Abstract

We demonstrate the first lasing emission of a thermo-electrically cooled terahertz quantum cascade laser (THz QCL). A high temperature three-well THz QCL emitting at 3.8 THz is mounted to a novel five-stage thermoelectric cooler reaching a temperature difference of ΔT = 124 K. The temperature and time-dependent laser performance is investigated and shows a peak pulse power of 4.4 mW and a peak average output power of 100 μW for steady-state operation.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers
Opt. Express 18(10) 10177-10187 (2010)

Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation

Kazuue Fujita, Masahiro Hitaka, Akio Ito, Masamichi Yamanishi, Tatsuo Dougakiuchi, and Tadataka Edamura
Opt. Express 24(15) 16357-16365 (2016)

Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling

S. Fathololoumi, E. Dupont, C.W.I. Chan, Z.R. Wasilewski, S.R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu
Opt. Express 20(4) 3866-3876 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
    [Crossref] [PubMed]
  2. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
    [Crossref]
  3. M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
    [Crossref]
  4. K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
    [Crossref] [PubMed]
  5. L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. Davies, and E. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
    [Crossref]
  6. S. Fathololoumi, E. Dupont, C. Chan, Z. Wasilewski, S. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866–3876 (2012).
    [Crossref] [PubMed]
  7. M. Franckié, L. Bosco, M. Beck, E. Mavrona, and J. Faist, “Optimization and fabrication of two-quantum well THz QCLs operating above 200 K,” in Conference on Lasers and Electro-Optics, (OSA, San Jose, California, 2019), p. SW4F.1.
  8. H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, “Terahertz quantum-cascade lasers based on a three-well active module,” Appl. Phys. Lett. 90, 041112 (2007).
    [Crossref]
  9. S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “Two-well terahertz quantum-cascade laser with direct intrawell-phonon depopulation,” Appl. Phys. Lett. 95, 141110 (2009).
    [Crossref]
  10. R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, and M. A. Belkin, “GaAs/Al0.15Ga0.85As terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 K,” Appl. Phys. Lett. 97, 131111 (2010).
    [Crossref]
  11. M. Franckié, L. Bosco, M. Beck, C. Bonzon, E. Mavrona, G. Scalari, A. Wacker, and J. Faist, “Two-well quantum cascade laser optimization by non-equilibrium Green’s function modelling,” Appl. Phys. Lett. 112, 021104 (2018).
    [Crossref]
  12. M. A. Kainz, S. Schönhuber, A. M. Andrews, H. Detz, B. Limbacher, G. Strasser, and K. Unterrainer, “Barrier Height Tuning of Terahertz Quantum Cascade Lasers for High-Temperature Operation,” ACS Photonics 5, 4687–4693 (2018).
    [Crossref]
  13. H. Detz, A. M. Andrews, M. A. Kainz, S. Schönhuber, T. Zederbauer, D. MacFarland, M. Krall, C. Deutsch, M. Brandstetter, P. Klang, W. Schrenk, K. Unterrainer, and G. Strasser, “Evaluation of Material Systems for THz Quantum Cascade LaserActive Regions,” Phys. Status Solidi A 216, 1800504 (2018).
    [Crossref]
  14. L. Ajili, G. Scalari, N. Hoyler, M. Giovannini, and J. Faist, “InGaAs–AlInAs/InP terahertz quantum cascade laser,” Appl. Phys. Lett. 87, 141107 (2005).
    [Crossref]
  15. C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers,” ACS Photonics 4, 957–962 (2017).
    [Crossref] [PubMed]
  16. C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett. 97, 261110 (2010).
    [Crossref]
  17. M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108, 011109 (2016).
    [Crossref]
  18. B. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. Reno, “3.4 THz quantum cascade laser operating above liquid nitrogen temperature,” Electron. Lett. 39, 915 (2003).
    [Crossref]
  19. H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18, 10177 (2010).
    [Crossref] [PubMed]
  20. H.-W. Hubers, H. Richter, R. Eichholz, M. Wienold, K. Biermann, L. Schrottke, and H. T. Grahn, “Heterodyne Spectroscopy of Frequency Instabilities in Terahertz Quantum-Cascade Lasers Induced by Optical Feedback,” IEEE J. Sel. Top. Quantum Electron. 23, 1–6 (2017).
    [Crossref]
  21. F. J. DiSalvo, “Thermoelectric Cooling and Power Generation,” Science 285, 703–706 (1999).
    [Crossref] [PubMed]
  22. S. Riffat and X. Ma, “Thermoelectrics: A review of present and potential applications,” Appl. Therm. Eng. 23, 913–935 (2003).
    [Crossref]
  23. D. Hofstetter, M. Beck, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a 9.3 M m quantum cascade laser on a Peltier cooler,” Appl. Phys. Lett. 78, 1964–1966(2001).
    [Crossref]
  24. D. Weidmann, F. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907–913 (2004).
    [Crossref]
  25. M. A. Kainz, S. Schönhuber, B. Limbacher, A. M. Andrews, H. Detz, G. Strasser, G. Bastard, and K. Unterrainer, “Color switching of a terahertz quantum cascade laser,” Appl. Phys. Lett. 114, 191104 (2019).
    [Crossref]

2019 (1)

M. A. Kainz, S. Schönhuber, B. Limbacher, A. M. Andrews, H. Detz, G. Strasser, G. Bastard, and K. Unterrainer, “Color switching of a terahertz quantum cascade laser,” Appl. Phys. Lett. 114, 191104 (2019).
[Crossref]

2018 (3)

M. Franckié, L. Bosco, M. Beck, C. Bonzon, E. Mavrona, G. Scalari, A. Wacker, and J. Faist, “Two-well quantum cascade laser optimization by non-equilibrium Green’s function modelling,” Appl. Phys. Lett. 112, 021104 (2018).
[Crossref]

M. A. Kainz, S. Schönhuber, A. M. Andrews, H. Detz, B. Limbacher, G. Strasser, and K. Unterrainer, “Barrier Height Tuning of Terahertz Quantum Cascade Lasers for High-Temperature Operation,” ACS Photonics 5, 4687–4693 (2018).
[Crossref]

H. Detz, A. M. Andrews, M. A. Kainz, S. Schönhuber, T. Zederbauer, D. MacFarland, M. Krall, C. Deutsch, M. Brandstetter, P. Klang, W. Schrenk, K. Unterrainer, and G. Strasser, “Evaluation of Material Systems for THz Quantum Cascade LaserActive Regions,” Phys. Status Solidi A 216, 1800504 (2018).
[Crossref]

2017 (2)

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers,” ACS Photonics 4, 957–962 (2017).
[Crossref] [PubMed]

H.-W. Hubers, H. Richter, R. Eichholz, M. Wienold, K. Biermann, L. Schrottke, and H. T. Grahn, “Heterodyne Spectroscopy of Frequency Instabilities in Terahertz Quantum-Cascade Lasers Induced by Optical Feedback,” IEEE J. Sel. Top. Quantum Electron. 23, 1–6 (2017).
[Crossref]

2016 (1)

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108, 011109 (2016).
[Crossref]

2014 (1)

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. Davies, and E. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

2013 (1)

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

2012 (1)

2010 (3)

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, and M. A. Belkin, “GaAs/Al0.15Ga0.85As terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 K,” Appl. Phys. Lett. 97, 131111 (2010).
[Crossref]

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett. 97, 261110 (2010).
[Crossref]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18, 10177 (2010).
[Crossref] [PubMed]

2009 (1)

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “Two-well terahertz quantum-cascade laser with direct intrawell-phonon depopulation,” Appl. Phys. Lett. 95, 141110 (2009).
[Crossref]

2007 (3)

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, “Terahertz quantum-cascade lasers based on a three-well active module,” Appl. Phys. Lett. 90, 041112 (2007).
[Crossref]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

2005 (1)

L. Ajili, G. Scalari, N. Hoyler, M. Giovannini, and J. Faist, “InGaAs–AlInAs/InP terahertz quantum cascade laser,” Appl. Phys. Lett. 87, 141107 (2005).
[Crossref]

2004 (1)

D. Weidmann, F. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907–913 (2004).
[Crossref]

2003 (2)

S. Riffat and X. Ma, “Thermoelectrics: A review of present and potential applications,” Appl. Therm. Eng. 23, 913–935 (2003).
[Crossref]

B. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. Reno, “3.4 THz quantum cascade laser operating above liquid nitrogen temperature,” Electron. Lett. 39, 915 (2003).
[Crossref]

2002 (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

2001 (1)

D. Hofstetter, M. Beck, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a 9.3 M m quantum cascade laser on a Peltier cooler,” Appl. Phys. Lett. 78, 1964–1966(2001).
[Crossref]

1999 (1)

F. J. DiSalvo, “Thermoelectric Cooling and Power Generation,” Science 285, 703–706 (1999).
[Crossref] [PubMed]

Adams, R. W.

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, and M. A. Belkin, “GaAs/Al0.15Ga0.85As terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 K,” Appl. Phys. Lett. 97, 131111 (2010).
[Crossref]

Aellen, T.

D. Weidmann, F. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907–913 (2004).
[Crossref]

D. Hofstetter, M. Beck, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a 9.3 M m quantum cascade laser on a Peltier cooler,” Appl. Phys. Lett. 78, 1964–1966(2001).
[Crossref]

Aers, G. C.

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, “Terahertz quantum-cascade lasers based on a three-well active module,” Appl. Phys. Lett. 90, 041112 (2007).
[Crossref]

Ajili, L.

L. Ajili, G. Scalari, N. Hoyler, M. Giovannini, and J. Faist, “InGaAs–AlInAs/InP terahertz quantum cascade laser,” Appl. Phys. Lett. 87, 141107 (2005).
[Crossref]

Amann, M. C.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Andrews, A. M.

M. A. Kainz, S. Schönhuber, B. Limbacher, A. M. Andrews, H. Detz, G. Strasser, G. Bastard, and K. Unterrainer, “Color switching of a terahertz quantum cascade laser,” Appl. Phys. Lett. 114, 191104 (2019).
[Crossref]

H. Detz, A. M. Andrews, M. A. Kainz, S. Schönhuber, T. Zederbauer, D. MacFarland, M. Krall, C. Deutsch, M. Brandstetter, P. Klang, W. Schrenk, K. Unterrainer, and G. Strasser, “Evaluation of Material Systems for THz Quantum Cascade LaserActive Regions,” Phys. Status Solidi A 216, 1800504 (2018).
[Crossref]

M. A. Kainz, S. Schönhuber, A. M. Andrews, H. Detz, B. Limbacher, G. Strasser, and K. Unterrainer, “Barrier Height Tuning of Terahertz Quantum Cascade Lasers for High-Temperature Operation,” ACS Photonics 5, 4687–4693 (2018).
[Crossref]

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers,” ACS Photonics 4, 957–962 (2017).
[Crossref] [PubMed]

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108, 011109 (2016).
[Crossref]

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett. 97, 261110 (2010).
[Crossref]

Bachmann, D.

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers,” ACS Photonics 4, 957–962 (2017).
[Crossref] [PubMed]

Ban, D.

Bastard, G.

M. A. Kainz, S. Schönhuber, B. Limbacher, A. M. Andrews, H. Detz, G. Strasser, G. Bastard, and K. Unterrainer, “Color switching of a terahertz quantum cascade laser,” Appl. Phys. Lett. 114, 191104 (2019).
[Crossref]

Beck, M.

M. Franckié, L. Bosco, M. Beck, C. Bonzon, E. Mavrona, G. Scalari, A. Wacker, and J. Faist, “Two-well quantum cascade laser optimization by non-equilibrium Green’s function modelling,” Appl. Phys. Lett. 112, 021104 (2018).
[Crossref]

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers,” ACS Photonics 4, 957–962 (2017).
[Crossref] [PubMed]

D. Weidmann, F. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907–913 (2004).
[Crossref]

D. Hofstetter, M. Beck, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a 9.3 M m quantum cascade laser on a Peltier cooler,” Appl. Phys. Lett. 78, 1964–1966(2001).
[Crossref]

M. Franckié, L. Bosco, M. Beck, E. Mavrona, and J. Faist, “Optimization and fabrication of two-quantum well THz QCLs operating above 200 K,” in Conference on Lasers and Electro-Optics, (OSA, San Jose, California, 2019), p. SW4F.1.

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Belkin, M. A.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, and M. A. Belkin, “GaAs/Al0.15Ga0.85As terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 K,” Appl. Phys. Lett. 97, 131111 (2010).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Belyanin, A.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Benz, A.

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett. 97, 261110 (2010).
[Crossref]

Biermann, K.

H.-W. Hubers, H. Richter, R. Eichholz, M. Wienold, K. Biermann, L. Schrottke, and H. T. Grahn, “Heterodyne Spectroscopy of Frequency Instabilities in Terahertz Quantum-Cascade Lasers Induced by Optical Feedback,” IEEE J. Sel. Top. Quantum Electron. 23, 1–6 (2017).
[Crossref]

Blaser, S.

D. Weidmann, F. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907–913 (2004).
[Crossref]

Boehm, G.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Bonzon, C.

M. Franckié, L. Bosco, M. Beck, C. Bonzon, E. Mavrona, G. Scalari, A. Wacker, and J. Faist, “Two-well quantum cascade laser optimization by non-equilibrium Green’s function modelling,” Appl. Phys. Lett. 112, 021104 (2018).
[Crossref]

Bosco, L.

M. Franckié, L. Bosco, M. Beck, C. Bonzon, E. Mavrona, G. Scalari, A. Wacker, and J. Faist, “Two-well quantum cascade laser optimization by non-equilibrium Green’s function modelling,” Appl. Phys. Lett. 112, 021104 (2018).
[Crossref]

M. Franckié, L. Bosco, M. Beck, E. Mavrona, and J. Faist, “Optimization and fabrication of two-quantum well THz QCLs operating above 200 K,” in Conference on Lasers and Electro-Optics, (OSA, San Jose, California, 2019), p. SW4F.1.

Brandstetter, M.

H. Detz, A. M. Andrews, M. A. Kainz, S. Schönhuber, T. Zederbauer, D. MacFarland, M. Krall, C. Deutsch, M. Brandstetter, P. Klang, W. Schrenk, K. Unterrainer, and G. Strasser, “Evaluation of Material Systems for THz Quantum Cascade LaserActive Regions,” Phys. Status Solidi A 216, 1800504 (2018).
[Crossref]

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers,” ACS Photonics 4, 957–962 (2017).
[Crossref] [PubMed]

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108, 011109 (2016).
[Crossref]

Callebaut, H.

B. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. Reno, “3.4 THz quantum cascade laser operating above liquid nitrogen temperature,” Electron. Lett. 39, 915 (2003).
[Crossref]

Cao, J. C.

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, “Terahertz quantum-cascade lasers based on a three-well active module,” Appl. Phys. Lett. 90, 041112 (2007).
[Crossref]

Capasso, F.

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, and M. A. Belkin, “GaAs/Al0.15Ga0.85As terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 K,” Appl. Phys. Lett. 97, 131111 (2010).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Chan, C.

Chan, C. W. I.

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “Two-well terahertz quantum-cascade laser with direct intrawell-phonon depopulation,” Appl. Phys. Lett. 95, 141110 (2009).
[Crossref]

Chen, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. Davies, and E. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Cho, A. Y.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Choutagunta, K.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Davies, A.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. Davies, and E. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Davies, A. G.

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, and M. A. Belkin, “GaAs/Al0.15Ga0.85As terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 K,” Appl. Phys. Lett. 97, 131111 (2010).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Dean, P.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. Davies, and E. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Demmerle, F.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Detz, H.

M. A. Kainz, S. Schönhuber, B. Limbacher, A. M. Andrews, H. Detz, G. Strasser, G. Bastard, and K. Unterrainer, “Color switching of a terahertz quantum cascade laser,” Appl. Phys. Lett. 114, 191104 (2019).
[Crossref]

M. A. Kainz, S. Schönhuber, A. M. Andrews, H. Detz, B. Limbacher, G. Strasser, and K. Unterrainer, “Barrier Height Tuning of Terahertz Quantum Cascade Lasers for High-Temperature Operation,” ACS Photonics 5, 4687–4693 (2018).
[Crossref]

H. Detz, A. M. Andrews, M. A. Kainz, S. Schönhuber, T. Zederbauer, D. MacFarland, M. Krall, C. Deutsch, M. Brandstetter, P. Klang, W. Schrenk, K. Unterrainer, and G. Strasser, “Evaluation of Material Systems for THz Quantum Cascade LaserActive Regions,” Phys. Status Solidi A 216, 1800504 (2018).
[Crossref]

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers,” ACS Photonics 4, 957–962 (2017).
[Crossref] [PubMed]

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108, 011109 (2016).
[Crossref]

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett. 97, 261110 (2010).
[Crossref]

Deutsch, C.

H. Detz, A. M. Andrews, M. A. Kainz, S. Schönhuber, T. Zederbauer, D. MacFarland, M. Krall, C. Deutsch, M. Brandstetter, P. Klang, W. Schrenk, K. Unterrainer, and G. Strasser, “Evaluation of Material Systems for THz Quantum Cascade LaserActive Regions,” Phys. Status Solidi A 216, 1800504 (2018).
[Crossref]

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers,” ACS Photonics 4, 957–962 (2017).
[Crossref] [PubMed]

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett. 97, 261110 (2010).
[Crossref]

DiSalvo, F. J.

F. J. DiSalvo, “Thermoelectric Cooling and Power Generation,” Science 285, 703–706 (1999).
[Crossref] [PubMed]

Dupont, E.

Eichholz, R.

H.-W. Hubers, H. Richter, R. Eichholz, M. Wienold, K. Biermann, L. Schrottke, and H. T. Grahn, “Heterodyne Spectroscopy of Frequency Instabilities in Terahertz Quantum-Cascade Lasers Induced by Optical Feedback,” IEEE J. Sel. Top. Quantum Electron. 23, 1–6 (2017).
[Crossref]

Faist, J.

M. Franckié, L. Bosco, M. Beck, C. Bonzon, E. Mavrona, G. Scalari, A. Wacker, and J. Faist, “Two-well quantum cascade laser optimization by non-equilibrium Green’s function modelling,” Appl. Phys. Lett. 112, 021104 (2018).
[Crossref]

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers,” ACS Photonics 4, 957–962 (2017).
[Crossref] [PubMed]

L. Ajili, G. Scalari, N. Hoyler, M. Giovannini, and J. Faist, “InGaAs–AlInAs/InP terahertz quantum cascade laser,” Appl. Phys. Lett. 87, 141107 (2005).
[Crossref]

D. Weidmann, F. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907–913 (2004).
[Crossref]

D. Hofstetter, M. Beck, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a 9.3 M m quantum cascade laser on a Peltier cooler,” Appl. Phys. Lett. 78, 1964–1966(2001).
[Crossref]

M. Franckié, L. Bosco, M. Beck, E. Mavrona, and J. Faist, “Optimization and fabrication of two-quantum well THz QCLs operating above 200 K,” in Conference on Lasers and Electro-Optics, (OSA, San Jose, California, 2019), p. SW4F.1.

Fan, J.

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, and M. A. Belkin, “GaAs/Al0.15Ga0.85As terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 K,” Appl. Phys. Lett. 97, 131111 (2010).
[Crossref]

Fathololoumi, S.

Franckié, M.

M. Franckié, L. Bosco, M. Beck, C. Bonzon, E. Mavrona, G. Scalari, A. Wacker, and J. Faist, “Two-well quantum cascade laser optimization by non-equilibrium Green’s function modelling,” Appl. Phys. Lett. 112, 021104 (2018).
[Crossref]

M. Franckié, L. Bosco, M. Beck, E. Mavrona, and J. Faist, “Optimization and fabrication of two-quantum well THz QCLs operating above 200 K,” in Conference on Lasers and Electro-Optics, (OSA, San Jose, California, 2019), p. SW4F.1.

Freeman, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. Davies, and E. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Giehler, M.

Gini, E.

D. Hofstetter, M. Beck, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a 9.3 M m quantum cascade laser on a Peltier cooler,” Appl. Phys. Lett. 78, 1964–1966(2001).
[Crossref]

Giovannini, M.

L. Ajili, G. Scalari, N. Hoyler, M. Giovannini, and J. Faist, “InGaAs–AlInAs/InP terahertz quantum cascade laser,” Appl. Phys. Lett. 87, 141107 (2005).
[Crossref]

Grahn, H. T.

H.-W. Hubers, H. Richter, R. Eichholz, M. Wienold, K. Biermann, L. Schrottke, and H. T. Grahn, “Heterodyne Spectroscopy of Frequency Instabilities in Terahertz Quantum-Cascade Lasers Induced by Optical Feedback,” IEEE J. Sel. Top. Quantum Electron. 23, 1–6 (2017).
[Crossref]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18, 10177 (2010).
[Crossref] [PubMed]

Greiner-Bär, M.

Hey, R.

Hofstetter, D.

D. Weidmann, F. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907–913 (2004).
[Crossref]

D. Hofstetter, M. Beck, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a 9.3 M m quantum cascade laser on a Peltier cooler,” Appl. Phys. Lett. 78, 1964–1966(2001).
[Crossref]

Hoyler, N.

L. Ajili, G. Scalari, N. Hoyler, M. Giovannini, and J. Faist, “InGaAs–AlInAs/InP terahertz quantum cascade laser,” Appl. Phys. Lett. 87, 141107 (2005).
[Crossref]

Hu, Q.

S. Fathololoumi, E. Dupont, C. Chan, Z. Wasilewski, S. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866–3876 (2012).
[Crossref] [PubMed]

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “Two-well terahertz quantum-cascade laser with direct intrawell-phonon depopulation,” Appl. Phys. Lett. 95, 141110 (2009).
[Crossref]

B. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. Reno, “3.4 THz quantum cascade laser operating above liquid nitrogen temperature,” Electron. Lett. 39, 915 (2003).
[Crossref]

Hubers, H.-W.

H.-W. Hubers, H. Richter, R. Eichholz, M. Wienold, K. Biermann, L. Schrottke, and H. T. Grahn, “Heterodyne Spectroscopy of Frequency Instabilities in Terahertz Quantum-Cascade Lasers Induced by Optical Feedback,” IEEE J. Sel. Top. Quantum Electron. 23, 1–6 (2017).
[Crossref]

Hübers, H.-W.

Ilegems, M.

D. Hofstetter, M. Beck, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a 9.3 M m quantum cascade laser on a Peltier cooler,” Appl. Phys. Lett. 78, 1964–1966(2001).
[Crossref]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Jang, M.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Jiang, A.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Jiang, Y.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Jirauschek, C.

Kainz, M. A.

M. A. Kainz, S. Schönhuber, B. Limbacher, A. M. Andrews, H. Detz, G. Strasser, G. Bastard, and K. Unterrainer, “Color switching of a terahertz quantum cascade laser,” Appl. Phys. Lett. 114, 191104 (2019).
[Crossref]

M. A. Kainz, S. Schönhuber, A. M. Andrews, H. Detz, B. Limbacher, G. Strasser, and K. Unterrainer, “Barrier Height Tuning of Terahertz Quantum Cascade Lasers for High-Temperature Operation,” ACS Photonics 5, 4687–4693 (2018).
[Crossref]

H. Detz, A. M. Andrews, M. A. Kainz, S. Schönhuber, T. Zederbauer, D. MacFarland, M. Krall, C. Deutsch, M. Brandstetter, P. Klang, W. Schrenk, K. Unterrainer, and G. Strasser, “Evaluation of Material Systems for THz Quantum Cascade LaserActive Regions,” Phys. Status Solidi A 216, 1800504 (2018).
[Crossref]

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers,” ACS Photonics 4, 957–962 (2017).
[Crossref] [PubMed]

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108, 011109 (2016).
[Crossref]

Khanna, S. P.

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, and M. A. Belkin, “GaAs/Al0.15Ga0.85As terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 K,” Appl. Phys. Lett. 97, 131111 (2010).
[Crossref]

Klang, P.

H. Detz, A. M. Andrews, M. A. Kainz, S. Schönhuber, T. Zederbauer, D. MacFarland, M. Krall, C. Deutsch, M. Brandstetter, P. Klang, W. Schrenk, K. Unterrainer, and G. Strasser, “Evaluation of Material Systems for THz Quantum Cascade LaserActive Regions,” Phys. Status Solidi A 216, 1800504 (2018).
[Crossref]

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett. 97, 261110 (2010).
[Crossref]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Krall, M.

H. Detz, A. M. Andrews, M. A. Kainz, S. Schönhuber, T. Zederbauer, D. MacFarland, M. Krall, C. Deutsch, M. Brandstetter, P. Klang, W. Schrenk, K. Unterrainer, and G. Strasser, “Evaluation of Material Systems for THz Quantum Cascade LaserActive Regions,” Phys. Status Solidi A 216, 1800504 (2018).
[Crossref]

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers,” ACS Photonics 4, 957–962 (2017).
[Crossref] [PubMed]

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108, 011109 (2016).
[Crossref]

Kubis, T.

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett. 97, 261110 (2010).
[Crossref]

Kumar, S.

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “Two-well terahertz quantum-cascade laser with direct intrawell-phonon depopulation,” Appl. Phys. Lett. 95, 141110 (2009).
[Crossref]

B. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. Reno, “3.4 THz quantum cascade laser operating above liquid nitrogen temperature,” Electron. Lett. 39, 915 (2003).
[Crossref]

Laframboise, S.

Laframboise, S. R.

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, “Terahertz quantum-cascade lasers based on a three-well active module,” Appl. Phys. Lett. 90, 041112 (2007).
[Crossref]

Li, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. Davies, and E. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Limbacher, B.

M. A. Kainz, S. Schönhuber, B. Limbacher, A. M. Andrews, H. Detz, G. Strasser, G. Bastard, and K. Unterrainer, “Color switching of a terahertz quantum cascade laser,” Appl. Phys. Lett. 114, 191104 (2019).
[Crossref]

M. A. Kainz, S. Schönhuber, A. M. Andrews, H. Detz, B. Limbacher, G. Strasser, and K. Unterrainer, “Barrier Height Tuning of Terahertz Quantum Cascade Lasers for High-Temperature Operation,” ACS Photonics 5, 4687–4693 (2018).
[Crossref]

Linfield, E.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. Davies, and E. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Linfield, E. H.

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, and M. A. Belkin, “GaAs/Al0.15Ga0.85As terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 K,” Appl. Phys. Lett. 97, 131111 (2010).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Liu, H. C.

Luo, H.

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, “Terahertz quantum-cascade lasers based on a three-well active module,” Appl. Phys. Lett. 90, 041112 (2007).
[Crossref]

Ma, X.

S. Riffat and X. Ma, “Thermoelectrics: A review of present and potential applications,” Appl. Therm. Eng. 23, 913–935 (2003).
[Crossref]

MacFarland, D.

H. Detz, A. M. Andrews, M. A. Kainz, S. Schönhuber, T. Zederbauer, D. MacFarland, M. Krall, C. Deutsch, M. Brandstetter, P. Klang, W. Schrenk, K. Unterrainer, and G. Strasser, “Evaluation of Material Systems for THz Quantum Cascade LaserActive Regions,” Phys. Status Solidi A 216, 1800504 (2018).
[Crossref]

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers,” ACS Photonics 4, 957–962 (2017).
[Crossref] [PubMed]

Mátyás, A.

Mavrona, E.

M. Franckié, L. Bosco, M. Beck, C. Bonzon, E. Mavrona, G. Scalari, A. Wacker, and J. Faist, “Two-well quantum cascade laser optimization by non-equilibrium Green’s function modelling,” Appl. Phys. Lett. 112, 021104 (2018).
[Crossref]

M. Franckié, L. Bosco, M. Beck, E. Mavrona, and J. Faist, “Optimization and fabrication of two-quantum well THz QCLs operating above 200 K,” in Conference on Lasers and Electro-Optics, (OSA, San Jose, California, 2019), p. SW4F.1.

Melchior, H.

D. Hofstetter, M. Beck, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a 9.3 M m quantum cascade laser on a Peltier cooler,” Appl. Phys. Lett. 78, 1964–1966(2001).
[Crossref]

Nobile, M.

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett. 97, 261110 (2010).
[Crossref]

Oakley, D. C.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Oesterle, U.

D. Hofstetter, M. Beck, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a 9.3 M m quantum cascade laser on a Peltier cooler,” Appl. Phys. Lett. 78, 1964–1966(2001).
[Crossref]

Ohtani, K.

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers,” ACS Photonics 4, 957–962 (2017).
[Crossref] [PubMed]

Pavlov, S. G.

Reno, J.

B. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. Reno, “3.4 THz quantum cascade laser operating above liquid nitrogen temperature,” Electron. Lett. 39, 915 (2003).
[Crossref]

Reno, J. L.

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “Two-well terahertz quantum-cascade laser with direct intrawell-phonon depopulation,” Appl. Phys. Lett. 95, 141110 (2009).
[Crossref]

Richter, H.

H.-W. Hubers, H. Richter, R. Eichholz, M. Wienold, K. Biermann, L. Schrottke, and H. T. Grahn, “Heterodyne Spectroscopy of Frequency Instabilities in Terahertz Quantum-Cascade Lasers Induced by Optical Feedback,” IEEE J. Sel. Top. Quantum Electron. 23, 1–6 (2017).
[Crossref]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18, 10177 (2010).
[Crossref] [PubMed]

Riffat, S.

S. Riffat and X. Ma, “Thermoelectrics: A review of present and potential applications,” Appl. Therm. Eng. 23, 913–935 (2003).
[Crossref]

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Scalari, G.

M. Franckié, L. Bosco, M. Beck, C. Bonzon, E. Mavrona, G. Scalari, A. Wacker, and J. Faist, “Two-well quantum cascade laser optimization by non-equilibrium Green’s function modelling,” Appl. Phys. Lett. 112, 021104 (2018).
[Crossref]

L. Ajili, G. Scalari, N. Hoyler, M. Giovannini, and J. Faist, “InGaAs–AlInAs/InP terahertz quantum cascade laser,” Appl. Phys. Lett. 87, 141107 (2005).
[Crossref]

Schönhuber, S.

M. A. Kainz, S. Schönhuber, B. Limbacher, A. M. Andrews, H. Detz, G. Strasser, G. Bastard, and K. Unterrainer, “Color switching of a terahertz quantum cascade laser,” Appl. Phys. Lett. 114, 191104 (2019).
[Crossref]

M. A. Kainz, S. Schönhuber, A. M. Andrews, H. Detz, B. Limbacher, G. Strasser, and K. Unterrainer, “Barrier Height Tuning of Terahertz Quantum Cascade Lasers for High-Temperature Operation,” ACS Photonics 5, 4687–4693 (2018).
[Crossref]

H. Detz, A. M. Andrews, M. A. Kainz, S. Schönhuber, T. Zederbauer, D. MacFarland, M. Krall, C. Deutsch, M. Brandstetter, P. Klang, W. Schrenk, K. Unterrainer, and G. Strasser, “Evaluation of Material Systems for THz Quantum Cascade LaserActive Regions,” Phys. Status Solidi A 216, 1800504 (2018).
[Crossref]

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers,” ACS Photonics 4, 957–962 (2017).
[Crossref] [PubMed]

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108, 011109 (2016).
[Crossref]

Schrenk, W.

H. Detz, A. M. Andrews, M. A. Kainz, S. Schönhuber, T. Zederbauer, D. MacFarland, M. Krall, C. Deutsch, M. Brandstetter, P. Klang, W. Schrenk, K. Unterrainer, and G. Strasser, “Evaluation of Material Systems for THz Quantum Cascade LaserActive Regions,” Phys. Status Solidi A 216, 1800504 (2018).
[Crossref]

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers,” ACS Photonics 4, 957–962 (2017).
[Crossref] [PubMed]

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108, 011109 (2016).
[Crossref]

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett. 97, 261110 (2010).
[Crossref]

Schrottke, L.

H.-W. Hubers, H. Richter, R. Eichholz, M. Wienold, K. Biermann, L. Schrottke, and H. T. Grahn, “Heterodyne Spectroscopy of Frequency Instabilities in Terahertz Quantum-Cascade Lasers Induced by Optical Feedback,” IEEE J. Sel. Top. Quantum Electron. 23, 1–6 (2017).
[Crossref]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18, 10177 (2010).
[Crossref] [PubMed]

Semenov, A. D.

Sivco, D. L.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Strasser, G.

M. A. Kainz, S. Schönhuber, B. Limbacher, A. M. Andrews, H. Detz, G. Strasser, G. Bastard, and K. Unterrainer, “Color switching of a terahertz quantum cascade laser,” Appl. Phys. Lett. 114, 191104 (2019).
[Crossref]

H. Detz, A. M. Andrews, M. A. Kainz, S. Schönhuber, T. Zederbauer, D. MacFarland, M. Krall, C. Deutsch, M. Brandstetter, P. Klang, W. Schrenk, K. Unterrainer, and G. Strasser, “Evaluation of Material Systems for THz Quantum Cascade LaserActive Regions,” Phys. Status Solidi A 216, 1800504 (2018).
[Crossref]

M. A. Kainz, S. Schönhuber, A. M. Andrews, H. Detz, B. Limbacher, G. Strasser, and K. Unterrainer, “Barrier Height Tuning of Terahertz Quantum Cascade Lasers for High-Temperature Operation,” ACS Photonics 5, 4687–4693 (2018).
[Crossref]

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers,” ACS Photonics 4, 957–962 (2017).
[Crossref] [PubMed]

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108, 011109 (2016).
[Crossref]

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett. 97, 261110 (2010).
[Crossref]

Tittel, F.

D. Weidmann, F. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907–913 (2004).
[Crossref]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Turner, G. W.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Unterrainer, K.

M. A. Kainz, S. Schönhuber, B. Limbacher, A. M. Andrews, H. Detz, G. Strasser, G. Bastard, and K. Unterrainer, “Color switching of a terahertz quantum cascade laser,” Appl. Phys. Lett. 114, 191104 (2019).
[Crossref]

M. A. Kainz, S. Schönhuber, A. M. Andrews, H. Detz, B. Limbacher, G. Strasser, and K. Unterrainer, “Barrier Height Tuning of Terahertz Quantum Cascade Lasers for High-Temperature Operation,” ACS Photonics 5, 4687–4693 (2018).
[Crossref]

H. Detz, A. M. Andrews, M. A. Kainz, S. Schönhuber, T. Zederbauer, D. MacFarland, M. Krall, C. Deutsch, M. Brandstetter, P. Klang, W. Schrenk, K. Unterrainer, and G. Strasser, “Evaluation of Material Systems for THz Quantum Cascade LaserActive Regions,” Phys. Status Solidi A 216, 1800504 (2018).
[Crossref]

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers,” ACS Photonics 4, 957–962 (2017).
[Crossref] [PubMed]

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108, 011109 (2016).
[Crossref]

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett. 97, 261110 (2010).
[Crossref]

Valavanis, A.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. Davies, and E. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Vijayraghavan, K.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, and M. A. Belkin, “GaAs/Al0.15Ga0.85As terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 K,” Appl. Phys. Lett. 97, 131111 (2010).
[Crossref]

Vineis, C. J.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Vizbaras, A.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Vogl, P.

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett. 97, 261110 (2010).
[Crossref]

Wacker, A.

M. Franckié, L. Bosco, M. Beck, C. Bonzon, E. Mavrona, G. Scalari, A. Wacker, and J. Faist, “Two-well quantum cascade laser optimization by non-equilibrium Green’s function modelling,” Appl. Phys. Lett. 112, 021104 (2018).
[Crossref]

Wang, Q. J.

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, and M. A. Belkin, “GaAs/Al0.15Ga0.85As terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 K,” Appl. Phys. Lett. 97, 131111 (2010).
[Crossref]

Wasilewski, Z.

Wasilewski, Z. R.

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, “Terahertz quantum-cascade lasers based on a three-well active module,” Appl. Phys. Lett. 90, 041112 (2007).
[Crossref]

Weidmann, D.

D. Weidmann, F. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907–913 (2004).
[Crossref]

Wienold, M.

H.-W. Hubers, H. Richter, R. Eichholz, M. Wienold, K. Biermann, L. Schrottke, and H. T. Grahn, “Heterodyne Spectroscopy of Frequency Instabilities in Terahertz Quantum-Cascade Lasers Induced by Optical Feedback,” IEEE J. Sel. Top. Quantum Electron. 23, 1–6 (2017).
[Crossref]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18, 10177 (2010).
[Crossref] [PubMed]

Williams, B.

B. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. Reno, “3.4 THz quantum cascade laser operating above liquid nitrogen temperature,” Electron. Lett. 39, 915 (2003).
[Crossref]

Williams, B. S.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[Crossref]

Zederbauer, T.

H. Detz, A. M. Andrews, M. A. Kainz, S. Schönhuber, T. Zederbauer, D. MacFarland, M. Krall, C. Deutsch, M. Brandstetter, P. Klang, W. Schrenk, K. Unterrainer, and G. Strasser, “Evaluation of Material Systems for THz Quantum Cascade LaserActive Regions,” Phys. Status Solidi A 216, 1800504 (2018).
[Crossref]

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers,” ACS Photonics 4, 957–962 (2017).
[Crossref] [PubMed]

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108, 011109 (2016).
[Crossref]

Zhu, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. Davies, and E. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

ACS Photonics (2)

M. A. Kainz, S. Schönhuber, A. M. Andrews, H. Detz, B. Limbacher, G. Strasser, and K. Unterrainer, “Barrier Height Tuning of Terahertz Quantum Cascade Lasers for High-Temperature Operation,” ACS Photonics 5, 4687–4693 (2018).
[Crossref]

C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, and K. Unterrainer, “High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers,” ACS Photonics 4, 957–962 (2017).
[Crossref] [PubMed]

Appl. Phys. B (1)

D. Weidmann, F. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907–913 (2004).
[Crossref]

Appl. Phys. Lett. (9)

M. A. Kainz, S. Schönhuber, B. Limbacher, A. M. Andrews, H. Detz, G. Strasser, G. Bastard, and K. Unterrainer, “Color switching of a terahertz quantum cascade laser,” Appl. Phys. Lett. 114, 191104 (2019).
[Crossref]

D. Hofstetter, M. Beck, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a 9.3 M m quantum cascade laser on a Peltier cooler,” Appl. Phys. Lett. 78, 1964–1966(2001).
[Crossref]

L. Ajili, G. Scalari, N. Hoyler, M. Giovannini, and J. Faist, “InGaAs–AlInAs/InP terahertz quantum cascade laser,” Appl. Phys. Lett. 87, 141107 (2005).
[Crossref]

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett. 97, 261110 (2010).
[Crossref]

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108, 011109 (2016).
[Crossref]

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, “Terahertz quantum-cascade lasers based on a three-well active module,” Appl. Phys. Lett. 90, 041112 (2007).
[Crossref]

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “Two-well terahertz quantum-cascade laser with direct intrawell-phonon depopulation,” Appl. Phys. Lett. 95, 141110 (2009).
[Crossref]

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, and M. A. Belkin, “GaAs/Al0.15Ga0.85As terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 K,” Appl. Phys. Lett. 97, 131111 (2010).
[Crossref]

M. Franckié, L. Bosco, M. Beck, C. Bonzon, E. Mavrona, G. Scalari, A. Wacker, and J. Faist, “Two-well quantum cascade laser optimization by non-equilibrium Green’s function modelling,” Appl. Phys. Lett. 112, 021104 (2018).
[Crossref]

Appl. Therm. Eng. (1)

S. Riffat and X. Ma, “Thermoelectrics: A review of present and potential applications,” Appl. Therm. Eng. 23, 913–935 (2003).
[Crossref]

Electron. Lett. (2)

B. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. Reno, “3.4 THz quantum cascade laser operating above liquid nitrogen temperature,” Electron. Lett. 39, 915 (2003).
[Crossref]

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. Davies, and E. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H.-W. Hubers, H. Richter, R. Eichholz, M. Wienold, K. Biermann, L. Schrottke, and H. T. Grahn, “Heterodyne Spectroscopy of Frequency Instabilities in Terahertz Quantum-Cascade Lasers Induced by Optical Feedback,” IEEE J. Sel. Top. Quantum Electron. 23, 1–6 (2017).
[Crossref]

Nat. Commun. (1)

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Status Solidi A (1)

H. Detz, A. M. Andrews, M. A. Kainz, S. Schönhuber, T. Zederbauer, D. MacFarland, M. Krall, C. Deutsch, M. Brandstetter, P. Klang, W. Schrenk, K. Unterrainer, and G. Strasser, “Evaluation of Material Systems for THz Quantum Cascade LaserActive Regions,” Phys. Status Solidi A 216, 1800504 (2018).
[Crossref]

Science (1)

F. J. DiSalvo, “Thermoelectric Cooling and Power Generation,” Science 285, 703–706 (1999).
[Crossref] [PubMed]

Other (1)

M. Franckié, L. Bosco, M. Beck, E. Mavrona, and J. Faist, “Optimization and fabrication of two-quantum well THz QCLs operating above 200 K,” in Conference on Lasers and Electro-Optics, (OSA, San Jose, California, 2019), p. SW4F.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Thermoelectric cooler characteristics. (a) Temperature as a function of the applied current. A minimum of 169 K is reached at a current of 15 A and an applied voltage of 32.1 V. (b) Heat load dependent temperature difference between the cooling water and copper mount.
Fig. 2
Fig. 2 THz QCL performance in He flow cryostat. (a) Measured light-current curves up to a maximum temperature of 190 K in pulsed operation (0.5% duty cycle). (b) Spectra at 160, 170 and 180 K show a strong lasing mode at around 3.85 THz. (c) Average lasing intensity versus duty cycle for heat sink temperatures of 160, 170, and 180 K.
Fig. 3
Fig. 3 THz QCL performance cooled with the thermoelectric cooler. (a) Light-current behaviour in pulsed mode and an operating temperature of 171 K (TEC input: 15 A, 32.1 V). (b) Pulsed and average power of the QCL at different duty cycles. A maximum average power of 120 μW is reached at a duty cycle of 5%.
Fig. 4
Fig. 4 Signal decay due to the laser operation and heat sink temperature increase for different duty cycles. At 3–4% duty cycle a maximum average power of 100 μW is reached at the equilibrium temperature. The inset shows the output power I at steady-state operation.