Abstract

We propose and demonstrate a novel orientation-sensitive two-dimensional accelerometer based on fiber Bragg gratings inscribed in a multi-core fiber. Through monitoring of the wavelength shifts of three of the seven cores, including the central core and two outer cores which are not aligned in a straight line, information on vibration orientation as well as acceleration can be obtained simultaneously. Performance of the proposed accelerometer in terms of frequency, acceleration and vibration orientation are experimentally investigated. The designed two-dimensional accelerometer is capable of obtaining all these three parameters simultaneously. A sensitivity which is strongly dependent on the orientation is achieved, with a best orientation accuracy of 0.127° over a range of 0-180°. Moreover, the resonance frequency and the sensitivity can be optimized through adjusting the length and weight of the free-fiber. The ease of fabrication as well as the versatility of the proposed sensor makes it potentially useful in dynamic monitoring for industrial applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two-dimensional vector bending sensor based on seven-core fiber Bragg gratings

Maoxiang Hou, Kaiming Yang, Jun He, Xizhen Xu, Shuai Ju, Kuikui Guo, and Yiping Wang
Opt. Express 26(18) 23770-23781 (2018)

Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling

Tuan Guo, Liyang Shao, Hwa-Yaw Tam, Peter A. Krug, and Jacques Albert
Opt. Express 17(23) 20651-20660 (2009)

Interferometer based on strongly coupled multi-core optical fiber for accurate vibration sensing

Joel Villatoro, Enrique Antonio-Lopez, Joseba Zubia, Axel Schülzgen, and Rodrigo Amezcua-Correa
Opt. Express 25(21) 25734-25740 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Bertolini, R. DeSalvo, F. Fidecaro, M. Francesconi, S. Marka, V. Sannibale, D. Simonetti, A. Takamori, and H. Tariq, “Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 556(2), 616–623 (2006).
    [Crossref]
  2. C. W. Tan and S. Park, “Design of accelerometer-based inertial navigation systems,” IEEE Trans. Instrum. Meas. 54(6), 2520–2530 (2005).
    [Crossref]
  3. J. W. Borinski, C. D. Boyd, and J. A. Dietz, “Fiber optic sensors for predictive health monitoring,” in Proc. IEEE Autotestcon 250–262 (2001).
    [Crossref]
  4. Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2012).
    [Crossref]
  5. X. Wang, Y. Guo, L. Xiong, and H. Wu, “High-frequency optical fiber Bragg grating accelerometer,” IEEE Sens. J. 18(12), 4954–4960 (2018).
    [Crossref]
  6. C. Fu, W. Zhu, W. Deng, F. Xu, N. Wang, L. Zou, and F. Xue, “Measuring the orientation of the flexural vibrations of a cantilevered microwire with a micro-lens fiber-optic interferometer,” Appl. Phys. Lett. 113(24), 243101 (2018).
    [Crossref]
  7. W. Bao, X. Qiao, and Q. Rong, “Fiber-optic vector accelerometer using orthogonal Bragg grating inscription over innermost cladding of a multi-clad fiber,” J. Lightwave Technol. 37(11) 2706–2712 (2018).
  8. Y. R. García, J. M. Corres, and J. Goicoechea, “Vibration detection using optical fiber sensors,” J. Sens. 2010, 1 (2010).
    [Crossref]
  9. T. K. Gangopadhyay, “Prospects for fiber Bragg gratings and Fabry-Perot interferometers in fiber-optic vibration sensing,” Sensor Actuat. A-Phys. 113(1), 20–38 (2004).
  10. M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photonics Technol. Lett. 10(11), 1605–1607 (1998).
    [Crossref]
  11. G. A. Cranch and P. J. Nash, “High-responsivity fiber-optic flexural disk accelerometers,” J. Lightwave Technol. 18(9), 1233–1243 (2000).
    [Crossref]
  12. J. Villatoro, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Interferometer based on strongly coupled multi-core optical fiber for accurate vibration sensing,” Opt. Express 25(21), 25734–25740 (2017).
    [Crossref] [PubMed]
  13. Q. Rong, T. Guo, W. Bao, Z. Shao, G. D. Peng, and X. Qiao, “Highly sensitive fiber-optic accelerometer by grating inscription in specific core dip fiber,” Sci. Rep. 7(1), 11856 (2017).
    [Crossref] [PubMed]
  14. A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
    [Crossref]
  15. J. Li, G. Y. Wang, J. N. Sun, R. R. J. Maier, W. N. Macpherson, D. P. Hand, and F. Z. Dong, “Micro-machined optical fiber side-cantilevers for acceleration measurement,” IEEE Photonics Technol. Lett. 29(21), 1836–1839 (2017).
    [Crossref]
  16. R. P. Linessio, K. D. M. Sousa, T. D. Silva, C. A. Bavastri, P. F. D. C. Antunes, and J. C. C. D. Silva, “Induction motors vibration monitoring using a biaxial optical fiber accelerometer,” IEEE Sens. J. 16(22), 8075–8082 (2016).
    [Crossref]
  17. Q. Rong, X. Qiao, T. Guo, W. Bao, D. Su, and H. Yang, “Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding,” Opt. Lett. 39(23), 6616–6619 (2014).
    [Crossref] [PubMed]
  18. M. Hou, K. Yang, J. He, X. Xu, S. Ju, K. Guo, and Y. Wang, “Two-dimensional vector bending sensor based on seven-core fiber Bragg gratings,” Opt. Express 26(18), 23770–23781 (2018).
    [Crossref] [PubMed]
  19. E. Lindley, S. S. Min, S. Leon-Saval, N. Cvetojevic, J. Lawrence, S. Ellis, and J. Bland-Hawthorn, “Demonstration of uniform multicore fiber Bragg gratings,” Opt. Express 22(25), 31575–31581 (2014).
    [Crossref] [PubMed]
  20. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [Crossref]
  21. R. S. Chang and P. E. Dupont, “FBG-based shape sensing tubes for continuum robots,” in Proc. IEEE Int. Conf. Robot. Autom. 3531–3537 (2014).

2018 (4)

X. Wang, Y. Guo, L. Xiong, and H. Wu, “High-frequency optical fiber Bragg grating accelerometer,” IEEE Sens. J. 18(12), 4954–4960 (2018).
[Crossref]

C. Fu, W. Zhu, W. Deng, F. Xu, N. Wang, L. Zou, and F. Xue, “Measuring the orientation of the flexural vibrations of a cantilevered microwire with a micro-lens fiber-optic interferometer,” Appl. Phys. Lett. 113(24), 243101 (2018).
[Crossref]

M. Hou, K. Yang, J. He, X. Xu, S. Ju, K. Guo, and Y. Wang, “Two-dimensional vector bending sensor based on seven-core fiber Bragg gratings,” Opt. Express 26(18), 23770–23781 (2018).
[Crossref] [PubMed]

W. Bao, X. Qiao, and Q. Rong, “Fiber-optic vector accelerometer using orthogonal Bragg grating inscription over innermost cladding of a multi-clad fiber,” J. Lightwave Technol. 37(11) 2706–2712 (2018).

2017 (3)

J. Li, G. Y. Wang, J. N. Sun, R. R. J. Maier, W. N. Macpherson, D. P. Hand, and F. Z. Dong, “Micro-machined optical fiber side-cantilevers for acceleration measurement,” IEEE Photonics Technol. Lett. 29(21), 1836–1839 (2017).
[Crossref]

Q. Rong, T. Guo, W. Bao, Z. Shao, G. D. Peng, and X. Qiao, “Highly sensitive fiber-optic accelerometer by grating inscription in specific core dip fiber,” Sci. Rep. 7(1), 11856 (2017).
[Crossref] [PubMed]

J. Villatoro, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Interferometer based on strongly coupled multi-core optical fiber for accurate vibration sensing,” Opt. Express 25(21), 25734–25740 (2017).
[Crossref] [PubMed]

2016 (1)

R. P. Linessio, K. D. M. Sousa, T. D. Silva, C. A. Bavastri, P. F. D. C. Antunes, and J. C. C. D. Silva, “Induction motors vibration monitoring using a biaxial optical fiber accelerometer,” IEEE Sens. J. 16(22), 8075–8082 (2016).
[Crossref]

2014 (2)

2012 (1)

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2012).
[Crossref]

2010 (1)

Y. R. García, J. M. Corres, and J. Goicoechea, “Vibration detection using optical fiber sensors,” J. Sens. 2010, 1 (2010).
[Crossref]

2008 (1)

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

2006 (1)

A. Bertolini, R. DeSalvo, F. Fidecaro, M. Francesconi, S. Marka, V. Sannibale, D. Simonetti, A. Takamori, and H. Tariq, “Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 556(2), 616–623 (2006).
[Crossref]

2005 (1)

C. W. Tan and S. Park, “Design of accelerometer-based inertial navigation systems,” IEEE Trans. Instrum. Meas. 54(6), 2520–2530 (2005).
[Crossref]

2004 (1)

T. K. Gangopadhyay, “Prospects for fiber Bragg gratings and Fabry-Perot interferometers in fiber-optic vibration sensing,” Sensor Actuat. A-Phys. 113(1), 20–38 (2004).

2000 (1)

1998 (1)

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photonics Technol. Lett. 10(11), 1605–1607 (1998).
[Crossref]

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Althouse, B. A.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photonics Technol. Lett. 10(11), 1605–1607 (1998).
[Crossref]

Amezcua-Correa, R.

Antonio-Lopez, E.

Antunes, P. F. D. C.

R. P. Linessio, K. D. M. Sousa, T. D. Silva, C. A. Bavastri, P. F. D. C. Antunes, and J. C. C. D. Silva, “Induction motors vibration monitoring using a biaxial optical fiber accelerometer,” IEEE Sens. J. 16(22), 8075–8082 (2016).
[Crossref]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Bao, W.

Barton, J. S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Bavastri, C. A.

R. P. Linessio, K. D. M. Sousa, T. D. Silva, C. A. Bavastri, P. F. D. C. Antunes, and J. C. C. D. Silva, “Induction motors vibration monitoring using a biaxial optical fiber accelerometer,” IEEE Sens. J. 16(22), 8075–8082 (2016).
[Crossref]

Bennion, I.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Bertolini, A.

A. Bertolini, R. DeSalvo, F. Fidecaro, M. Francesconi, S. Marka, V. Sannibale, D. Simonetti, A. Takamori, and H. Tariq, “Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 556(2), 616–623 (2006).
[Crossref]

Bland-Hawthorn, J.

Borinski, J. W.

J. W. Borinski, C. D. Boyd, and J. A. Dietz, “Fiber optic sensors for predictive health monitoring,” in Proc. IEEE Autotestcon 250–262 (2001).
[Crossref]

Boyd, C. D.

J. W. Borinski, C. D. Boyd, and J. A. Dietz, “Fiber optic sensors for predictive health monitoring,” in Proc. IEEE Autotestcon 250–262 (2001).
[Crossref]

Chen, X. F.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Corres, J. M.

Y. R. García, J. M. Corres, and J. Goicoechea, “Vibration detection using optical fiber sensors,” J. Sens. 2010, 1 (2010).
[Crossref]

Cranch, G. A.

Cvetojevic, N.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Deng, W.

C. Fu, W. Zhu, W. Deng, F. Xu, N. Wang, L. Zou, and F. Xue, “Measuring the orientation of the flexural vibrations of a cantilevered microwire with a micro-lens fiber-optic interferometer,” Appl. Phys. Lett. 113(24), 243101 (2018).
[Crossref]

DeSalvo, R.

A. Bertolini, R. DeSalvo, F. Fidecaro, M. Francesconi, S. Marka, V. Sannibale, D. Simonetti, A. Takamori, and H. Tariq, “Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 556(2), 616–623 (2006).
[Crossref]

Dietz, J. A.

J. W. Borinski, C. D. Boyd, and J. A. Dietz, “Fiber optic sensors for predictive health monitoring,” in Proc. IEEE Autotestcon 250–262 (2001).
[Crossref]

Dong, F. Z.

J. Li, G. Y. Wang, J. N. Sun, R. R. J. Maier, W. N. Macpherson, D. P. Hand, and F. Z. Dong, “Micro-machined optical fiber side-cantilevers for acceleration measurement,” IEEE Photonics Technol. Lett. 29(21), 1836–1839 (2017).
[Crossref]

Ellis, S.

Fender, A.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Feng, Z.

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2012).
[Crossref]

Fidecaro, F.

A. Bertolini, R. DeSalvo, F. Fidecaro, M. Francesconi, S. Marka, V. Sannibale, D. Simonetti, A. Takamori, and H. Tariq, “Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 556(2), 616–623 (2006).
[Crossref]

Francesconi, M.

A. Bertolini, R. DeSalvo, F. Fidecaro, M. Francesconi, S. Marka, V. Sannibale, D. Simonetti, A. Takamori, and H. Tariq, “Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 556(2), 616–623 (2006).
[Crossref]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Fu, C.

C. Fu, W. Zhu, W. Deng, F. Xu, N. Wang, L. Zou, and F. Xue, “Measuring the orientation of the flexural vibrations of a cantilevered microwire with a micro-lens fiber-optic interferometer,” Appl. Phys. Lett. 113(24), 243101 (2018).
[Crossref]

Gangopadhyay, T. K.

T. K. Gangopadhyay, “Prospects for fiber Bragg gratings and Fabry-Perot interferometers in fiber-optic vibration sensing,” Sensor Actuat. A-Phys. 113(1), 20–38 (2004).

García, Y. R.

Y. R. García, J. M. Corres, and J. Goicoechea, “Vibration detection using optical fiber sensors,” J. Sens. 2010, 1 (2010).
[Crossref]

George, D. S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Goicoechea, J.

Y. R. García, J. M. Corres, and J. Goicoechea, “Vibration detection using optical fiber sensors,” J. Sens. 2010, 1 (2010).
[Crossref]

Guo, K.

Guo, T.

Q. Rong, T. Guo, W. Bao, Z. Shao, G. D. Peng, and X. Qiao, “Highly sensitive fiber-optic accelerometer by grating inscription in specific core dip fiber,” Sci. Rep. 7(1), 11856 (2017).
[Crossref] [PubMed]

Q. Rong, X. Qiao, T. Guo, W. Bao, D. Su, and H. Yang, “Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding,” Opt. Lett. 39(23), 6616–6619 (2014).
[Crossref] [PubMed]

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2012).
[Crossref]

Guo, Y.

X. Wang, Y. Guo, L. Xiong, and H. Wu, “High-frequency optical fiber Bragg grating accelerometer,” IEEE Sens. J. 18(12), 4954–4960 (2018).
[Crossref]

Hand, D. P.

J. Li, G. Y. Wang, J. N. Sun, R. R. J. Maier, W. N. Macpherson, D. P. Hand, and F. Z. Dong, “Micro-machined optical fiber side-cantilevers for acceleration measurement,” IEEE Photonics Technol. Lett. 29(21), 1836–1839 (2017).
[Crossref]

He, J.

Hou, M.

Howden, R. I.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Hu, M.

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2012).
[Crossref]

Johnson, G. A.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photonics Technol. Lett. 10(11), 1605–1607 (1998).
[Crossref]

Jones, B. J. S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Ju, S.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Lawrence, J.

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Leon-Saval, S.

Li, J.

J. Li, G. Y. Wang, J. N. Sun, R. R. J. Maier, W. N. Macpherson, D. P. Hand, and F. Z. Dong, “Micro-machined optical fiber side-cantilevers for acceleration measurement,” IEEE Photonics Technol. Lett. 29(21), 1836–1839 (2017).
[Crossref]

Lindley, E.

Linessio, R. P.

R. P. Linessio, K. D. M. Sousa, T. D. Silva, C. A. Bavastri, P. F. D. C. Antunes, and J. C. C. D. Silva, “Induction motors vibration monitoring using a biaxial optical fiber accelerometer,” IEEE Sens. J. 16(22), 8075–8082 (2016).
[Crossref]

Macpherson, W. N.

J. Li, G. Y. Wang, J. N. Sun, R. R. J. Maier, W. N. Macpherson, D. P. Hand, and F. Z. Dong, “Micro-machined optical fiber side-cantilevers for acceleration measurement,” IEEE Photonics Technol. Lett. 29(21), 1836–1839 (2017).
[Crossref]

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Maier, R. R. J.

J. Li, G. Y. Wang, J. N. Sun, R. R. J. Maier, W. N. Macpherson, D. P. Hand, and F. Z. Dong, “Micro-machined optical fiber side-cantilevers for acceleration measurement,” IEEE Photonics Technol. Lett. 29(21), 1836–1839 (2017).
[Crossref]

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Marka, S.

A. Bertolini, R. DeSalvo, F. Fidecaro, M. Francesconi, S. Marka, V. Sannibale, D. Simonetti, A. Takamori, and H. Tariq, “Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 556(2), 616–623 (2006).
[Crossref]

McCulloch, S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Min, S. S.

Nash, P. J.

Park, S.

C. W. Tan and S. Park, “Design of accelerometer-based inertial navigation systems,” IEEE Trans. Instrum. Meas. 54(6), 2520–2530 (2005).
[Crossref]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Peng, G. D.

Q. Rong, T. Guo, W. Bao, Z. Shao, G. D. Peng, and X. Qiao, “Highly sensitive fiber-optic accelerometer by grating inscription in specific core dip fiber,” Sci. Rep. 7(1), 11856 (2017).
[Crossref] [PubMed]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Qiao, X.

W. Bao, X. Qiao, and Q. Rong, “Fiber-optic vector accelerometer using orthogonal Bragg grating inscription over innermost cladding of a multi-clad fiber,” J. Lightwave Technol. 37(11) 2706–2712 (2018).

Q. Rong, T. Guo, W. Bao, Z. Shao, G. D. Peng, and X. Qiao, “Highly sensitive fiber-optic accelerometer by grating inscription in specific core dip fiber,” Sci. Rep. 7(1), 11856 (2017).
[Crossref] [PubMed]

Q. Rong, X. Qiao, T. Guo, W. Bao, D. Su, and H. Yang, “Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding,” Opt. Lett. 39(23), 6616–6619 (2014).
[Crossref] [PubMed]

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2012).
[Crossref]

Rong, Q.

Sannibale, V.

A. Bertolini, R. DeSalvo, F. Fidecaro, M. Francesconi, S. Marka, V. Sannibale, D. Simonetti, A. Takamori, and H. Tariq, “Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 556(2), 616–623 (2006).
[Crossref]

Schülzgen, A.

Shao, Z.

Q. Rong, T. Guo, W. Bao, Z. Shao, G. D. Peng, and X. Qiao, “Highly sensitive fiber-optic accelerometer by grating inscription in specific core dip fiber,” Sci. Rep. 7(1), 11856 (2017).
[Crossref] [PubMed]

Silva, J. C. C. D.

R. P. Linessio, K. D. M. Sousa, T. D. Silva, C. A. Bavastri, P. F. D. C. Antunes, and J. C. C. D. Silva, “Induction motors vibration monitoring using a biaxial optical fiber accelerometer,” IEEE Sens. J. 16(22), 8075–8082 (2016).
[Crossref]

Silva, T. D.

R. P. Linessio, K. D. M. Sousa, T. D. Silva, C. A. Bavastri, P. F. D. C. Antunes, and J. C. C. D. Silva, “Induction motors vibration monitoring using a biaxial optical fiber accelerometer,” IEEE Sens. J. 16(22), 8075–8082 (2016).
[Crossref]

Simonetti, D.

A. Bertolini, R. DeSalvo, F. Fidecaro, M. Francesconi, S. Marka, V. Sannibale, D. Simonetti, A. Takamori, and H. Tariq, “Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 556(2), 616–623 (2006).
[Crossref]

Smith, G. W.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Sousa, K. D. M.

R. P. Linessio, K. D. M. Sousa, T. D. Silva, C. A. Bavastri, P. F. D. C. Antunes, and J. C. C. D. Silva, “Induction motors vibration monitoring using a biaxial optical fiber accelerometer,” IEEE Sens. J. 16(22), 8075–8082 (2016).
[Crossref]

Su, D.

Sun, J. N.

J. Li, G. Y. Wang, J. N. Sun, R. R. J. Maier, W. N. Macpherson, D. P. Hand, and F. Z. Dong, “Micro-machined optical fiber side-cantilevers for acceleration measurement,” IEEE Photonics Technol. Lett. 29(21), 1836–1839 (2017).
[Crossref]

Suo, R.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Takamori, A.

A. Bertolini, R. DeSalvo, F. Fidecaro, M. Francesconi, S. Marka, V. Sannibale, D. Simonetti, A. Takamori, and H. Tariq, “Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 556(2), 616–623 (2006).
[Crossref]

Tan, C. W.

C. W. Tan and S. Park, “Design of accelerometer-based inertial navigation systems,” IEEE Trans. Instrum. Meas. 54(6), 2520–2530 (2005).
[Crossref]

Tariq, H.

A. Bertolini, R. DeSalvo, F. Fidecaro, M. Francesconi, S. Marka, V. Sannibale, D. Simonetti, A. Takamori, and H. Tariq, “Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 556(2), 616–623 (2006).
[Crossref]

Todd, M. D.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photonics Technol. Lett. 10(11), 1605–1607 (1998).
[Crossref]

Villatoro, J.

Vohra, S. T.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photonics Technol. Lett. 10(11), 1605–1607 (1998).
[Crossref]

Wang, G. Y.

J. Li, G. Y. Wang, J. N. Sun, R. R. J. Maier, W. N. Macpherson, D. P. Hand, and F. Z. Dong, “Micro-machined optical fiber side-cantilevers for acceleration measurement,” IEEE Photonics Technol. Lett. 29(21), 1836–1839 (2017).
[Crossref]

Wang, N.

C. Fu, W. Zhu, W. Deng, F. Xu, N. Wang, L. Zou, and F. Xue, “Measuring the orientation of the flexural vibrations of a cantilevered microwire with a micro-lens fiber-optic interferometer,” Appl. Phys. Lett. 113(24), 243101 (2018).
[Crossref]

Wang, R.

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2012).
[Crossref]

Wang, X.

X. Wang, Y. Guo, L. Xiong, and H. Wu, “High-frequency optical fiber Bragg grating accelerometer,” IEEE Sens. J. 18(12), 4954–4960 (2018).
[Crossref]

Wang, Y.

Weng, Y.

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2012).
[Crossref]

Wu, H.

X. Wang, Y. Guo, L. Xiong, and H. Wu, “High-frequency optical fiber Bragg grating accelerometer,” IEEE Sens. J. 18(12), 4954–4960 (2018).
[Crossref]

Xiong, L.

X. Wang, Y. Guo, L. Xiong, and H. Wu, “High-frequency optical fiber Bragg grating accelerometer,” IEEE Sens. J. 18(12), 4954–4960 (2018).
[Crossref]

Xu, F.

C. Fu, W. Zhu, W. Deng, F. Xu, N. Wang, L. Zou, and F. Xue, “Measuring the orientation of the flexural vibrations of a cantilevered microwire with a micro-lens fiber-optic interferometer,” Appl. Phys. Lett. 113(24), 243101 (2018).
[Crossref]

Xu, X.

Xue, F.

C. Fu, W. Zhu, W. Deng, F. Xu, N. Wang, L. Zou, and F. Xue, “Measuring the orientation of the flexural vibrations of a cantilevered microwire with a micro-lens fiber-optic interferometer,” Appl. Phys. Lett. 113(24), 243101 (2018).
[Crossref]

Yang, H.

Yang, K.

Zhang, J.

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2012).
[Crossref]

Zhang, L.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Zhu, W.

C. Fu, W. Zhu, W. Deng, F. Xu, N. Wang, L. Zou, and F. Xue, “Measuring the orientation of the flexural vibrations of a cantilevered microwire with a micro-lens fiber-optic interferometer,” Appl. Phys. Lett. 113(24), 243101 (2018).
[Crossref]

Zou, L.

C. Fu, W. Zhu, W. Deng, F. Xu, N. Wang, L. Zou, and F. Xue, “Measuring the orientation of the flexural vibrations of a cantilevered microwire with a micro-lens fiber-optic interferometer,” Appl. Phys. Lett. 113(24), 243101 (2018).
[Crossref]

Zubia, J.

Appl. Phys. Lett. (1)

C. Fu, W. Zhu, W. Deng, F. Xu, N. Wang, L. Zou, and F. Xue, “Measuring the orientation of the flexural vibrations of a cantilevered microwire with a micro-lens fiber-optic interferometer,” Appl. Phys. Lett. 113(24), 243101 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photonics Technol. Lett. 10(11), 1605–1607 (1998).
[Crossref]

J. Li, G. Y. Wang, J. N. Sun, R. R. J. Maier, W. N. Macpherson, D. P. Hand, and F. Z. Dong, “Micro-machined optical fiber side-cantilevers for acceleration measurement,” IEEE Photonics Technol. Lett. 29(21), 1836–1839 (2017).
[Crossref]

IEEE Sens. J. (4)

R. P. Linessio, K. D. M. Sousa, T. D. Silva, C. A. Bavastri, P. F. D. C. Antunes, and J. C. C. D. Silva, “Induction motors vibration monitoring using a biaxial optical fiber accelerometer,” IEEE Sens. J. 16(22), 8075–8082 (2016).
[Crossref]

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12(4), 800–804 (2012).
[Crossref]

X. Wang, Y. Guo, L. Xiong, and H. Wu, “High-frequency optical fiber Bragg grating accelerometer,” IEEE Sens. J. 18(12), 4954–4960 (2018).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

C. W. Tan and S. Park, “Design of accelerometer-based inertial navigation systems,” IEEE Trans. Instrum. Meas. 54(6), 2520–2530 (2005).
[Crossref]

J. Lightwave Technol. (3)

J. Sens. (1)

Y. R. García, J. M. Corres, and J. Goicoechea, “Vibration detection using optical fiber sensors,” J. Sens. 2010, 1 (2010).
[Crossref]

Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. (1)

A. Bertolini, R. DeSalvo, F. Fidecaro, M. Francesconi, S. Marka, V. Sannibale, D. Simonetti, A. Takamori, and H. Tariq, “Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 556(2), 616–623 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Sci. Rep. (1)

Q. Rong, T. Guo, W. Bao, Z. Shao, G. D. Peng, and X. Qiao, “Highly sensitive fiber-optic accelerometer by grating inscription in specific core dip fiber,” Sci. Rep. 7(1), 11856 (2017).
[Crossref] [PubMed]

Sensor Actuat. A-Phys. (1)

T. K. Gangopadhyay, “Prospects for fiber Bragg gratings and Fabry-Perot interferometers in fiber-optic vibration sensing,” Sensor Actuat. A-Phys. 113(1), 20–38 (2004).

Other (2)

J. W. Borinski, C. D. Boyd, and J. A. Dietz, “Fiber optic sensors for predictive health monitoring,” in Proc. IEEE Autotestcon 250–262 (2001).
[Crossref]

R. S. Chang and P. E. Dupont, “FBG-based shape sensing tubes for continuum robots,” in Proc. IEEE Int. Conf. Robot. Autom. 3531–3537 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) SEM image of the homogeneous seven-core MCF and (b) cross-section of the fiber cores with the defined geometrical parameters.
Fig. 2
Fig. 2 Reflection spectra of the FBGs written in core 1, 2 and 4.
Fig. 3
Fig. 3 (a) Definition of distance D from the core of interest to the neutral plane and (b) detailed illustration of the free-fiber with length L; (c) schematic setup for the vibration test of the two-dimensional accelerometer.
Fig. 4
Fig. 4 (a) Real-time wavelength shifts of FBGs in core 1, 2 and 4 with the following values: L = 45.5 mm, f = 40 Hz, θv = 90° and a = 10 g. The corresponding (b) FFT spectrum with a = 10 g, and (c) wavelength shift versus applied acceleration at values from 0 g to 10 g.
Fig. 5
Fig. 5 Sensitivity-frequency responses of the FBG in core 2 when θv = 90°, L = 66, 45.5 and 25 mm with or without a glue mass. Inset shows the theoretical resonance frequencies under different fiber lengths.
Fig. 6
Fig. 6 Orientation dependence of the sensitivities of FBGs in core 1, 2 and 4 under different conditions. (a) L = 66 mm and f = 20 Hz; (b) L = 45.5 mm and f = 40 Hz.
Fig. 7
Fig. 7 Input and measured orientation values under specific orientations from 0 to 180° when L = 45.5 mm and f = 30 Hz. Inset shows the corresponding accuracy ranges.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ λ i =( 1 p e ) λ i ε i ,
ε i = d i R sin( θ v + θ i ),
Δ λ 2 λ 2 =( 1 p e ) d 2 R sin( θ v + θ 2 ),
Δ λ 4 λ 4 =( 1 p e ) d 4 R sin( θ v + θ 4 ),
θ v =arctan( Δ λ 2 λ 2 sin θ 4 Δ λ 4 λ 4 sin θ 2 Δ λ 4 λ 4 cos θ 2 Δ λ 2 λ 2 cos θ 4 )