossref] [PubMed]
  9. K. Nomura, T. Kamiya, and H. Hosono, “Ambipolar oxide thin-film transistor,” Adv. Mater. 23(30), 3431–3434 (2011).
    [Crossref] [PubMed]
  10. F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 4458 (2014).
    [Crossref] [PubMed]
  11. A. K. Singh and R. G. Hennig, “Computational prediction of two-dimensional group-IV mono-chalcogenides,” Appl. Phys. Lett. 105(4), 042103 (2014).
    [Crossref]
  12. D. Vaughn, D. Sun, S. M. Levin, A. J. Biacchi, T. S. Mayer, and R. E. Schaak, “Colloidal Synthesis and Electrical Properties of GeSe Nanobelts,” Chem. Mater. 24(18), 3643–3649 (2012).
    [Crossref]
  13. B. Mukherjee, Y. Cai, H. R. Tan, Y. P. Feng, E. S. Tok, and C. H. Sow, “NIR Schottky photodetectors based on individual single-crystalline GeSe nanosheet,” ACS Appl. Mater. Interfaces 5(19), 9594–9604 (2013).
    [Crossref] [PubMed]
  14. P. Z. Hanakata, A. Carvalho, D. K. Campbell, and H. S. Park, “Polarization and valley switching in monolayer group-IV monochalcogenides,” Phys. Rev. B 94(3), 035304 (2016).
    [Crossref]
  15. I. Appelbaum and P. Li, “Electrons, holes, and spin in the IV-VI monolayer ‘four-six-enes’,” Phys. Rev. B 94(15), 155124 (2016).
    [Crossref]
  16. L. C. Gomes and A. Carvalho, “Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure,” Phys. Rev. B Condens. Matter Mater. Phys. 92(8), 085406 (2015).
    [Crossref]
  17. G.-B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, “Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides,” Chem. Soc. Rev. 44(9), 2643–2663 (2015).
    [Crossref] [PubMed]
  18. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
    [Crossref] [PubMed]
  19. G. Vinitha and A. Ramalingam, “Single-beam Z-scan measurement of the third-order optical nonlinearities of triarylmethane dyes,” Laser Phys. 18(10), 1176–1182 (2008).
    [Crossref]
  20. T. Huang, Z. Hao, H. Gong, Z. Liu, S. Xiao, S. Li, Y. Zhai, S. You, Q. Wang, and J. Qin, “Third-order nonlinear optical properties of a new copper coordination compound: A promising candidate for all-optical switching,” Chem. Phys. Lett. 451, 213–217 (2008).
    [Crossref]
  21. F. Henari, “Nonlinear characterization and optical switching in bromophenol blue solutions,” Nat. Sci. 3, 728–732 (2011).
    [Crossref]
  22. M. R. Singh and R. H. Lipson, “Optical switching in nonlinear photonic crystals lightly doped with nanostructures,” J. Phys. At. Mol. Opt. Phys. 41(1), 015401 (2008).
    [Crossref]
  23. C. V. Bindhu, S. S. Harilal, R. C. Issac, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, “Laser induced thermal lens effect in rhodmine B-signature of resonant two photon absorption,” Mod. Phys. Lett. B 09(22), 1471–1477 (1995).
    [Crossref]
  24. G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [Invited],” Photon. Res. 3(2), A51–A55 (2015).
    [Crossref]
  25. L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-Layer Tin Sulfide: A Promising Black-Phosphorus- Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
    [Crossref]
  26. X. Wang, G. Sun, N. Li, and P. Chen, “Quantum dots derived from two-dimensional materials and their applications for catalysis and energy,” Chem. Soc. Rev. 45(8), 2239–2262 (2016).
    [Crossref] [PubMed]
  27. P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-Dependent Changes in the Refractive Index of Liquids,” Phys. Rev. Lett. 12(18), 507–509 (1964).
    [Crossref]
  28. B. Buchalter and G. R. Meredith, “Third-order optical susceptibility of glasses determined by third harmonic generation,” Appl. Opt. 21(17), 3221–3224 (1982).
    [Crossref] [PubMed]
  29. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” ‎,” J. Opt. Soc. Am. B 4(6), 875–881 (1987).
    [Crossref]
  30. C. V. Shank and E. P. Ippen, “Anisotropic absorption saturation with picosecond pulses,” Appl. Phys. Lett. 26(2), 62–63 (1975).
    [Crossref]
  31. D. Rativa, R. E. de Araujo, A. S. L. Gomes, and B. Vohnsen, “Hartmann-Shack wavefront sensing for nonlinear materials characterization,” Opt. Express 17(24), 22047–22053 (2009).
    [Crossref] [PubMed]
  32. S. Biswas and P. Kumbhakar, “Refractive index and temperature sensing in anisotropic silver nanostructures with stable photo-physical properties,” Appl. Phys., A Mater. Sci. Process. 124(1), 6 (2018).
    [Crossref]
  33. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  34. Y. Jiang, Y. Ma, Z. Fan, P. Wang, X. Li, Y. Wang, Y. Zhang, J. Shen, G. Wang, Z.-J. Yang, S. Xiao, Y. Gao, and J. He, “Abnormal nonlinear optical properties of hybrid graphene-TiO2 nanostructures,” Opt. Lett. 43(3), 523–526 (2018).
    [Crossref] [PubMed]
  35. S. Ghayeb Zamharir, R. Karimzadeh, and S. H. Aboutalebi, “Laser-assisted tunable optical nonlinearity in liquid-phase exfoliated MoS2 dispersion,” Appl. Phys., A Mater. Sci. Process. 124(10), 692 (2018).
    [Crossref]
  36. Y. Jia, Y. Shan, L. Wu, X. Dai, D. Fan, and Y. Xiang, “Broadband nonlinear optical resonance and all-optical switching of liquid phase exfoliated tungsten diselenide,” Photon. Res. 6(11), 1040–1047 (2018).
    [Crossref]
  37. H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37(11), 1856–1858 (2012).
    [Crossref] [PubMed]
  38. R. S. Elias, Q. M. A. Hassan, H. A. Sultan, A. S. Al-Asadi, B. A. Saeed, and C. A. Emshary, “Thermal nonlinearities for three curcuminoids measured by diffraction ring patterns and Z-scan under visible CW laser illumination,” Opt. Laser Technol. 107, 131 (2018).
    [Crossref]
  39. X. Li, K. Hu, B. Lyu, J. Zhang, Y. Wang, P. Wang, S. Xiao, Y. Gao, and J. He, “Enhanced Nonlinear Optical Response of Rectangular MoS2 and MoS2/TiO2 in Dispersion and Film,” J. Phys. Chem. C 120(32), 18243–18248 (2016).
    [Crossref]
  40. J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 6, 1009–1017 (1994).
    [Crossref]
  41. G. Wang, S. Higgins, K. Wang, D. Bennett, N. Milosavljevic, J. J. Magan, S. Zhang, X. Zhang, J. Wang, and W. J. Blau, “Intensity-dependent nonlinear refraction of antimonene dispersions in the visible and near-infrared region,” Appl. Opt. 57(22), E147–E153 (2018).
    [Crossref] [PubMed]
  42. R. W. Boyd, “Quantum-Mechanical Theory of the Nonlinear Optical Susceptibility,” in Nonlinear Optics (Third Edition), R. W. Boyd, ed. (Academic Press, 2008), pp. 135–206.
  43. R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely Coherent Nonlinear Optical Response in Solution Dispersions of Graphene Sheets,” Nano Lett. 11(12), 5159–5164 (2011).
    [Crossref] [PubMed]
  44. L. Miao, B. Shi, J. Yi, Y. Jiang, C. Zhao, and S. Wen, “Ultrafast nonlinear optical response in solution dispersions of black phosphorus,” Sci. Rep. 7(1), 3352 (2017).
    [Crossref] [PubMed]
  45. H. A. Sultan, Q. M. A. Hassan, H. Bakr, A. S. Al-Asadi, D. H. Hashim, and C. A. Emshary, “Thermal-induced nonlinearities in rose, linseed, and chamomile oils using continuous wave visible laser beam,” Can. J. Phys. 96(2), 157–164 (2018).
    [Crossref]
  46. Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9(10), 3547–3554 (2017).
    [Crossref] [PubMed]
  47. Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, and J. Zhao, “Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation,” Proc. Natl. Acad. Sci. U.S.A. 112(38), 11800–11805 (2015).
    [Crossref] [PubMed]
  48. J.-W. Jiang and H. S. Park, “Negative poisson’s ratio in single-layer black phosphorus,” Nat. Commun. 5(1), 4727 (2014).
    [Crossref] [PubMed]
  49. P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D. A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gómez-Herrero, and F. Zamora, “Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions,” Adv. Mater. 28(30), 6332–6336 (2016).
    [Crossref] [PubMed]
  50. Y. Jia, Y. Liao, L. Wu, Y. Shan, X. Dai, H. Cai, Y. Xiang, and D. Fan, “Nonlinear optical response, all optical switching, and all optical information conversion in NbSe2 nanosheets based on spatial self-phase modulation,” Nanoscale 11(10), 4515–4522 (2019).
    [Crossref] [PubMed]
  51. P. Ramasamy, D. Kwak, D.-H. Lim, H.-S. Ra, and J.-S. Lee, “Solution synthesis of GeS and GeSe nanosheets for high-sensitivity photodetectors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(3), 479–485 (2016).
    [Crossref]
  52. G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104(14), 141909 (2014).
    [Crossref]
  53. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
    [Crossref]

2019 (1)

Y. Jia, Y. Liao, L. Wu, Y. Shan, X. Dai, H. Cai, Y. Xiang, and D. Fan, “Nonlinear optical response, all optical switching, and all optical information conversion in NbSe2 nanosheets based on spatial self-phase modulation,” Nanoscale 11(10), 4515–4522 (2019).
[Crossref] [PubMed]

2018 (8)

H. A. Sultan, Q. M. A. Hassan, H. Bakr, A. S. Al-Asadi, D. H. Hashim, and C. A. Emshary, “Thermal-induced nonlinearities in rose, linseed, and chamomile oils using continuous wave visible laser beam,” Can. J. Phys. 96(2), 157–164 (2018).
[Crossref]

G. Wang, S. Higgins, K. Wang, D. Bennett, N. Milosavljevic, J. J. Magan, S. Zhang, X. Zhang, J. Wang, and W. J. Blau, “Intensity-dependent nonlinear refraction of antimonene dispersions in the visible and near-infrared region,” Appl. Opt. 57(22), E147–E153 (2018).
[Crossref] [PubMed]

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-Layer Tin Sulfide: A Promising Black-Phosphorus- Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Y. Jiang, Y. Ma, Z. Fan, P. Wang, X. Li, Y. Wang, Y. Zhang, J. Shen, G. Wang, Z.-J. Yang, S. Xiao, Y. Gao, and J. He, “Abnormal nonlinear optical properties of hybrid graphene-TiO2 nanostructures,” Opt. Lett. 43(3), 523–526 (2018).
[Crossref] [PubMed]

S. Ghayeb Zamharir, R. Karimzadeh, and S. H. Aboutalebi, “Laser-assisted tunable optical nonlinearity in liquid-phase exfoliated MoS2 dispersion,” Appl. Phys., A Mater. Sci. Process. 124(10), 692 (2018).
[Crossref]

Y. Jia, Y. Shan, L. Wu, X. Dai, D. Fan, and Y. Xiang, “Broadband nonlinear optical resonance and all-optical switching of liquid phase exfoliated tungsten diselenide,” Photon. Res. 6(11), 1040–1047 (2018).
[Crossref]

S. Biswas and P. Kumbhakar, “Refractive index and temperature sensing in anisotropic silver nanostructures with stable photo-physical properties,” Appl. Phys., A Mater. Sci. Process. 124(1), 6 (2018).
[Crossref]

R. S. Elias, Q. M. A. Hassan, H. A. Sultan, A. S. Al-Asadi, B. A. Saeed, and C. A. Emshary, “Thermal nonlinearities for three curcuminoids measured by diffraction ring patterns and Z-scan under visible CW laser illumination,” Opt. Laser Technol. 107, 131 (2018).
[Crossref]

2017 (5)

Y. Ye, Q. Guo, X. Liu, C. Liu, J. Wang, Y. Liu, and J. Qiu, “Two-dimensional GeSe as an isostructural and isoelectronic analogue of phosphorene: sonication-assisted synthesis, chemical stability, and optical properties,” Chem. Mater. 29(19), 8361–8368 (2017).
[Crossref]

Y. Ji, M. Yang, H. Dong, L. Wang, T. Hou, and Y. Li, “Monolayer group IVA monochalcogenides as potential and efficient catalysts for the oxygen reduction reaction from first-principles calculations,” J. Mater. Chem. A Mater. Energy Sustain. 5(4), 1734–1741 (2017).
[Crossref]

Z.-Q. Fan, X.-W. Jiang, Z. Wei, J.-W. Luo, and S.-S. Li, “Tunable electronic structures of GeSe nanosheets and nanoribbons,” J. Phys. Chem. C 121(26), 14373–14379 (2017).
[Crossref]

L. Miao, B. Shi, J. Yi, Y. Jiang, C. Zhao, and S. Wen, “Ultrafast nonlinear optical response in solution dispersions of black phosphorus,” Sci. Rep. 7(1), 3352 (2017).
[Crossref] [PubMed]

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9(10), 3547–3554 (2017).
[Crossref] [PubMed]

2016 (6)

P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D. A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gómez-Herrero, and F. Zamora, “Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions,” Adv. Mater. 28(30), 6332–6336 (2016).
[Crossref] [PubMed]

P. Ramasamy, D. Kwak, D.-H. Lim, H.-S. Ra, and J.-S. Lee, “Solution synthesis of GeS and GeSe nanosheets for high-sensitivity photodetectors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(3), 479–485 (2016).
[Crossref]

P. Z. Hanakata, A. Carvalho, D. K. Campbell, and H. S. Park, “Polarization and valley switching in monolayer group-IV monochalcogenides,” Phys. Rev. B 94(3), 035304 (2016).
[Crossref]

I. Appelbaum and P. Li, “Electrons, holes, and spin in the IV-VI monolayer ‘four-six-enes’,” Phys. Rev. B 94(15), 155124 (2016).
[Crossref]

X. Li, K. Hu, B. Lyu, J. Zhang, Y. Wang, P. Wang, S. Xiao, Y. Gao, and J. He, “Enhanced Nonlinear Optical Response of Rectangular MoS2 and MoS2/TiO2 in Dispersion and Film,” J. Phys. Chem. C 120(32), 18243–18248 (2016).
[Crossref]

X. Wang, G. Sun, N. Li, and P. Chen, “Quantum dots derived from two-dimensional materials and their applications for catalysis and energy,” Chem. Soc. Rev. 45(8), 2239–2262 (2016).
[Crossref] [PubMed]

2015 (5)

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [Invited],” Photon. Res. 3(2), A51–A55 (2015).
[Crossref]

L. C. Gomes and A. Carvalho, “Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure,” Phys. Rev. B Condens. Matter Mater. Phys. 92(8), 085406 (2015).
[Crossref]

G.-B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, “Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides,” Chem. Soc. Rev. 44(9), 2643–2663 (2015).
[Crossref] [PubMed]

P. Mishra, H. Lohani, A. K. Kundu, R. Patel, G. K. Solanki, K. S. R. Menon, and B. R. Sekhar, “Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy,” Semicond. Sci. Technol. 30(7), 075001 (2015).
[Crossref]

Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, and J. Zhao, “Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation,” Proc. Natl. Acad. Sci. U.S.A. 112(38), 11800–11805 (2015).
[Crossref] [PubMed]

2014 (5)

J.-W. Jiang and H. S. Park, “Negative poisson’s ratio in single-layer black phosphorus,” Nat. Commun. 5(1), 4727 (2014).
[Crossref] [PubMed]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104(14), 141909 (2014).
[Crossref]

L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, “Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals,” Nature 508(7496), 373–377 (2014).
[Crossref] [PubMed]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 4458 (2014).
[Crossref] [PubMed]

A. K. Singh and R. G. Hennig, “Computational prediction of two-dimensional group-IV mono-chalcogenides,” Appl. Phys. Lett. 105(4), 042103 (2014).
[Crossref]

2013 (1)

B. Mukherjee, Y. Cai, H. R. Tan, Y. P. Feng, E. S. Tok, and C. H. Sow, “NIR Schottky photodetectors based on individual single-crystalline GeSe nanosheet,” ACS Appl. Mater. Interfaces 5(19), 9594–9604 (2013).
[Crossref] [PubMed]

2012 (3)

H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37(11), 1856–1858 (2012).
[Crossref] [PubMed]

D. Vaughn, D. Sun, S. M. Levin, A. J. Biacchi, T. S. Mayer, and R. E. Schaak, “Colloidal Synthesis and Electrical Properties of GeSe Nanobelts,” Chem. Mater. 24(18), 3643–3649 (2012).
[Crossref]

D. J. Xue, J. Tan, J. S. Hu, W. Hu, Y. G. Guo, and L. J. Wan, “Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet,” Adv. Mater. 24(33), 4528–4533 (2012).
[Crossref] [PubMed]

2011 (3)

K. Nomura, T. Kamiya, and H. Hosono, “Ambipolar oxide thin-film transistor,” Adv. Mater. 23(30), 3431–3434 (2011).
[Crossref] [PubMed]

F. Henari, “Nonlinear characterization and optical switching in bromophenol blue solutions,” Nat. Sci. 3, 728–732 (2011).
[Crossref]

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely Coherent Nonlinear Optical Response in Solution Dispersions of Graphene Sheets,” Nano Lett. 11(12), 5159–5164 (2011).
[Crossref] [PubMed]

2010 (2)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

M. K. Forthaus, K. Sengupta, O. Heyer, N. E. Christensen, A. Svane, K. Syassen, D. I. Khomskii, T. Lorenz, and M. M. Abd-Elmeguid, “Superconductivity in SnO: A nonmagnetic analog to Fe-based superconductors?” Phys. Rev. Lett. 105(15), 157001 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (3)

G. Vinitha and A. Ramalingam, “Single-beam Z-scan measurement of the third-order optical nonlinearities of triarylmethane dyes,” Laser Phys. 18(10), 1176–1182 (2008).
[Crossref]

T. Huang, Z. Hao, H. Gong, Z. Liu, S. Xiao, S. Li, Y. Zhai, S. You, Q. Wang, and J. Qin, “Third-order nonlinear optical properties of a new copper coordination compound: A promising candidate for all-optical switching,” Chem. Phys. Lett. 451, 213–217 (2008).
[Crossref]

M. R. Singh and R. H. Lipson, “Optical switching in nonlinear photonic crystals lightly doped with nanostructures,” J. Phys. At. Mol. Opt. Phys. 41(1), 015401 (2008).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

1995 (1)

C. V. Bindhu, S. S. Harilal, R. C. Issac, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, “Laser induced thermal lens effect in rhodmine B-signature of resonant two photon absorption,” Mod. Phys. Lett. B 09(22), 1471–1477 (1995).
[Crossref]

1994 (1)

J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 6, 1009–1017 (1994).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1987 (1)

1982 (1)

1978 (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

1975 (1)

C. V. Shank and E. P. Ippen, “Anisotropic absorption saturation with picosecond pulses,” Appl. Phys. Lett. 26(2), 62–63 (1975).
[Crossref]

1964 (1)

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-Dependent Changes in the Refractive Index of Liquids,” Phys. Rev. Lett. 12(18), 507–509 (1964).
[Crossref]

Abd-Elmeguid, M. M.

M. K. Forthaus, K. Sengupta, O. Heyer, N. E. Christensen, A. Svane, K. Syassen, D. I. Khomskii, T. Lorenz, and M. M. Abd-Elmeguid, “Superconductivity in SnO: A nonmagnetic analog to Fe-based superconductors?” Phys. Rev. Lett. 105(15), 157001 (2010).
[Crossref] [PubMed]

Aboutalebi, S. H.

S. Ghayeb Zamharir, R. Karimzadeh, and S. H. Aboutalebi, “Laser-assisted tunable optical nonlinearity in liquid-phase exfoliated MoS2 dispersion,” Appl. Phys., A Mater. Sci. Process. 124(10), 692 (2018).
[Crossref]

Adair, R.

Aguilar-Galindo, F.

P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D. A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gómez-Herrero, and F. Zamora, “Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions,” Adv. Mater. 28(30), 6332–6336 (2016).
[Crossref] [PubMed]

Al-Asadi, A. S.

R. S. Elias, Q. M. A. Hassan, H. A. Sultan, A. S. Al-Asadi, B. A. Saeed, and C. A. Emshary, “Thermal nonlinearities for three curcuminoids measured by diffraction ring patterns and Z-scan under visible CW laser illumination,” Opt. Laser Technol. 107, 131 (2018).
[Crossref]

H. A. Sultan, Q. M. A. Hassan, H. Bakr, A. S. Al-Asadi, D. H. Hashim, and C. A. Emshary, “Thermal-induced nonlinearities in rose, linseed, and chamomile oils using continuous wave visible laser beam,” Can. J. Phys. 96(2), 157–164 (2018).
[Crossref]

Alcamí, M.

P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D. A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gómez-Herrero, and F. Zamora, “Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions,” Adv. Mater. 28(30), 6332–6336 (2016).
[Crossref] [PubMed]

Aldave, D. A.

P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D. A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gómez-Herrero, and F. Zamora, “Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions,” Adv. Mater. 28(30), 6332–6336 (2016).
[Crossref] [PubMed]

Appelbaum, I.

I. Appelbaum and P. Li, “Electrons, holes, and spin in the IV-VI monolayer ‘four-six-enes’,” Phys. Rev. B 94(15), 155124 (2016).
[Crossref]

Ares, P.

P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D. A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gómez-Herrero, and F. Zamora, “Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions,” Adv. Mater. 28(30), 6332–6336 (2016).
[Crossref] [PubMed]

Bai, X.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely Coherent Nonlinear Optical Response in Solution Dispersions of Graphene Sheets,” Nano Lett. 11(12), 5159–5164 (2011).
[Crossref] [PubMed]

Bakr, H.

H. A. Sultan, Q. M. A. Hassan, H. Bakr, A. S. Al-Asadi, D. H. Hashim, and C. A. Emshary, “Thermal-induced nonlinearities in rose, linseed, and chamomile oils using continuous wave visible laser beam,” Can. J. Phys. 96(2), 157–164 (2018).
[Crossref]

Bao, J.

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9(10), 3547–3554 (2017).
[Crossref] [PubMed]

Bao, Q.

Bennett, D.

Biacchi, A. J.

D. Vaughn, D. Sun, S. M. Levin, A. J. Biacchi, T. S. Mayer, and R. E. Schaak, “Colloidal Synthesis and Electrical Properties of GeSe Nanobelts,” Chem. Mater. 24(18), 3643–3649 (2012).
[Crossref]

Bian, F.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely Coherent Nonlinear Optical Response in Solution Dispersions of Graphene Sheets,” Nano Lett. 11(12), 5159–5164 (2011).
[Crossref] [PubMed]

Bindhu, C. V.

C. V. Bindhu, S. S. Harilal, R. C. Issac, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, “Laser induced thermal lens effect in rhodmine B-signature of resonant two photon absorption,” Mod. Phys. Lett. B 09(22), 1471–1477 (1995).
[Crossref]

Biswas, S.

S. Biswas and P. Kumbhakar, “Refractive index and temperature sensing in anisotropic silver nanostructures with stable photo-physical properties,” Appl. Phys., A Mater. Sci. Process. 124(1), 6 (2018).
[Crossref]

Blau, W. J.

Buchalter, B.

Cai, H.

Y. Jia, Y. Liao, L. Wu, Y. Shan, X. Dai, H. Cai, Y. Xiang, and D. Fan, “Nonlinear optical response, all optical switching, and all optical information conversion in NbSe2 nanosheets based on spatial self-phase modulation,” Nanoscale 11(10), 4515–4522 (2019).
[Crossref] [PubMed]

Cai, Y.

B. Mukherjee, Y. Cai, H. R. Tan, Y. P. Feng, E. S. Tok, and C. H. Sow, “NIR Schottky photodetectors based on individual single-crystalline GeSe nanosheet,” ACS Appl. Mater. Interfaces 5(19), 9594–9604 (2013).
[Crossref] [PubMed]

Campbell, D. K.

P. Z. Hanakata, A. Carvalho, D. K. Campbell, and H. S. Park, “Polarization and valley switching in monolayer group-IV monochalcogenides,” Phys. Rev. B 94(3), 035304 (2016).
[Crossref]

Carvalho, A.

P. Z. Hanakata, A. Carvalho, D. K. Campbell, and H. S. Park, “Polarization and valley switching in monolayer group-IV monochalcogenides,” Phys. Rev. B 94(3), 035304 (2016).
[Crossref]

L. C. Gomes and A. Carvalho, “Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure,” Phys. Rev. B Condens. Matter Mater. Phys. 92(8), 085406 (2015).
[Crossref]

Chase, L. L.

Chen, P.

X. Wang, G. Sun, N. Li, and P. Chen, “Quantum dots derived from two-dimensional materials and their applications for catalysis and energy,” Chem. Soc. Rev. 45(8), 2239–2262 (2016).
[Crossref] [PubMed]

Cheng, C.

Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, and J. Zhao, “Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation,” Proc. Natl. Acad. Sci. U.S.A. 112(38), 11800–11805 (2015).
[Crossref] [PubMed]

Cheng, P.

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9(10), 3547–3554 (2017).
[Crossref] [PubMed]

Cheng, X.

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104(14), 141909 (2014).
[Crossref]

Cheng, Y.

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [Invited],” Photon. Res. 3(2), A51–A55 (2015).
[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104(14), 141909 (2014).
[Crossref]

Christensen, N. E.

M. K. Forthaus, K. Sengupta, O. Heyer, N. E. Christensen, A. Svane, K. Syassen, D. I. Khomskii, T. Lorenz, and M. M. Abd-Elmeguid, “Superconductivity in SnO: A nonmagnetic analog to Fe-based superconductors?” Phys. Rev. Lett. 105(15), 157001 (2010).
[Crossref] [PubMed]

Coghlan, D.

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104(14), 141909 (2014).
[Crossref]

Coleman, J. N.

Dai, X.

Y. Jia, Y. Liao, L. Wu, Y. Shan, X. Dai, H. Cai, Y. Xiang, and D. Fan, “Nonlinear optical response, all optical switching, and all optical information conversion in NbSe2 nanosheets based on spatial self-phase modulation,” Nanoscale 11(10), 4515–4522 (2019).
[Crossref] [PubMed]

Y. Jia, Y. Shan, L. Wu, X. Dai, D. Fan, and Y. Xiang, “Broadband nonlinear optical resonance and all-optical switching of liquid phase exfoliated tungsten diselenide,” Photon. Res. 6(11), 1040–1047 (2018).
[Crossref]

de Araujo, R. E.

Díaz-Tendero, S.

P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D. A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gómez-Herrero, and F. Zamora, “Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions,” Adv. Mater. 28(30), 6332–6336 (2016).
[Crossref] [PubMed]

Dong, H.

Y. Ji, M. Yang, H. Dong, L. Wang, T. Hou, and Y. Li, “Monolayer group IVA monochalcogenides as potential and efficient catalysts for the oxygen reduction reaction from first-principles calculations,” J. Mater. Chem. A Mater. Energy Sustain. 5(4), 1734–1741 (2017).
[Crossref]

Dong, N.

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104(14), 141909 (2014).
[Crossref]

Dravid, V. P.

L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, “Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals,” Nature 508(7496), 373–377 (2014).
[Crossref] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Elias, R. S.

R. S. Elias, Q. M. A. Hassan, H. A. Sultan, A. S. Al-Asadi, B. A. Saeed, and C. A. Emshary, “Thermal nonlinearities for three curcuminoids measured by diffraction ring patterns and Z-scan under visible CW laser illumination,” Opt. Laser Technol. 107, 131 (2018).
[Crossref]

Emshary, C. A.

R. S. Elias, Q. M. A. Hassan, H. A. Sultan, A. S. Al-Asadi, B. A. Saeed, and C. A. Emshary, “Thermal nonlinearities for three curcuminoids measured by diffraction ring patterns and Z-scan under visible CW laser illumination,” Opt. Laser Technol. 107, 131 (2018).
[Crossref]

H. A. Sultan, Q. M. A. Hassan, H. Bakr, A. S. Al-Asadi, D. H. Hashim, and C. A. Emshary, “Thermal-induced nonlinearities in rose, linseed, and chamomile oils using continuous wave visible laser beam,” Can. J. Phys. 96(2), 157–164 (2018).
[Crossref]

Fan, D.

Y. Jia, Y. Liao, L. Wu, Y. Shan, X. Dai, H. Cai, Y. Xiang, and D. Fan, “Nonlinear optical response, all optical switching, and all optical information conversion in NbSe2 nanosheets based on spatial self-phase modulation,” Nanoscale 11(10), 4515–4522 (2019).
[Crossref] [PubMed]

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-Layer Tin Sulfide: A Promising Black-Phosphorus- Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Y. Jia, Y. Shan, L. Wu, X. Dai, D. Fan, and Y. Xiang, “Broadband nonlinear optical resonance and all-optical switching of liquid phase exfoliated tungsten diselenide,” Photon. Res. 6(11), 1040–1047 (2018).
[Crossref]

Fan, Z.

Fan, Z.-Q.

Z.-Q. Fan, X.-W. Jiang, Z. Wei, J.-W. Luo, and S.-S. Li, “Tunable electronic structures of GeSe nanosheets and nanoribbons,” J. Phys. Chem. C 121(26), 14373–14379 (2017).
[Crossref]

Feng, Y. P.

B. Mukherjee, Y. Cai, H. R. Tan, Y. P. Feng, E. S. Tok, and C. H. Sow, “NIR Schottky photodetectors based on individual single-crystalline GeSe nanosheet,” ACS Appl. Mater. Interfaces 5(19), 9594–9604 (2013).
[Crossref] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Forthaus, M. K.

M. K. Forthaus, K. Sengupta, O. Heyer, N. E. Christensen, A. Svane, K. Syassen, D. I. Khomskii, T. Lorenz, and M. M. Abd-Elmeguid, “Superconductivity in SnO: A nonmagnetic analog to Fe-based superconductors?” Phys. Rev. Lett. 105(15), 157001 (2010).
[Crossref] [PubMed]

Fox, D.

Gao, Y.

Y. Jiang, Y. Ma, Z. Fan, P. Wang, X. Li, Y. Wang, Y. Zhang, J. Shen, G. Wang, Z.-J. Yang, S. Xiao, Y. Gao, and J. He, “Abnormal nonlinear optical properties of hybrid graphene-TiO2 nanostructures,” Opt. Lett. 43(3), 523–526 (2018).
[Crossref] [PubMed]

X. Li, K. Hu, B. Lyu, J. Zhang, Y. Wang, P. Wang, S. Xiao, Y. Gao, and J. He, “Enhanced Nonlinear Optical Response of Rectangular MoS2 and MoS2/TiO2 in Dispersion and Film,” J. Phys. Chem. C 120(32), 18243–18248 (2016).
[Crossref]

Ge, Y.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-Layer Tin Sulfide: A Promising Black-Phosphorus- Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ghayeb Zamharir, S.

S. Ghayeb Zamharir, R. Karimzadeh, and S. H. Aboutalebi, “Laser-assisted tunable optical nonlinearity in liquid-phase exfoliated MoS2 dispersion,” Appl. Phys., A Mater. Sci. Process. 124(10), 692 (2018).
[Crossref]

Godbout, N.

Gomes, A. S. L.

Gomes, L. C.

L. C. Gomes and A. Carvalho, “Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure,” Phys. Rev. B Condens. Matter Mater. Phys. 92(8), 085406 (2015).
[Crossref]

Gómez-Herrero, J.

P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D. A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gómez-Herrero, and F. Zamora, “Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions,” Adv. Mater. 28(30), 6332–6336 (2016).
[Crossref] [PubMed]

Gong, H.

T. Huang, Z. Hao, H. Gong, Z. Liu, S. Xiao, S. Li, Y. Zhai, S. You, Q. Wang, and J. Qin, “Third-order nonlinear optical properties of a new copper coordination compound: A promising candidate for all-optical switching,” Chem. Phys. Lett. 451, 213–217 (2008).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Guo, Q.

Y. Ye, Q. Guo, X. Liu, C. Liu, J. Wang, Y. Liu, and J. Qiu, “Two-dimensional GeSe as an isostructural and isoelectronic analogue of phosphorene: sonication-assisted synthesis, chemical stability, and optical properties,” Chem. Mater. 29(19), 8361–8368 (2017).
[Crossref]

Guo, Y. G.

D. J. Xue, J. Tan, J. S. Hu, W. Hu, Y. G. Guo, and L. J. Wan, “Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet,” Adv. Mater. 24(33), 4528–4533 (2012).
[Crossref] [PubMed]

Guo, Z.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-Layer Tin Sulfide: A Promising Black-Phosphorus- Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Hagan, D. J.

J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 6, 1009–1017 (1994).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Hanakata, P. Z.

P. Z. Hanakata, A. Carvalho, D. K. Campbell, and H. S. Park, “Polarization and valley switching in monolayer group-IV monochalcogenides,” Phys. Rev. B 94(3), 035304 (2016).
[Crossref]

Hao, Z.

T. Huang, Z. Hao, H. Gong, Z. Liu, S. Xiao, S. Li, Y. Zhai, S. You, Q. Wang, and J. Qin, “Third-order nonlinear optical properties of a new copper coordination compound: A promising candidate for all-optical switching,” Chem. Phys. Lett. 451, 213–217 (2008).
[Crossref]

Harilal, S. S.

C. V. Bindhu, S. S. Harilal, R. C. Issac, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, “Laser induced thermal lens effect in rhodmine B-signature of resonant two photon absorption,” Mod. Phys. Lett. B 09(22), 1471–1477 (1995).
[Crossref]

Hashim, D. H.

H. A. Sultan, Q. M. A. Hassan, H. Bakr, A. S. Al-Asadi, D. H. Hashim, and C. A. Emshary, “Thermal-induced nonlinearities in rose, linseed, and chamomile oils using continuous wave visible laser beam,” Can. J. Phys. 96(2), 157–164 (2018).
[Crossref]

Hassan, Q. M. A.

H. A. Sultan, Q. M. A. Hassan, H. Bakr, A. S. Al-Asadi, D. H. Hashim, and C. A. Emshary, “Thermal-induced nonlinearities in rose, linseed, and chamomile oils using continuous wave visible laser beam,” Can. J. Phys. 96(2), 157–164 (2018).
[Crossref]

R. S. Elias, Q. M. A. Hassan, H. A. Sultan, A. S. Al-Asadi, B. A. Saeed, and C. A. Emshary, “Thermal nonlinearities for three curcuminoids measured by diffraction ring patterns and Z-scan under visible CW laser illumination,” Opt. Laser Technol. 107, 131 (2018).
[Crossref]

He, J.

Y. Jiang, Y. Ma, Z. Fan, P. Wang, X. Li, Y. Wang, Y. Zhang, J. Shen, G. Wang, Z.-J. Yang, S. Xiao, Y. Gao, and J. He, “Abnormal nonlinear optical properties of hybrid graphene-TiO2 nanostructures,” Opt. Lett. 43(3), 523–526 (2018).
[Crossref] [PubMed]

X. Li, K. Hu, B. Lyu, J. Zhang, Y. Wang, P. Wang, S. Xiao, Y. Gao, and J. He, “Enhanced Nonlinear Optical Response of Rectangular MoS2 and MoS2/TiO2 in Dispersion and Film,” J. Phys. Chem. C 120(32), 18243–18248 (2016).
[Crossref]

Heinz, T. F.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Henari, F.

F. Henari, “Nonlinear characterization and optical switching in bromophenol blue solutions,” Nat. Sci. 3, 728–732 (2011).
[Crossref]

Hennig, R. G.

A. K. Singh and R. G. Hennig, “Computational prediction of two-dimensional group-IV mono-chalcogenides,” Appl. Phys. Lett. 105(4), 042103 (2014).
[Crossref]

Heyer, O.

M. K. Forthaus, K. Sengupta, O. Heyer, N. E. Christensen, A. Svane, K. Syassen, D. I. Khomskii, T. Lorenz, and M. M. Abd-Elmeguid, “Superconductivity in SnO: A nonmagnetic analog to Fe-based superconductors?” Phys. Rev. Lett. 105(15), 157001 (2010).
[Crossref] [PubMed]

Higgins, S.

Hone, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Hosono, H.

K. Nomura, T. Kamiya, and H. Hosono, “Ambipolar oxide thin-film transistor,” Adv. Mater. 23(30), 3431–3434 (2011).
[Crossref] [PubMed]

Hou, T.

Y. Ji, M. Yang, H. Dong, L. Wang, T. Hou, and Y. Li, “Monolayer group IVA monochalcogenides as potential and efficient catalysts for the oxygen reduction reaction from first-principles calculations,” J. Mater. Chem. A Mater. Energy Sustain. 5(4), 1734–1741 (2017).
[Crossref]

Hu, J. S.

D. J. Xue, J. Tan, J. S. Hu, W. Hu, Y. G. Guo, and L. J. Wan, “Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet,” Adv. Mater. 24(33), 4528–4533 (2012).
[Crossref] [PubMed]

Hu, K.

X. Li, K. Hu, B. Lyu, J. Zhang, Y. Wang, P. Wang, S. Xiao, Y. Gao, and J. He, “Enhanced Nonlinear Optical Response of Rectangular MoS2 and MoS2/TiO2 in Dispersion and Film,” J. Phys. Chem. C 120(32), 18243–18248 (2016).
[Crossref]

Hu, W.

D. J. Xue, J. Tan, J. S. Hu, W. Hu, Y. G. Guo, and L. J. Wan, “Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet,” Adv. Mater. 24(33), 4528–4533 (2012).
[Crossref] [PubMed]

Huang, T.

T. Huang, Z. Hao, H. Gong, Z. Liu, S. Xiao, S. Li, Y. Zhai, S. You, Q. Wang, and J. Qin, “Third-order nonlinear optical properties of a new copper coordination compound: A promising candidate for all-optical switching,” Chem. Phys. Lett. 451, 213–217 (2008).
[Crossref]

Ippen, E. P.

C. V. Shank and E. P. Ippen, “Anisotropic absorption saturation with picosecond pulses,” Appl. Phys. Lett. 26(2), 62–63 (1975).
[Crossref]

Issac, R. C.

C. V. Bindhu, S. S. Harilal, R. C. Issac, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, “Laser induced thermal lens effect in rhodmine B-signature of resonant two photon absorption,” Mod. Phys. Lett. B 09(22), 1471–1477 (1995).
[Crossref]

Ji, Y.

Y. Ji, M. Yang, H. Dong, L. Wang, T. Hou, and Y. Li, “Monolayer group IVA monochalcogenides as potential and efficient catalysts for the oxygen reduction reaction from first-principles calculations,” J. Mater. Chem. A Mater. Energy Sustain. 5(4), 1734–1741 (2017).
[Crossref]

Jia, Y.

Y. Jia, Y. Liao, L. Wu, Y. Shan, X. Dai, H. Cai, Y. Xiang, and D. Fan, “Nonlinear optical response, all optical switching, and all optical information conversion in NbSe2 nanosheets based on spatial self-phase modulation,” Nanoscale 11(10), 4515–4522 (2019).
[Crossref] [PubMed]

Y. Jia, Y. Shan, L. Wu, X. Dai, D. Fan, and Y. Xiang, “Broadband nonlinear optical resonance and all-optical switching of liquid phase exfoliated tungsten diselenide,” Photon. Res. 6(11), 1040–1047 (2018).
[Crossref]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 4458 (2014).
[Crossref] [PubMed]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jiang, J.-W.

J.-W. Jiang and H. S. Park, “Negative poisson’s ratio in single-layer black phosphorus,” Nat. Commun. 5(1), 4727 (2014).
[Crossref] [PubMed]

Jiang, X.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-Layer Tin Sulfide: A Promising Black-Phosphorus- Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Jiang, X.-W.

Z.-Q. Fan, X.-W. Jiang, Z. Wei, J.-W. Luo, and S.-S. Li, “Tunable electronic structures of GeSe nanosheets and nanoribbons,” J. Phys. Chem. C 121(26), 14373–14379 (2017).
[Crossref]

Jiang, Y.

Kamiya, T.

K. Nomura, T. Kamiya, and H. Hosono, “Ambipolar oxide thin-film transistor,” Adv. Mater. 23(30), 3431–3434 (2011).
[Crossref] [PubMed]

Kanatzidis, M. G.

L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, “Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals,” Nature 508(7496), 373–377 (2014).
[Crossref] [PubMed]

Karimzadeh, R.

S. Ghayeb Zamharir, R. Karimzadeh, and S. H. Aboutalebi, “Laser-assisted tunable optical nonlinearity in liquid-phase exfoliated MoS2 dispersion,” Appl. Phys., A Mater. Sci. Process. 124(10), 692 (2018).
[Crossref]

Khomskii, D. I.

M. K. Forthaus, K. Sengupta, O. Heyer, N. E. Christensen, A. Svane, K. Syassen, D. I. Khomskii, T. Lorenz, and M. M. Abd-Elmeguid, “Superconductivity in SnO: A nonmagnetic analog to Fe-based superconductors?” Phys. Rev. Lett. 105(15), 157001 (2010).
[Crossref] [PubMed]

Kockaert, P.

Kumbhakar, P.

S. Biswas and P. Kumbhakar, “Refractive index and temperature sensing in anisotropic silver nanostructures with stable photo-physical properties,” Appl. Phys., A Mater. Sci. Process. 124(1), 6 (2018).
[Crossref]

Kundu, A. K.

P. Mishra, H. Lohani, A. K. Kundu, R. Patel, G. K. Solanki, K. S. R. Menon, and B. R. Sekhar, “Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy,” Semicond. Sci. Technol. 30(7), 075001 (2015).
[Crossref]

Kwak, D.

P. Ramasamy, D. Kwak, D.-H. Lim, H.-S. Ra, and J.-S. Lee, “Solution synthesis of GeS and GeSe nanosheets for high-sensitivity photodetectors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(3), 479–485 (2016).
[Crossref]

Lee, C.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Lee, J.-S.

P. Ramasamy, D. Kwak, D.-H. Lim, H.-S. Ra, and J.-S. Lee, “Solution synthesis of GeS and GeSe nanosheets for high-sensitivity photodetectors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(3), 479–485 (2016).
[Crossref]

Levin, S. M.

D. Vaughn, D. Sun, S. M. Levin, A. J. Biacchi, T. S. Mayer, and R. E. Schaak, “Colloidal Synthesis and Electrical Properties of GeSe Nanobelts,” Chem. Mater. 24(18), 3643–3649 (2012).
[Crossref]

Li, J.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-Layer Tin Sulfide: A Promising Black-Phosphorus- Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Li, N.

X. Wang, G. Sun, N. Li, and P. Chen, “Quantum dots derived from two-dimensional materials and their applications for catalysis and energy,” Chem. Soc. Rev. 45(8), 2239–2262 (2016).
[Crossref] [PubMed]

Li, P.

I. Appelbaum and P. Li, “Electrons, holes, and spin in the IV-VI monolayer ‘four-six-enes’,” Phys. Rev. B 94(15), 155124 (2016).
[Crossref]

Li, S.

T. Huang, Z. Hao, H. Gong, Z. Liu, S. Xiao, S. Li, Y. Zhai, S. You, Q. Wang, and J. Qin, “Third-order nonlinear optical properties of a new copper coordination compound: A promising candidate for all-optical switching,” Chem. Phys. Lett. 451, 213–217 (2008).
[Crossref]

Li, S.-S.

Z.-Q. Fan, X.-W. Jiang, Z. Wei, J.-W. Luo, and S.-S. Li, “Tunable electronic structures of GeSe nanosheets and nanoribbons,” J. Phys. Chem. C 121(26), 14373–14379 (2017).
[Crossref]

Li, X.

Y. Jiang, Y. Ma, Z. Fan, P. Wang, X. Li, Y. Wang, Y. Zhang, J. Shen, G. Wang, Z.-J. Yang, S. Xiao, Y. Gao, and J. He, “Abnormal nonlinear optical properties of hybrid graphene-TiO2 nanostructures,” Opt. Lett. 43(3), 523–526 (2018).
[Crossref] [PubMed]

X. Li, K. Hu, B. Lyu, J. Zhang, Y. Wang, P. Wang, S. Xiao, Y. Gao, and J. He, “Enhanced Nonlinear Optical Response of Rectangular MoS2 and MoS2/TiO2 in Dispersion and Film,” J. Phys. Chem. C 120(32), 18243–18248 (2016).
[Crossref]

Li, Y.

Y. Ji, M. Yang, H. Dong, L. Wang, T. Hou, and Y. Li, “Monolayer group IVA monochalcogenides as potential and efficient catalysts for the oxygen reduction reaction from first-principles calculations,” J. Mater. Chem. A Mater. Energy Sustain. 5(4), 1734–1741 (2017).
[Crossref]

Liao, Y.

Y. Jia, Y. Liao, L. Wu, Y. Shan, X. Dai, H. Cai, Y. Xiang, and D. Fan, “Nonlinear optical response, all optical switching, and all optical information conversion in NbSe2 nanosheets based on spatial self-phase modulation,” Nanoscale 11(10), 4515–4522 (2019).
[Crossref] [PubMed]

Lim, D.-H.

P. Ramasamy, D. Kwak, D.-H. Lim, H.-S. Ra, and J.-S. Lee, “Solution synthesis of GeS and GeSe nanosheets for high-sensitivity photodetectors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(3), 479–485 (2016).
[Crossref]

Lin, C.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Lipson, R. H.

M. R. Singh and R. H. Lipson, “Optical switching in nonlinear photonic crystals lightly doped with nanostructures,” J. Phys. At. Mol. Opt. Phys. 41(1), 015401 (2008).
[Crossref]

Liu, C.

Y. Ye, Q. Guo, X. Liu, C. Liu, J. Wang, Y. Liu, and J. Qiu, “Two-dimensional GeSe as an isostructural and isoelectronic analogue of phosphorene: sonication-assisted synthesis, chemical stability, and optical properties,” Chem. Mater. 29(19), 8361–8368 (2017).
[Crossref]

Liu, D.

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9(10), 3547–3554 (2017).
[Crossref] [PubMed]

Liu, G.-B.

G.-B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, “Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides,” Chem. Soc. Rev. 44(9), 2643–2663 (2015).
[Crossref] [PubMed]

Liu, J.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-Layer Tin Sulfide: A Promising Black-Phosphorus- Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Liu, X.

Y. Ye, Q. Guo, X. Liu, C. Liu, J. Wang, Y. Liu, and J. Qiu, “Two-dimensional GeSe as an isostructural and isoelectronic analogue of phosphorene: sonication-assisted synthesis, chemical stability, and optical properties,” Chem. Mater. 29(19), 8361–8368 (2017).
[Crossref]

Liu, Y.

Y. Ye, Q. Guo, X. Liu, C. Liu, J. Wang, Y. Liu, and J. Qiu, “Two-dimensional GeSe as an isostructural and isoelectronic analogue of phosphorene: sonication-assisted synthesis, chemical stability, and optical properties,” Chem. Mater. 29(19), 8361–8368 (2017).
[Crossref]

Liu, Z.

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9(10), 3547–3554 (2017).
[Crossref] [PubMed]

T. Huang, Z. Hao, H. Gong, Z. Liu, S. Xiao, S. Li, Y. Zhai, S. You, Q. Wang, and J. Qin, “Third-order nonlinear optical properties of a new copper coordination compound: A promising candidate for all-optical switching,” Chem. Phys. Lett. 451, 213–217 (2008).
[Crossref]

Lo, S.-H.

L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, “Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals,” Nature 508(7496), 373–377 (2014).
[Crossref] [PubMed]

Lohani, H.

P. Mishra, H. Lohani, A. K. Kundu, R. Patel, G. K. Solanki, K. S. R. Menon, and B. R. Sekhar, “Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy,” Semicond. Sci. Technol. 30(7), 075001 (2015).
[Crossref]

Lorenz, T.

M. K. Forthaus, K. Sengupta, O. Heyer, N. E. Christensen, A. Svane, K. Syassen, D. I. Khomskii, T. Lorenz, and M. M. Abd-Elmeguid, “Superconductivity in SnO: A nonmagnetic analog to Fe-based superconductors?” Phys. Rev. Lett. 105(15), 157001 (2010).
[Crossref] [PubMed]

Lu, L.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-Layer Tin Sulfide: A Promising Black-Phosphorus- Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Lu, S.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-Layer Tin Sulfide: A Promising Black-Phosphorus- Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Lu, X.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely Coherent Nonlinear Optical Response in Solution Dispersions of Graphene Sheets,” Nano Lett. 11(12), 5159–5164 (2011).
[Crossref] [PubMed]

Luo, J.-W.

Z.-Q. Fan, X.-W. Jiang, Z. Wei, J.-W. Luo, and S.-S. Li, “Tunable electronic structures of GeSe nanosheets and nanoribbons,” J. Phys. Chem. C 121(26), 14373–14379 (2017).
[Crossref]

Lyu, B.

X. Li, K. Hu, B. Lyu, J. Zhang, Y. Wang, P. Wang, S. Xiao, Y. Gao, and J. He, “Enhanced Nonlinear Optical Response of Rectangular MoS2 and MoS2/TiO2 in Dispersion and Film,” J. Phys. Chem. C 120(32), 18243–18248 (2016).
[Crossref]

Ma, Y.

Magan, J. J.

Mak, K. F.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Maker, P. D.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-Dependent Changes in the Refractive Index of Liquids,” Phys. Rev. Lett. 12(18), 507–509 (1964).
[Crossref]

Martín, F.

P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D. A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gómez-Herrero, and F. Zamora, “Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions,” Adv. Mater. 28(30), 6332–6336 (2016).
[Crossref] [PubMed]

Massar, S.

Mayer, T. S.

D. Vaughn, D. Sun, S. M. Levin, A. J. Biacchi, T. S. Mayer, and R. E. Schaak, “Colloidal Synthesis and Electrical Properties of GeSe Nanobelts,” Chem. Mater. 24(18), 3643–3649 (2012).
[Crossref]

Meng, S.

Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, and J. Zhao, “Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation,” Proc. Natl. Acad. Sci. U.S.A. 112(38), 11800–11805 (2015).
[Crossref] [PubMed]

Menon, K. S. R.

P. Mishra, H. Lohani, A. K. Kundu, R. Patel, G. K. Solanki, K. S. R. Menon, and B. R. Sekhar, “Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy,” Semicond. Sci. Technol. 30(7), 075001 (2015).
[Crossref]

Meredith, G. R.

Miao, L.

L. Miao, B. Shi, J. Yi, Y. Jiang, C. Zhao, and S. Wen, “Ultrafast nonlinear optical response in solution dispersions of black phosphorus,” Sci. Rep. 7(1), 3352 (2017).
[Crossref] [PubMed]

Milosavljevic, N.

Mishra, P.

P. Mishra, H. Lohani, A. K. Kundu, R. Patel, G. K. Solanki, K. S. R. Menon, and B. R. Sekhar, “Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy,” Semicond. Sci. Technol. 30(7), 075001 (2015).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Mukherjee, B.

B. Mukherjee, Y. Cai, H. R. Tan, Y. P. Feng, E. S. Tok, and C. H. Sow, “NIR Schottky photodetectors based on individual single-crystalline GeSe nanosheet,” ACS Appl. Mater. Interfaces 5(19), 9594–9604 (2013).
[Crossref] [PubMed]

Nampoori, V. P. N.

C. V. Bindhu, S. S. Harilal, R. C. Issac, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, “Laser induced thermal lens effect in rhodmine B-signature of resonant two photon absorption,” Mod. Phys. Lett. B 09(22), 1471–1477 (1995).
[Crossref]

Nomura, K.

K. Nomura, T. Kamiya, and H. Hosono, “Ambipolar oxide thin-film transistor,” Adv. Mater. 23(30), 3431–3434 (2011).
[Crossref] [PubMed]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Park, H. S.

P. Z. Hanakata, A. Carvalho, D. K. Campbell, and H. S. Park, “Polarization and valley switching in monolayer group-IV monochalcogenides,” Phys. Rev. B 94(3), 035304 (2016).
[Crossref]

J.-W. Jiang and H. S. Park, “Negative poisson’s ratio in single-layer black phosphorus,” Nat. Commun. 5(1), 4727 (2014).
[Crossref] [PubMed]

Patel, R.

P. Mishra, H. Lohani, A. K. Kundu, R. Patel, G. K. Solanki, K. S. R. Menon, and B. R. Sekhar, “Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy,” Semicond. Sci. Technol. 30(7), 075001 (2015).
[Crossref]

Payne, S. A.

Ping, L. K.

Qin, J.

T. Huang, Z. Hao, H. Gong, Z. Liu, S. Xiao, S. Li, Y. Zhai, S. You, Q. Wang, and J. Qin, “Third-order nonlinear optical properties of a new copper coordination compound: A promising candidate for all-optical switching,” Chem. Phys. Lett. 451, 213–217 (2008).
[Crossref]

Qiu, J.

Y. Ye, Q. Guo, X. Liu, C. Liu, J. Wang, Y. Liu, and J. Qiu, “Two-dimensional GeSe as an isostructural and isoelectronic analogue of phosphorene: sonication-assisted synthesis, chemical stability, and optical properties,” Chem. Mater. 29(19), 8361–8368 (2017).
[Crossref]

Ra, H.-S.

P. Ramasamy, D. Kwak, D.-H. Lim, H.-S. Ra, and J.-S. Lee, “Solution synthesis of GeS and GeSe nanosheets for high-sensitivity photodetectors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(3), 479–485 (2016).
[Crossref]

Ramalingam, A.

G. Vinitha and A. Ramalingam, “Single-beam Z-scan measurement of the third-order optical nonlinearities of triarylmethane dyes,” Laser Phys. 18(10), 1176–1182 (2008).
[Crossref]

Ramasamy, P.

P. Ramasamy, D. Kwak, D.-H. Lim, H.-S. Ra, and J.-S. Lee, “Solution synthesis of GeS and GeSe nanosheets for high-sensitivity photodetectors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(3), 479–485 (2016).
[Crossref]

Rativa, D.

Rodríguez-San-Miguel, D.

P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D. A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gómez-Herrero, and F. Zamora, “Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions,” Adv. Mater. 28(30), 6332–6336 (2016).
[Crossref] [PubMed]

Saeed, B. A.

R. S. Elias, Q. M. A. Hassan, H. A. Sultan, A. S. Al-Asadi, B. A. Saeed, and C. A. Emshary, “Thermal nonlinearities for three curcuminoids measured by diffraction ring patterns and Z-scan under visible CW laser illumination,” Opt. Laser Technol. 107, 131 (2018).
[Crossref]

Said, A. A.

J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 6, 1009–1017 (1994).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Savage, C. M.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-Dependent Changes in the Refractive Index of Liquids,” Phys. Rev. Lett. 12(18), 507–509 (1964).
[Crossref]

Schaak, R. E.

D. Vaughn, D. Sun, S. M. Levin, A. J. Biacchi, T. S. Mayer, and R. E. Schaak, “Colloidal Synthesis and Electrical Properties of GeSe Nanobelts,” Chem. Mater. 24(18), 3643–3649 (2012).
[Crossref]

Sekhar, B. R.

P. Mishra, H. Lohani, A. K. Kundu, R. Patel, G. K. Solanki, K. S. R. Menon, and B. R. Sekhar, “Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy,” Semicond. Sci. Technol. 30(7), 075001 (2015).
[Crossref]

Sengupta, K.

M. K. Forthaus, K. Sengupta, O. Heyer, N. E. Christensen, A. Svane, K. Syassen, D. I. Khomskii, T. Lorenz, and M. M. Abd-Elmeguid, “Superconductivity in SnO: A nonmagnetic analog to Fe-based superconductors?” Phys. Rev. Lett. 105(15), 157001 (2010).
[Crossref] [PubMed]

Shan, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Shan, Y.

Y. Jia, Y. Liao, L. Wu, Y. Shan, X. Dai, H. Cai, Y. Xiang, and D. Fan, “Nonlinear optical response, all optical switching, and all optical information conversion in NbSe2 nanosheets based on spatial self-phase modulation,” Nanoscale 11(10), 4515–4522 (2019).
[Crossref] [PubMed]

Y. Jia, Y. Shan, L. Wu, X. Dai, D. Fan, and Y. Xiang, “Broadband nonlinear optical resonance and all-optical switching of liquid phase exfoliated tungsten diselenide,” Photon. Res. 6(11), 1040–1047 (2018).
[Crossref]

Shank, C. V.

C. V. Shank and E. P. Ippen, “Anisotropic absorption saturation with picosecond pulses,” Appl. Phys. Lett. 26(2), 62–63 (1975).
[Crossref]

Sheik-Bahae, M.

J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 6, 1009–1017 (1994).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shen, J.

Shi, B.

L. Miao, B. Shi, J. Yi, Y. Jiang, C. Zhao, and S. Wen, “Ultrafast nonlinear optical response in solution dispersions of black phosphorus,” Sci. Rep. 7(1), 3352 (2017).
[Crossref] [PubMed]

Singh, A. K.

A. K. Singh and R. G. Hennig, “Computational prediction of two-dimensional group-IV mono-chalcogenides,” Appl. Phys. Lett. 105(4), 042103 (2014).
[Crossref]

Singh, M. R.

M. R. Singh and R. H. Lipson, “Optical switching in nonlinear photonic crystals lightly doped with nanostructures,” J. Phys. At. Mol. Opt. Phys. 41(1), 015401 (2008).
[Crossref]

Solanki, G. K.

P. Mishra, H. Lohani, A. K. Kundu, R. Patel, G. K. Solanki, K. S. R. Menon, and B. R. Sekhar, “Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy,” Semicond. Sci. Technol. 30(7), 075001 (2015).
[Crossref]

Sow, C. H.

B. Mukherjee, Y. Cai, H. R. Tan, Y. P. Feng, E. S. Tok, and C. H. Sow, “NIR Schottky photodetectors based on individual single-crystalline GeSe nanosheet,” ACS Appl. Mater. Interfaces 5(19), 9594–9604 (2013).
[Crossref] [PubMed]

Stolen, R. H.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Stryland, E. W. V.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Sultan, H. A.

R. S. Elias, Q. M. A. Hassan, H. A. Sultan, A. S. Al-Asadi, B. A. Saeed, and C. A. Emshary, “Thermal nonlinearities for three curcuminoids measured by diffraction ring patterns and Z-scan under visible CW laser illumination,” Opt. Laser Technol. 107, 131 (2018).
[Crossref]

H. A. Sultan, Q. M. A. Hassan, H. Bakr, A. S. Al-Asadi, D. H. Hashim, and C. A. Emshary, “Thermal-induced nonlinearities in rose, linseed, and chamomile oils using continuous wave visible laser beam,” Can. J. Phys. 96(2), 157–164 (2018).
[Crossref]

Sun, D.

D. Vaughn, D. Sun, S. M. Levin, A. J. Biacchi, T. S. Mayer, and R. E. Schaak, “Colloidal Synthesis and Electrical Properties of GeSe Nanobelts,” Chem. Mater. 24(18), 3643–3649 (2012).
[Crossref]

Sun, F.

Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, and J. Zhao, “Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation,” Proc. Natl. Acad. Sci. U.S.A. 112(38), 11800–11805 (2015).
[Crossref] [PubMed]

Sun, G.

X. Wang, G. Sun, N. Li, and P. Chen, “Quantum dots derived from two-dimensional materials and their applications for catalysis and energy,” Chem. Soc. Rev. 45(8), 2239–2262 (2016).
[Crossref] [PubMed]

Sun, H.

L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, “Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals,” Nature 508(7496), 373–377 (2014).
[Crossref] [PubMed]

Svane, A.

M. K. Forthaus, K. Sengupta, O. Heyer, N. E. Christensen, A. Svane, K. Syassen, D. I. Khomskii, T. Lorenz, and M. M. Abd-Elmeguid, “Superconductivity in SnO: A nonmagnetic analog to Fe-based superconductors?” Phys. Rev. Lett. 105(15), 157001 (2010).
[Crossref] [PubMed]

Syassen, K.

M. K. Forthaus, K. Sengupta, O. Heyer, N. E. Christensen, A. Svane, K. Syassen, D. I. Khomskii, T. Lorenz, and M. M. Abd-Elmeguid, “Superconductivity in SnO: A nonmagnetic analog to Fe-based superconductors?” Phys. Rev. Lett. 105(15), 157001 (2010).
[Crossref] [PubMed]

Tan, G.

L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, “Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals,” Nature 508(7496), 373–377 (2014).
[Crossref] [PubMed]

Tan, H. R.

B. Mukherjee, Y. Cai, H. R. Tan, Y. P. Feng, E. S. Tok, and C. H. Sow, “NIR Schottky photodetectors based on individual single-crystalline GeSe nanosheet,” ACS Appl. Mater. Interfaces 5(19), 9594–9604 (2013).
[Crossref] [PubMed]

Tan, J.

D. J. Xue, J. Tan, J. S. Hu, W. Hu, Y. G. Guo, and L. J. Wan, “Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet,” Adv. Mater. 24(33), 4528–4533 (2012).
[Crossref] [PubMed]

Tang, Y.

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9(10), 3547–3554 (2017).
[Crossref] [PubMed]

Terhune, R. W.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-Dependent Changes in the Refractive Index of Liquids,” Phys. Rev. Lett. 12(18), 507–509 (1964).
[Crossref]

Tok, E. S.

B. Mukherjee, Y. Cai, H. R. Tan, Y. P. Feng, E. S. Tok, and C. H. Sow, “NIR Schottky photodetectors based on individual single-crystalline GeSe nanosheet,” ACS Appl. Mater. Interfaces 5(19), 9594–9604 (2013).
[Crossref] [PubMed]

Uher, C.

L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, “Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals,” Nature 508(7496), 373–377 (2014).
[Crossref] [PubMed]

Umran, F. A.

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104(14), 141909 (2014).
[Crossref]

Vallabhan, C. P. G.

C. V. Bindhu, S. S. Harilal, R. C. Issac, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, “Laser induced thermal lens effect in rhodmine B-signature of resonant two photon absorption,” Mod. Phys. Lett. B 09(22), 1471–1477 (1995).
[Crossref]

Van Stryland, E. W.

J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 6, 1009–1017 (1994).
[Crossref]

Varier, G. K.

C. V. Bindhu, S. S. Harilal, R. C. Issac, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, “Laser induced thermal lens effect in rhodmine B-signature of resonant two photon absorption,” Mod. Phys. Lett. B 09(22), 1471–1477 (1995).
[Crossref]

Vaughn, D.

D. Vaughn, D. Sun, S. M. Levin, A. J. Biacchi, T. S. Mayer, and R. E. Schaak, “Colloidal Synthesis and Electrical Properties of GeSe Nanobelts,” Chem. Mater. 24(18), 3643–3649 (2012).
[Crossref]

Vinitha, G.

G. Vinitha and A. Ramalingam, “Single-beam Z-scan measurement of the third-order optical nonlinearities of triarylmethane dyes,” Laser Phys. 18(10), 1176–1182 (2008).
[Crossref]

Virally, S.

Vohnsen, B.

Wan, L. J.

D. J. Xue, J. Tan, J. S. Hu, W. Hu, Y. G. Guo, and L. J. Wan, “Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet,” Adv. Mater. 24(33), 4528–4533 (2012).
[Crossref] [PubMed]

Wang, E.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely Coherent Nonlinear Optical Response in Solution Dispersions of Graphene Sheets,” Nano Lett. 11(12), 5159–5164 (2011).
[Crossref] [PubMed]

Wang, G.

Wang, H.

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 4458 (2014).
[Crossref] [PubMed]

Wang, J.

G. Wang, S. Higgins, K. Wang, D. Bennett, N. Milosavljevic, J. J. Magan, S. Zhang, X. Zhang, J. Wang, and W. J. Blau, “Intensity-dependent nonlinear refraction of antimonene dispersions in the visible and near-infrared region,” Appl. Opt. 57(22), E147–E153 (2018).
[Crossref] [PubMed]

Y. Ye, Q. Guo, X. Liu, C. Liu, J. Wang, Y. Liu, and J. Qiu, “Two-dimensional GeSe as an isostructural and isoelectronic analogue of phosphorene: sonication-assisted synthesis, chemical stability, and optical properties,” Chem. Mater. 29(19), 8361–8368 (2017).
[Crossref]

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [Invited],” Photon. Res. 3(2), A51–A55 (2015).
[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104(14), 141909 (2014).
[Crossref]

J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 6, 1009–1017 (1994).
[Crossref]

Wang, K.

Wang, L.

Y. Ji, M. Yang, H. Dong, L. Wang, T. Hou, and Y. Li, “Monolayer group IVA monochalcogenides as potential and efficient catalysts for the oxygen reduction reaction from first-principles calculations,” J. Mater. Chem. A Mater. Energy Sustain. 5(4), 1734–1741 (2017).
[Crossref]

Wang, P.

Y. Jiang, Y. Ma, Z. Fan, P. Wang, X. Li, Y. Wang, Y. Zhang, J. Shen, G. Wang, Z.-J. Yang, S. Xiao, Y. Gao, and J. He, “Abnormal nonlinear optical properties of hybrid graphene-TiO2 nanostructures,” Opt. Lett. 43(3), 523–526 (2018).
[Crossref] [PubMed]

X. Li, K. Hu, B. Lyu, J. Zhang, Y. Wang, P. Wang, S. Xiao, Y. Gao, and J. He, “Enhanced Nonlinear Optical Response of Rectangular MoS2 and MoS2/TiO2 in Dispersion and Film,” J. Phys. Chem. C 120(32), 18243–18248 (2016).
[Crossref]

Wang, Q.

T. Huang, Z. Hao, H. Gong, Z. Liu, S. Xiao, S. Li, Y. Zhai, S. You, Q. Wang, and J. Qin, “Third-order nonlinear optical properties of a new copper coordination compound: A promising candidate for all-optical switching,” Chem. Phys. Lett. 451, 213–217 (2008).
[Crossref]

Wang, W.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely Coherent Nonlinear Optical Response in Solution Dispersions of Graphene Sheets,” Nano Lett. 11(12), 5159–5164 (2011).
[Crossref] [PubMed]

Wang, X.

X. Wang, G. Sun, N. Li, and P. Chen, “Quantum dots derived from two-dimensional materials and their applications for catalysis and energy,” Chem. Soc. Rev. 45(8), 2239–2262 (2016).
[Crossref] [PubMed]

Wang, Y.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-Layer Tin Sulfide: A Promising Black-Phosphorus- Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Y. Jiang, Y. Ma, Z. Fan, P. Wang, X. Li, Y. Wang, Y. Zhang, J. Shen, G. Wang, Z.-J. Yang, S. Xiao, Y. Gao, and J. He, “Abnormal nonlinear optical properties of hybrid graphene-TiO2 nanostructures,” Opt. Lett. 43(3), 523–526 (2018).
[Crossref] [PubMed]

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9(10), 3547–3554 (2017).
[Crossref] [PubMed]

X. Li, K. Hu, B. Lyu, J. Zhang, Y. Wang, P. Wang, S. Xiao, Y. Gao, and J. He, “Enhanced Nonlinear Optical Response of Rectangular MoS2 and MoS2/TiO2 in Dispersion and Film,” J. Phys. Chem. C 120(32), 18243–18248 (2016).
[Crossref]

Wang, Z.

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9(10), 3547–3554 (2017).
[Crossref] [PubMed]

Wei, T.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wei, Z.

Z.-Q. Fan, X.-W. Jiang, Z. Wei, J.-W. Luo, and S.-S. Li, “Tunable electronic structures of GeSe nanosheets and nanoribbons,” J. Phys. Chem. C 121(26), 14373–14379 (2017).
[Crossref]

Wen, S.

L. Miao, B. Shi, J. Yi, Y. Jiang, C. Zhao, and S. Wen, “Ultrafast nonlinear optical response in solution dispersions of black phosphorus,” Sci. Rep. 7(1), 3352 (2017).
[Crossref] [PubMed]

Wolverton, C.

L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, “Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals,” Nature 508(7496), 373–377 (2014).
[Crossref] [PubMed]

Wu, L.

Y. Jia, Y. Liao, L. Wu, Y. Shan, X. Dai, H. Cai, Y. Xiang, and D. Fan, “Nonlinear optical response, all optical switching, and all optical information conversion in NbSe2 nanosheets based on spatial self-phase modulation,” Nanoscale 11(10), 4515–4522 (2019).
[Crossref] [PubMed]

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-Layer Tin Sulfide: A Promising Black-Phosphorus- Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Y. Jia, Y. Shan, L. Wu, X. Dai, D. Fan, and Y. Xiang, “Broadband nonlinear optical resonance and all-optical switching of liquid phase exfoliated tungsten diselenide,” Photon. Res. 6(11), 1040–1047 (2018).
[Crossref]

Wu, Q.

Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, and J. Zhao, “Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation,” Proc. Natl. Acad. Sci. U.S.A. 112(38), 11800–11805 (2015).
[Crossref] [PubMed]

Wu, R.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely Coherent Nonlinear Optical Response in Solution Dispersions of Graphene Sheets,” Nano Lett. 11(12), 5159–5164 (2011).
[Crossref] [PubMed]

Wu, Y.

Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, and J. Zhao, “Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation,” Proc. Natl. Acad. Sci. U.S.A. 112(38), 11800–11805 (2015).
[Crossref] [PubMed]

Xia, F.

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 4458 (2014).
[Crossref] [PubMed]

Xiang, Y.

Y. Jia, Y. Liao, L. Wu, Y. Shan, X. Dai, H. Cai, Y. Xiang, and D. Fan, “Nonlinear optical response, all optical switching, and all optical information conversion in NbSe2 nanosheets based on spatial self-phase modulation,” Nanoscale 11(10), 4515–4522 (2019).
[Crossref] [PubMed]

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-Layer Tin Sulfide: A Promising Black-Phosphorus- Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Y. Jia, Y. Shan, L. Wu, X. Dai, D. Fan, and Y. Xiang, “Broadband nonlinear optical resonance and all-optical switching of liquid phase exfoliated tungsten diselenide,” Photon. Res. 6(11), 1040–1047 (2018).
[Crossref]

Xiao, D.

G.-B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, “Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides,” Chem. Soc. Rev. 44(9), 2643–2663 (2015).
[Crossref] [PubMed]

Xiao, S.

Y. Jiang, Y. Ma, Z. Fan, P. Wang, X. Li, Y. Wang, Y. Zhang, J. Shen, G. Wang, Z.-J. Yang, S. Xiao, Y. Gao, and J. He, “Abnormal nonlinear optical properties of hybrid graphene-TiO2 nanostructures,” Opt. Lett. 43(3), 523–526 (2018).
[Crossref] [PubMed]

X. Li, K. Hu, B. Lyu, J. Zhang, Y. Wang, P. Wang, S. Xiao, Y. Gao, and J. He, “Enhanced Nonlinear Optical Response of Rectangular MoS2 and MoS2/TiO2 in Dispersion and Film,” J. Phys. Chem. C 120(32), 18243–18248 (2016).
[Crossref]

T. Huang, Z. Hao, H. Gong, Z. Liu, S. Xiao, S. Li, Y. Zhai, S. You, Q. Wang, and J. Qin, “Third-order nonlinear optical properties of a new copper coordination compound: A promising candidate for all-optical switching,” Chem. Phys. Lett. 451, 213–217 (2008).
[Crossref]

Xie, Z.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-Layer Tin Sulfide: A Promising Black-Phosphorus- Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Xu, S.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-Layer Tin Sulfide: A Promising Black-Phosphorus- Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Xu, X.

G.-B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, “Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides,” Chem. Soc. Rev. 44(9), 2643–2663 (2015).
[Crossref] [PubMed]

Xue, D. J.

D. J. Xue, J. Tan, J. S. Hu, W. Hu, Y. G. Guo, and L. J. Wan, “Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet,” Adv. Mater. 24(33), 4528–4533 (2012).
[Crossref] [PubMed]

Yan, S.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely Coherent Nonlinear Optical Response in Solution Dispersions of Graphene Sheets,” Nano Lett. 11(12), 5159–5164 (2011).
[Crossref] [PubMed]

Yang, M.

Y. Ji, M. Yang, H. Dong, L. Wang, T. Hou, and Y. Li, “Monolayer group IVA monochalcogenides as potential and efficient catalysts for the oxygen reduction reaction from first-principles calculations,” J. Mater. Chem. A Mater. Energy Sustain. 5(4), 1734–1741 (2017).
[Crossref]

Yang, Z.-J.

Yao, W.

G.-B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, “Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides,” Chem. Soc. Rev. 44(9), 2643–2663 (2015).
[Crossref] [PubMed]

Yao, Y.

G.-B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, “Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides,” Chem. Soc. Rev. 44(9), 2643–2663 (2015).
[Crossref] [PubMed]

Ye, Y.

Y. Ye, Q. Guo, X. Liu, C. Liu, J. Wang, Y. Liu, and J. Qiu, “Two-dimensional GeSe as an isostructural and isoelectronic analogue of phosphorene: sonication-assisted synthesis, chemical stability, and optical properties,” Chem. Mater. 29(19), 8361–8368 (2017).
[Crossref]

Yi, J.

L. Miao, B. Shi, J. Yi, Y. Jiang, C. Zhao, and S. Wen, “Ultrafast nonlinear optical response in solution dispersions of black phosphorus,” Sci. Rep. 7(1), 3352 (2017).
[Crossref] [PubMed]

You, S.

T. Huang, Z. Hao, H. Gong, Z. Liu, S. Xiao, S. Li, Y. Zhai, S. You, Q. Wang, and J. Qin, “Third-order nonlinear optical properties of a new copper coordination compound: A promising candidate for all-optical switching,” Chem. Phys. Lett. 451, 213–217 (2008).
[Crossref]

Zamora, F.

P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D. A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gómez-Herrero, and F. Zamora, “Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions,” Adv. Mater. 28(30), 6332–6336 (2016).
[Crossref] [PubMed]

Zhai, Y.

T. Huang, Z. Hao, H. Gong, Z. Liu, S. Xiao, S. Li, Y. Zhai, S. You, Q. Wang, and J. Qin, “Third-order nonlinear optical properties of a new copper coordination compound: A promising candidate for all-optical switching,” Chem. Phys. Lett. 451, 213–217 (2008).
[Crossref]

Zhang, F.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-Layer Tin Sulfide: A Promising Black-Phosphorus- Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Zhang, H.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-Layer Tin Sulfide: A Promising Black-Phosphorus- Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [Invited],” Photon. Res. 3(2), A51–A55 (2015).
[Crossref]

H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37(11), 1856–1858 (2012).
[Crossref] [PubMed]

Zhang, J.

X. Li, K. Hu, B. Lyu, J. Zhang, Y. Wang, P. Wang, S. Xiao, Y. Gao, and J. He, “Enhanced Nonlinear Optical Response of Rectangular MoS2 and MoS2/TiO2 in Dispersion and Film,” J. Phys. Chem. C 120(32), 18243–18248 (2016).
[Crossref]

Zhang, L.

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [Invited],” Photon. Res. 3(2), A51–A55 (2015).
[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104(14), 141909 (2014).
[Crossref]

Zhang, S.

Zhang, X.

Zhang, Y.

Y. Jiang, Y. Ma, Z. Fan, P. Wang, X. Li, Y. Wang, Y. Zhang, J. Shen, G. Wang, Z.-J. Yang, S. Xiao, Y. Gao, and J. He, “Abnormal nonlinear optical properties of hybrid graphene-TiO2 nanostructures,” Opt. Lett. 43(3), 523–526 (2018).
[Crossref] [PubMed]

L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, “Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals,” Nature 508(7496), 373–377 (2014).
[Crossref] [PubMed]

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely Coherent Nonlinear Optical Response in Solution Dispersions of Graphene Sheets,” Nano Lett. 11(12), 5159–5164 (2011).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhao, C.

L. Miao, B. Shi, J. Yi, Y. Jiang, C. Zhao, and S. Wen, “Ultrafast nonlinear optical response in solution dispersions of black phosphorus,” Sci. Rep. 7(1), 3352 (2017).
[Crossref] [PubMed]

Zhao, J.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-Layer Tin Sulfide: A Promising Black-Phosphorus- Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, and J. Zhao, “Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation,” Proc. Natl. Acad. Sci. U.S.A. 112(38), 11800–11805 (2015).
[Crossref] [PubMed]

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely Coherent Nonlinear Optical Response in Solution Dispersions of Graphene Sheets,” Nano Lett. 11(12), 5159–5164 (2011).
[Crossref] [PubMed]

Zhao, L.-D.

L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, “Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals,” Nature 508(7496), 373–377 (2014).
[Crossref] [PubMed]

Zhou, X.

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9(10), 3547–3554 (2017).
[Crossref] [PubMed]

Zhu, Z.

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9(10), 3547–3554 (2017).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

B. Mukherjee, Y. Cai, H. R. Tan, Y. P. Feng, E. S. Tok, and C. H. Sow, “NIR Schottky photodetectors based on individual single-crystalline GeSe nanosheet,” ACS Appl. Mater. Interfaces 5(19), 9594–9604 (2013).
[Crossref] [PubMed]

Adv. Mater. (3)

D. J. Xue, J. Tan, J. S. Hu, W. Hu, Y. G. Guo, and L. J. Wan, “Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet,” Adv. Mater. 24(33), 4528–4533 (2012).
[Crossref] [PubMed]

K. Nomura, T. Kamiya, and H. Hosono, “Ambipolar oxide thin-film transistor,” Adv. Mater. 23(30), 3431–3434 (2011).
[Crossref] [PubMed]

P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D. A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gómez-Herrero, and F. Zamora, “Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions,” Adv. Mater. 28(30), 6332–6336 (2016).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-Layer Tin Sulfide: A Promising Black-Phosphorus- Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104(14), 141909 (2014).
[Crossref]

C. V. Shank and E. P. Ippen, “Anisotropic absorption saturation with picosecond pulses,” Appl. Phys. Lett. 26(2), 62–63 (1975).
[Crossref]

A. K. Singh and R. G. Hennig, “Computational prediction of two-dimensional group-IV mono-chalcogenides,” Appl. Phys. Lett. 105(4), 042103 (2014).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

S. Biswas and P. Kumbhakar, “Refractive index and temperature sensing in anisotropic silver nanostructures with stable photo-physical properties,” Appl. Phys., A Mater. Sci. Process. 124(1), 6 (2018).
[Crossref]

S. Ghayeb Zamharir, R. Karimzadeh, and S. H. Aboutalebi, “Laser-assisted tunable optical nonlinearity in liquid-phase exfoliated MoS2 dispersion,” Appl. Phys., A Mater. Sci. Process. 124(10), 692 (2018).
[Crossref]

Can. J. Phys. (1)

H. A. Sultan, Q. M. A. Hassan, H. Bakr, A. S. Al-Asadi, D. H. Hashim, and C. A. Emshary, “Thermal-induced nonlinearities in rose, linseed, and chamomile oils using continuous wave visible laser beam,” Can. J. Phys. 96(2), 157–164 (2018).
[Crossref]

Chem. Mater. (2)

D. Vaughn, D. Sun, S. M. Levin, A. J. Biacchi, T. S. Mayer, and R. E. Schaak, “Colloidal Synthesis and Electrical Properties of GeSe Nanobelts,” Chem. Mater. 24(18), 3643–3649 (2012).
[Crossref]

Y. Ye, Q. Guo, X. Liu, C. Liu, J. Wang, Y. Liu, and J. Qiu, “Two-dimensional GeSe as an isostructural and isoelectronic analogue of phosphorene: sonication-assisted synthesis, chemical stability, and optical properties,” Chem. Mater. 29(19), 8361–8368 (2017).
[Crossref]

Chem. Phys. Lett. (1)

T. Huang, Z. Hao, H. Gong, Z. Liu, S. Xiao, S. Li, Y. Zhai, S. You, Q. Wang, and J. Qin, “Third-order nonlinear optical properties of a new copper coordination compound: A promising candidate for all-optical switching,” Chem. Phys. Lett. 451, 213–217 (2008).
[Crossref]

Chem. Soc. Rev. (2)

X. Wang, G. Sun, N. Li, and P. Chen, “Quantum dots derived from two-dimensional materials and their applications for catalysis and energy,” Chem. Soc. Rev. 45(8), 2239–2262 (2016).
[Crossref] [PubMed]

G.-B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, “Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides,” Chem. Soc. Rev. 44(9), 2643–2663 (2015).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

Y. Ji, M. Yang, H. Dong, L. Wang, T. Hou, and Y. Li, “Monolayer group IVA monochalcogenides as potential and efficient catalysts for the oxygen reduction reaction from first-principles calculations,” J. Mater. Chem. A Mater. Energy Sustain. 5(4), 1734–1741 (2017).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

P. Ramasamy, D. Kwak, D.-H. Lim, H.-S. Ra, and J.-S. Lee, “Solution synthesis of GeS and GeSe nanosheets for high-sensitivity photodetectors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(3), 479–485 (2016).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 6, 1009–1017 (1994).
[Crossref]

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” ‎,” J. Opt. Soc. Am. B 4(6), 875–881 (1987).
[Crossref]

J. Phys. At. Mol. Opt. Phys. (1)

M. R. Singh and R. H. Lipson, “Optical switching in nonlinear photonic crystals lightly doped with nanostructures,” J. Phys. At. Mol. Opt. Phys. 41(1), 015401 (2008).
[Crossref]

J. Phys. Chem. C (2)

Z.-Q. Fan, X.-W. Jiang, Z. Wei, J.-W. Luo, and S.-S. Li, “Tunable electronic structures of GeSe nanosheets and nanoribbons,” J. Phys. Chem. C 121(26), 14373–14379 (2017).
[Crossref]

X. Li, K. Hu, B. Lyu, J. Zhang, Y. Wang, P. Wang, S. Xiao, Y. Gao, and J. He, “Enhanced Nonlinear Optical Response of Rectangular MoS2 and MoS2/TiO2 in Dispersion and Film,” J. Phys. Chem. C 120(32), 18243–18248 (2016).
[Crossref]

Laser Phys. (1)

G. Vinitha and A. Ramalingam, “Single-beam Z-scan measurement of the third-order optical nonlinearities of triarylmethane dyes,” Laser Phys. 18(10), 1176–1182 (2008).
[Crossref]

Mod. Phys. Lett. B (1)

C. V. Bindhu, S. S. Harilal, R. C. Issac, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, “Laser induced thermal lens effect in rhodmine B-signature of resonant two photon absorption,” Mod. Phys. Lett. B 09(22), 1471–1477 (1995).
[Crossref]

Nano Lett. (1)

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely Coherent Nonlinear Optical Response in Solution Dispersions of Graphene Sheets,” Nano Lett. 11(12), 5159–5164 (2011).
[Crossref] [PubMed]

Nanoscale (2)

Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, and J. Bao, “Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials,” Nanoscale 9(10), 3547–3554 (2017).
[Crossref] [PubMed]

Y. Jia, Y. Liao, L. Wu, Y. Shan, X. Dai, H. Cai, Y. Xiang, and D. Fan, “Nonlinear optical response, all optical switching, and all optical information conversion in NbSe2 nanosheets based on spatial self-phase modulation,” Nanoscale 11(10), 4515–4522 (2019).
[Crossref] [PubMed]

Nat. Commun. (2)

J.-W. Jiang and H. S. Park, “Negative poisson’s ratio in single-layer black phosphorus,” Nat. Commun. 5(1), 4727 (2014).
[Crossref] [PubMed]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 4458 (2014).
[Crossref] [PubMed]

Nat. Sci. (1)

F. Henari, “Nonlinear characterization and optical switching in bromophenol blue solutions,” Nat. Sci. 3, 728–732 (2011).
[Crossref]

Nature (1)

L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, “Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals,” Nature 508(7496), 373–377 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Laser Technol. (1)

R. S. Elias, Q. M. A. Hassan, H. A. Sultan, A. S. Al-Asadi, B. A. Saeed, and C. A. Emshary, “Thermal nonlinearities for three curcuminoids measured by diffraction ring patterns and Z-scan under visible CW laser illumination,” Opt. Laser Technol. 107, 131 (2018).
[Crossref]

Opt. Lett. (2)

Photon. Res. (2)

Phys. Rev. A (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Phys. Rev. B (2)

P. Z. Hanakata, A. Carvalho, D. K. Campbell, and H. S. Park, “Polarization and valley switching in monolayer group-IV monochalcogenides,” Phys. Rev. B 94(3), 035304 (2016).
[Crossref]

I. Appelbaum and P. Li, “Electrons, holes, and spin in the IV-VI monolayer ‘four-six-enes’,” Phys. Rev. B 94(15), 155124 (2016).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

L. C. Gomes and A. Carvalho, “Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure,” Phys. Rev. B Condens. Matter Mater. Phys. 92(8), 085406 (2015).
[Crossref]

Phys. Rev. Lett. (3)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

M. K. Forthaus, K. Sengupta, O. Heyer, N. E. Christensen, A. Svane, K. Syassen, D. I. Khomskii, T. Lorenz, and M. M. Abd-Elmeguid, “Superconductivity in SnO: A nonmagnetic analog to Fe-based superconductors?” Phys. Rev. Lett. 105(15), 157001 (2010).
[Crossref] [PubMed]

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-Dependent Changes in the Refractive Index of Liquids,” Phys. Rev. Lett. 12(18), 507–509 (1964).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, and J. Zhao, “Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation,” Proc. Natl. Acad. Sci. U.S.A. 112(38), 11800–11805 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

L. Miao, B. Shi, J. Yi, Y. Jiang, C. Zhao, and S. Wen, “Ultrafast nonlinear optical response in solution dispersions of black phosphorus,” Sci. Rep. 7(1), 3352 (2017).
[Crossref] [PubMed]

Science (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

P. Mishra, H. Lohani, A. K. Kundu, R. Patel, G. K. Solanki, K. S. R. Menon, and B. R. Sekhar, “Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy,” Semicond. Sci. Technol. 30(7), 075001 (2015).
[Crossref]

Other (1)

R. W. Boyd, “Quantum-Mechanical Theory of the Nonlinear Optical Susceptibility,” in Nonlinear Optics (Third Edition), R. W. Boyd, ed. (Academic Press, 2008), pp. 135–206.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Preparation of GeSe nanoflake dispersions by liquid phase exfoliation method.
Fig. 2
Fig. 2 Characterization of GeSe nanoflakes (a) GeSe architecture, (b) TEM image spectra, and HRTEM image, (c) Raman, (d) AFM image, and (e) Transmittance spectrums.
Fig. 3
Fig. 3 The schematic diagram of the Z-scan measuring device.
Fig. 4
Fig. 4 The closed hole Z-scan measurement results of the GeSe nanoflakes.
Fig. 5
Fig. 5 The schematic diagram of the SSPM measuring device
Fig. 6
Fig. 6 (a) Distortion principle diagram of GeSe nanoflake dispersion; (b), (c) change of the distortion angle (θD) and the the maximum semi-diffractive angle (θH) with the incident intensity increasing; (d) variation in the nonlinear refractive index of GeSe after distortion.
Fig. 7
Fig. 7 The diffraction ring numbers of different concentration GeSe nanoflake suspensions received by CCD varying with the incident intensities at wavelength of 532 nm.
Fig. 8
Fig. 8 Schematic of the experimental configuration for all-optical switching and all-optical information conversion.
Fig. 9
Fig. 9 (a) The signal received from detector 1 (① 671 nm controlling light) and detector 2 (② 532 nm signal light), (b) ① is the input signal of the ASCII code of “I ♥ S Z” and ② is the identical output signal.
Fig. 10
Fig. 10 The band gap structure which allows free carrier wide spectrum excitation and the mechanism of light interacting with several layers of GeSe.

Tables (3)

Tables Icon

Table 1 Nonlinear properties of GeSe by Z-scan Experiment

Tables Icon

Table 2 Nonlinear properties of GeSe by SSPM Experiment

Tables Icon

Table 3 n2 and χ(3)monolayer for a variety of 2D materials.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

E( z,r,t )= E 0 ( t ) ω 0 ω( z ) exp( r 2 ω ( z ) 2 ik r 2 2R( z ) ) e iφ( z,t ) ,
I( z,r,t )= I 0 ( t ) ω 0 ω ( z ) 2 exp( 2 r 2 ω ( z ) 2 ).
φ z' =k n 2 I.
I z' =α( I )I.
Δφ( z,r,t )= Δ φ 0 ( t ) 1+ z 2 z 0 2 exp( 2 r 2 ω ( t ) 2 ),
Δ φ 0 ( t )=k n 2 I 0 ( t ) L eff ,
E a ( z,r,t )=E( t ) e α 0 L 2 e iΔφ( z,r,t ) .
T( x )=1 4Δ φ 0 x ( 1+ x 2 )( 9+ x 2 ) .
θ H = R H D .
θ H = R H D .
θ D = θ H θ H = R D D .
θ H = λ 2π ( dΔψ dr ) max .
θ H = n 2 IC,
C= [ 8r L eff ω 0 2 exp( 2 r 2 ω 0 2 ) ] max ,
θ D = θ H θ H =( n 2 n 2 )IC=Δ n 2 IC.
Δ n 2 / n 2 = θ D / θ H .
Δψ= 2π n 0 λ 0 L eff n 2 I( r,z ) dz,
n= n 0 + n 2 I,
L eff = L 1 L 2 ( 1+ z 2 z 0 2 ) 1 dz= z 0 acrtan( z z 0 )| L 2 L 1 ,
n 2 = λ 2 n 0 L eff N I .
χ total (3) = cλ n 0 2.4× 10 4 π 2 L eff dN dI .
χ total (3) = χ monolayer (3) N eff 2 ,
Δψ= 2π n 0 λ 0 L eff n 2 I( r,z ) dz,r[ 0,+ ),
Δψ( r 1 )Δψ( r 2 )=Mπ ( M is an integer )