Abstract

We propose a novel full-parallax autostereoscopic display based on a lenticular tracking method to achieve separation between the viewing angle and image resolution and to improve these two parameters simultaneously. The proposed method enables the viewing angle to be independent of the image resolution and has the potential to solve the long-term trade-off problem in integral photography. By employing the lenticular lens array instead of the micro-lens array in integral photography with viewing tracking, the proposed method shows a high-image resolution and wide viewing angle 3D display with full parallax. A real-time tracking and rendering algorithm for the display method is also proposed in this study. The experimental results, compared with those of the conventional integral photography display and the tracking-based integral photography display, demonstrate the feasibility of this lenticular tracking display technology and its advantages in display resolution and viewing angle, suggesting its potential in practical three-dimensional applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic three-dimensional light-field display with large viewing angle based on compound lenticular lens array and multi-projectors

Xunbo Yu, Xinzhu Sang, Xin Gao, Duo Chen, Boyang Liu, Li Liu, Chao Gao, and Peiren Wang
Opt. Express 27(11) 16024-16031 (2019)

162-inch 3D light field display based on aspheric lens array and holographic functional screen

Shenwu Yang, Xinzhu Sang, Xunbo Yu, Xin Gao, Li Liu, Boyang Liu, and Le Yang
Opt. Express 26(25) 33013-33021 (2018)

360 degree viewable floating autostereoscopic display using integral photography and multiple semitransparent mirrors

Dong Zhao, Baiquan Su, Guowen Chen, and Hongen Liao
Opt. Express 23(8) 9812-9823 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. J. Tam, F. Speranza, S. Yano, K. Shimono, and H. Ono, “Stereoscopic 3D-TV: visual comfort,” IEEE Trans. Broadcast 57(2), 335–346 (2011).
    [Crossref]
  2. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
    [Crossref]
  3. J. Hong, Y. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S. W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115 (2011).
    [Crossref] [PubMed]
  4. C. Luo, C. Ji, F. Wang, Y. Wang, and Q. Wang, “Crosstalk-free integral imaging display with wide viewing angle using periodic black mask,” J. Disp. Technol. 8(11), 634–638 (2012).
    [Crossref]
  5. J. Y. Jang, H. S. Lee, S. Cha, and S. H. Shin, “Viewing angle enhanced integral imaging display by using a high refractive index medium,” Appl. Opt. 50(7), B71–B76 (2011).
    [Crossref] [PubMed]
  6. J. Zhang, X. Wang, X. Wu, C. Yang, and Y. Chen, “Wide-viewing integral imaging using fiber-coupled monocentric lens array,” Opt. Express 23(18), 23339–23347 (2015).
    [Crossref] [PubMed]
  7. W. Xie, Y. Wang, H. Deng, and Q. Wang, “Viewing angle-enhanced integral imaging system using three lens arrays,” Chin. Opt. Lett. 12(1), 011101 (2014).
    [Crossref]
  8. S. W. Min, J. Kim, and B. Lee, “Wide-viewing projection-type integral imaging system with an embossed screen,” Opt. Lett. 29(20), 2420–2422 (2004).
    [Crossref] [PubMed]
  9. Y. Oh, D. Shin, B. G. Lee, S. I. Jeong, and H. J. Choi, “Resolution-enhanced integral imaging in focal mode with a time-multiplexed electrical mask array,” Opt. Express 22(15), 17620–17629 (2014).
    [Crossref] [PubMed]
  10. M. A. Alam, G. Baasantseren, M. U. Erdenebat, N. Kim, and J. H. Park, “Resolution enhancement of integral‐imaging three‐dimensional display using directional elemental image projection,” J. Soc. Inf. Disp. 20(4), 221–227 (2012).
    [Crossref]
  11. H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12(6), 1067–1076 (2004).
    [Crossref] [PubMed]
  12. Z. Yan, X. Yan, X. Jiang, H. Gao, and J. Wen, “Integral imaging based light field display with enhanced viewing resolution using holographic diffuser,” Opt. Commun. 402, 437–441 (2017).
    [Crossref]
  13. G. Park, J. Hong, Y. Kim, and B. Lee, “Enhancement of viewing angle and viewing distance in integral imaging by head tracking,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2009), p. DWB27 (2009).
  14. S. Hong, D. Shin, J. Lee, and B. Lee, “Viewing angle-improved 3D integral imaging display with eye tracking sensor,” J. Inf. Commun. Converg. Eng. 12(4), 208–214 (2014).
    [Crossref]
  15. Z. L. Xiong, Q. H. Wang, S. L. Li, H. Deng, and C. C. Ji, “Partially-overlapped viewing zone based integral imaging system with super wide viewing angle,” Opt. Express 22(19), 22268–22277 (2014).
    [Crossref] [PubMed]
  16. X. Zhang, G. Chen, and H. Liao, “High-quality see-through surgical guidance system using enhanced 3-D autostereoscopic augmented reality,” IEEE Trans. Biomed. Eng. 64(8), 1815–1825 (2017).
    [Crossref] [PubMed]
  17. J. Wang, H. Suenaga, H. Liao, K. Hoshi, L. Yang, E. Kobayashi, and I. Sakuma, “Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation,” Comput. Med. Imaging Graph. 40, 147–159 (2015).
    [Crossref] [PubMed]
  18. S. Jiao, X. Wang, M. Zhou, W. Li, T. Hong, D. Nam, J. H. Lee, E. Wu, H. Wang, and J. Y. Kim, “Multiple ray cluster rendering for interactive integral imaging system,” Opt. Express 21(8), 10070–10086 (2013).
    [Crossref] [PubMed]
  19. Y. Kim, G. Park, J. H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48(11), 2178–2187 (2009).
    [Crossref] [PubMed]
  20. Z. Fan, G. Chen, Y. Xia, T. Huang, and H. Liao, “Accurate 3D autostereoscopic display using optimized parameters through quantitative calibration,” J. Opt. Soc. Am. A 34(5), 804–812 (2017).
    [Crossref] [PubMed]
  21. L. Čehovin, A. Leonardis, and M. Kristan, “Visual object tracking performance measures revisited,” IEEE Trans. Image Process. 25(3), 1261–1274 (2016).
    [PubMed]
  22. Z. Fan, S. Zhang, Y. Weng, G. Chen, and H. Liao, “3D quantitative evaluation system for autostereoscopic display,” J. Disp. Technol. 12(10), 1185–1196 (2016).
    [Crossref]

2017 (3)

Z. Yan, X. Yan, X. Jiang, H. Gao, and J. Wen, “Integral imaging based light field display with enhanced viewing resolution using holographic diffuser,” Opt. Commun. 402, 437–441 (2017).
[Crossref]

X. Zhang, G. Chen, and H. Liao, “High-quality see-through surgical guidance system using enhanced 3-D autostereoscopic augmented reality,” IEEE Trans. Biomed. Eng. 64(8), 1815–1825 (2017).
[Crossref] [PubMed]

Z. Fan, G. Chen, Y. Xia, T. Huang, and H. Liao, “Accurate 3D autostereoscopic display using optimized parameters through quantitative calibration,” J. Opt. Soc. Am. A 34(5), 804–812 (2017).
[Crossref] [PubMed]

2016 (2)

L. Čehovin, A. Leonardis, and M. Kristan, “Visual object tracking performance measures revisited,” IEEE Trans. Image Process. 25(3), 1261–1274 (2016).
[PubMed]

Z. Fan, S. Zhang, Y. Weng, G. Chen, and H. Liao, “3D quantitative evaluation system for autostereoscopic display,” J. Disp. Technol. 12(10), 1185–1196 (2016).
[Crossref]

2015 (2)

J. Wang, H. Suenaga, H. Liao, K. Hoshi, L. Yang, E. Kobayashi, and I. Sakuma, “Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation,” Comput. Med. Imaging Graph. 40, 147–159 (2015).
[Crossref] [PubMed]

J. Zhang, X. Wang, X. Wu, C. Yang, and Y. Chen, “Wide-viewing integral imaging using fiber-coupled monocentric lens array,” Opt. Express 23(18), 23339–23347 (2015).
[Crossref] [PubMed]

2014 (4)

2013 (1)

2012 (2)

C. Luo, C. Ji, F. Wang, Y. Wang, and Q. Wang, “Crosstalk-free integral imaging display with wide viewing angle using periodic black mask,” J. Disp. Technol. 8(11), 634–638 (2012).
[Crossref]

M. A. Alam, G. Baasantseren, M. U. Erdenebat, N. Kim, and J. H. Park, “Resolution enhancement of integral‐imaging three‐dimensional display using directional elemental image projection,” J. Soc. Inf. Disp. 20(4), 221–227 (2012).
[Crossref]

2011 (3)

2009 (1)

2004 (2)

1908 (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Alam, M. A.

M. A. Alam, G. Baasantseren, M. U. Erdenebat, N. Kim, and J. H. Park, “Resolution enhancement of integral‐imaging three‐dimensional display using directional elemental image projection,” J. Soc. Inf. Disp. 20(4), 221–227 (2012).
[Crossref]

Baasantseren, G.

M. A. Alam, G. Baasantseren, M. U. Erdenebat, N. Kim, and J. H. Park, “Resolution enhancement of integral‐imaging three‐dimensional display using directional elemental image projection,” J. Soc. Inf. Disp. 20(4), 221–227 (2012).
[Crossref]

Cehovin, L.

L. Čehovin, A. Leonardis, and M. Kristan, “Visual object tracking performance measures revisited,” IEEE Trans. Image Process. 25(3), 1261–1274 (2016).
[PubMed]

Cha, S.

Chen, G.

X. Zhang, G. Chen, and H. Liao, “High-quality see-through surgical guidance system using enhanced 3-D autostereoscopic augmented reality,” IEEE Trans. Biomed. Eng. 64(8), 1815–1825 (2017).
[Crossref] [PubMed]

Z. Fan, G. Chen, Y. Xia, T. Huang, and H. Liao, “Accurate 3D autostereoscopic display using optimized parameters through quantitative calibration,” J. Opt. Soc. Am. A 34(5), 804–812 (2017).
[Crossref] [PubMed]

Z. Fan, S. Zhang, Y. Weng, G. Chen, and H. Liao, “3D quantitative evaluation system for autostereoscopic display,” J. Disp. Technol. 12(10), 1185–1196 (2016).
[Crossref]

Chen, N.

Chen, Y.

Choi, H. J.

Deng, H.

Dohi, T.

Erdenebat, M. U.

M. A. Alam, G. Baasantseren, M. U. Erdenebat, N. Kim, and J. H. Park, “Resolution enhancement of integral‐imaging three‐dimensional display using directional elemental image projection,” J. Soc. Inf. Disp. 20(4), 221–227 (2012).
[Crossref]

Fan, Z.

Z. Fan, G. Chen, Y. Xia, T. Huang, and H. Liao, “Accurate 3D autostereoscopic display using optimized parameters through quantitative calibration,” J. Opt. Soc. Am. A 34(5), 804–812 (2017).
[Crossref] [PubMed]

Z. Fan, S. Zhang, Y. Weng, G. Chen, and H. Liao, “3D quantitative evaluation system for autostereoscopic display,” J. Disp. Technol. 12(10), 1185–1196 (2016).
[Crossref]

Gao, H.

Z. Yan, X. Yan, X. Jiang, H. Gao, and J. Wen, “Integral imaging based light field display with enhanced viewing resolution using holographic diffuser,” Opt. Commun. 402, 437–441 (2017).
[Crossref]

Hahn, J.

Hata, N.

Hong, J.

Hong, S.

S. Hong, D. Shin, J. Lee, and B. Lee, “Viewing angle-improved 3D integral imaging display with eye tracking sensor,” J. Inf. Commun. Converg. Eng. 12(4), 208–214 (2014).
[Crossref]

Hong, T.

Hoshi, K.

J. Wang, H. Suenaga, H. Liao, K. Hoshi, L. Yang, E. Kobayashi, and I. Sakuma, “Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation,” Comput. Med. Imaging Graph. 40, 147–159 (2015).
[Crossref] [PubMed]

Huang, T.

Iwahara, M.

Jang, J. Y.

Jeong, S. I.

Ji, C.

C. Luo, C. Ji, F. Wang, Y. Wang, and Q. Wang, “Crosstalk-free integral imaging display with wide viewing angle using periodic black mask,” J. Disp. Technol. 8(11), 634–638 (2012).
[Crossref]

Ji, C. C.

Jiang, X.

Z. Yan, X. Yan, X. Jiang, H. Gao, and J. Wen, “Integral imaging based light field display with enhanced viewing resolution using holographic diffuser,” Opt. Commun. 402, 437–441 (2017).
[Crossref]

Jiao, S.

Jung, J. H.

Kim, H.

Kim, J.

Kim, J. Y.

Kim, N.

M. A. Alam, G. Baasantseren, M. U. Erdenebat, N. Kim, and J. H. Park, “Resolution enhancement of integral‐imaging three‐dimensional display using directional elemental image projection,” J. Soc. Inf. Disp. 20(4), 221–227 (2012).
[Crossref]

Kim, Y.

Kobayashi, E.

J. Wang, H. Suenaga, H. Liao, K. Hoshi, L. Yang, E. Kobayashi, and I. Sakuma, “Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation,” Comput. Med. Imaging Graph. 40, 147–159 (2015).
[Crossref] [PubMed]

Kristan, M.

L. Čehovin, A. Leonardis, and M. Kristan, “Visual object tracking performance measures revisited,” IEEE Trans. Image Process. 25(3), 1261–1274 (2016).
[PubMed]

Lee, B.

Lee, B. G.

Lee, H. S.

Lee, J.

S. Hong, D. Shin, J. Lee, and B. Lee, “Viewing angle-improved 3D integral imaging display with eye tracking sensor,” J. Inf. Commun. Converg. Eng. 12(4), 208–214 (2014).
[Crossref]

Lee, J. H.

Leonardis, A.

L. Čehovin, A. Leonardis, and M. Kristan, “Visual object tracking performance measures revisited,” IEEE Trans. Image Process. 25(3), 1261–1274 (2016).
[PubMed]

Li, S. L.

Li, W.

Liao, H.

Z. Fan, G. Chen, Y. Xia, T. Huang, and H. Liao, “Accurate 3D autostereoscopic display using optimized parameters through quantitative calibration,” J. Opt. Soc. Am. A 34(5), 804–812 (2017).
[Crossref] [PubMed]

X. Zhang, G. Chen, and H. Liao, “High-quality see-through surgical guidance system using enhanced 3-D autostereoscopic augmented reality,” IEEE Trans. Biomed. Eng. 64(8), 1815–1825 (2017).
[Crossref] [PubMed]

Z. Fan, S. Zhang, Y. Weng, G. Chen, and H. Liao, “3D quantitative evaluation system for autostereoscopic display,” J. Disp. Technol. 12(10), 1185–1196 (2016).
[Crossref]

J. Wang, H. Suenaga, H. Liao, K. Hoshi, L. Yang, E. Kobayashi, and I. Sakuma, “Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation,” Comput. Med. Imaging Graph. 40, 147–159 (2015).
[Crossref] [PubMed]

H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12(6), 1067–1076 (2004).
[Crossref] [PubMed]

Lippmann, G.

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Luo, C.

C. Luo, C. Ji, F. Wang, Y. Wang, and Q. Wang, “Crosstalk-free integral imaging display with wide viewing angle using periodic black mask,” J. Disp. Technol. 8(11), 634–638 (2012).
[Crossref]

Min, S. W.

Nam, D.

Oh, Y.

Ono, H.

W. J. Tam, F. Speranza, S. Yano, K. Shimono, and H. Ono, “Stereoscopic 3D-TV: visual comfort,” IEEE Trans. Broadcast 57(2), 335–346 (2011).
[Crossref]

Park, G.

Park, J. H.

M. A. Alam, G. Baasantseren, M. U. Erdenebat, N. Kim, and J. H. Park, “Resolution enhancement of integral‐imaging three‐dimensional display using directional elemental image projection,” J. Soc. Inf. Disp. 20(4), 221–227 (2012).
[Crossref]

J. Hong, Y. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S. W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115 (2011).
[Crossref] [PubMed]

Sakuma, I.

J. Wang, H. Suenaga, H. Liao, K. Hoshi, L. Yang, E. Kobayashi, and I. Sakuma, “Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation,” Comput. Med. Imaging Graph. 40, 147–159 (2015).
[Crossref] [PubMed]

Shimono, K.

W. J. Tam, F. Speranza, S. Yano, K. Shimono, and H. Ono, “Stereoscopic 3D-TV: visual comfort,” IEEE Trans. Broadcast 57(2), 335–346 (2011).
[Crossref]

Shin, D.

Y. Oh, D. Shin, B. G. Lee, S. I. Jeong, and H. J. Choi, “Resolution-enhanced integral imaging in focal mode with a time-multiplexed electrical mask array,” Opt. Express 22(15), 17620–17629 (2014).
[Crossref] [PubMed]

S. Hong, D. Shin, J. Lee, and B. Lee, “Viewing angle-improved 3D integral imaging display with eye tracking sensor,” J. Inf. Commun. Converg. Eng. 12(4), 208–214 (2014).
[Crossref]

Shin, S. H.

Speranza, F.

W. J. Tam, F. Speranza, S. Yano, K. Shimono, and H. Ono, “Stereoscopic 3D-TV: visual comfort,” IEEE Trans. Broadcast 57(2), 335–346 (2011).
[Crossref]

Suenaga, H.

J. Wang, H. Suenaga, H. Liao, K. Hoshi, L. Yang, E. Kobayashi, and I. Sakuma, “Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation,” Comput. Med. Imaging Graph. 40, 147–159 (2015).
[Crossref] [PubMed]

Tam, W. J.

W. J. Tam, F. Speranza, S. Yano, K. Shimono, and H. Ono, “Stereoscopic 3D-TV: visual comfort,” IEEE Trans. Broadcast 57(2), 335–346 (2011).
[Crossref]

Wang, F.

C. Luo, C. Ji, F. Wang, Y. Wang, and Q. Wang, “Crosstalk-free integral imaging display with wide viewing angle using periodic black mask,” J. Disp. Technol. 8(11), 634–638 (2012).
[Crossref]

Wang, H.

Wang, J.

J. Wang, H. Suenaga, H. Liao, K. Hoshi, L. Yang, E. Kobayashi, and I. Sakuma, “Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation,” Comput. Med. Imaging Graph. 40, 147–159 (2015).
[Crossref] [PubMed]

Wang, Q.

W. Xie, Y. Wang, H. Deng, and Q. Wang, “Viewing angle-enhanced integral imaging system using three lens arrays,” Chin. Opt. Lett. 12(1), 011101 (2014).
[Crossref]

C. Luo, C. Ji, F. Wang, Y. Wang, and Q. Wang, “Crosstalk-free integral imaging display with wide viewing angle using periodic black mask,” J. Disp. Technol. 8(11), 634–638 (2012).
[Crossref]

Wang, Q. H.

Wang, X.

Wang, Y.

W. Xie, Y. Wang, H. Deng, and Q. Wang, “Viewing angle-enhanced integral imaging system using three lens arrays,” Chin. Opt. Lett. 12(1), 011101 (2014).
[Crossref]

C. Luo, C. Ji, F. Wang, Y. Wang, and Q. Wang, “Crosstalk-free integral imaging display with wide viewing angle using periodic black mask,” J. Disp. Technol. 8(11), 634–638 (2012).
[Crossref]

Wen, J.

Z. Yan, X. Yan, X. Jiang, H. Gao, and J. Wen, “Integral imaging based light field display with enhanced viewing resolution using holographic diffuser,” Opt. Commun. 402, 437–441 (2017).
[Crossref]

Weng, Y.

Z. Fan, S. Zhang, Y. Weng, G. Chen, and H. Liao, “3D quantitative evaluation system for autostereoscopic display,” J. Disp. Technol. 12(10), 1185–1196 (2016).
[Crossref]

Wu, E.

Wu, X.

Xia, Y.

Xie, W.

Xiong, Z. L.

Yan, X.

Z. Yan, X. Yan, X. Jiang, H. Gao, and J. Wen, “Integral imaging based light field display with enhanced viewing resolution using holographic diffuser,” Opt. Commun. 402, 437–441 (2017).
[Crossref]

Yan, Z.

Z. Yan, X. Yan, X. Jiang, H. Gao, and J. Wen, “Integral imaging based light field display with enhanced viewing resolution using holographic diffuser,” Opt. Commun. 402, 437–441 (2017).
[Crossref]

Yang, C.

Yang, L.

J. Wang, H. Suenaga, H. Liao, K. Hoshi, L. Yang, E. Kobayashi, and I. Sakuma, “Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation,” Comput. Med. Imaging Graph. 40, 147–159 (2015).
[Crossref] [PubMed]

Yano, S.

W. J. Tam, F. Speranza, S. Yano, K. Shimono, and H. Ono, “Stereoscopic 3D-TV: visual comfort,” IEEE Trans. Broadcast 57(2), 335–346 (2011).
[Crossref]

Zhang, J.

Zhang, S.

Z. Fan, S. Zhang, Y. Weng, G. Chen, and H. Liao, “3D quantitative evaluation system for autostereoscopic display,” J. Disp. Technol. 12(10), 1185–1196 (2016).
[Crossref]

Zhang, X.

X. Zhang, G. Chen, and H. Liao, “High-quality see-through surgical guidance system using enhanced 3-D autostereoscopic augmented reality,” IEEE Trans. Biomed. Eng. 64(8), 1815–1825 (2017).
[Crossref] [PubMed]

Zhou, M.

Appl. Opt. (3)

Chin. Opt. Lett. (1)

Comput. Med. Imaging Graph. (1)

J. Wang, H. Suenaga, H. Liao, K. Hoshi, L. Yang, E. Kobayashi, and I. Sakuma, “Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation,” Comput. Med. Imaging Graph. 40, 147–159 (2015).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

X. Zhang, G. Chen, and H. Liao, “High-quality see-through surgical guidance system using enhanced 3-D autostereoscopic augmented reality,” IEEE Trans. Biomed. Eng. 64(8), 1815–1825 (2017).
[Crossref] [PubMed]

IEEE Trans. Broadcast (1)

W. J. Tam, F. Speranza, S. Yano, K. Shimono, and H. Ono, “Stereoscopic 3D-TV: visual comfort,” IEEE Trans. Broadcast 57(2), 335–346 (2011).
[Crossref]

IEEE Trans. Image Process. (1)

L. Čehovin, A. Leonardis, and M. Kristan, “Visual object tracking performance measures revisited,” IEEE Trans. Image Process. 25(3), 1261–1274 (2016).
[PubMed]

J. Disp. Technol. (2)

Z. Fan, S. Zhang, Y. Weng, G. Chen, and H. Liao, “3D quantitative evaluation system for autostereoscopic display,” J. Disp. Technol. 12(10), 1185–1196 (2016).
[Crossref]

C. Luo, C. Ji, F. Wang, Y. Wang, and Q. Wang, “Crosstalk-free integral imaging display with wide viewing angle using periodic black mask,” J. Disp. Technol. 8(11), 634–638 (2012).
[Crossref]

J. Inf. Commun. Converg. Eng. (1)

S. Hong, D. Shin, J. Lee, and B. Lee, “Viewing angle-improved 3D integral imaging display with eye tracking sensor,” J. Inf. Commun. Converg. Eng. 12(4), 208–214 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Theor. Appl. (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

J. Soc. Inf. Disp. (1)

M. A. Alam, G. Baasantseren, M. U. Erdenebat, N. Kim, and J. H. Park, “Resolution enhancement of integral‐imaging three‐dimensional display using directional elemental image projection,” J. Soc. Inf. Disp. 20(4), 221–227 (2012).
[Crossref]

Opt. Commun. (1)

Z. Yan, X. Yan, X. Jiang, H. Gao, and J. Wen, “Integral imaging based light field display with enhanced viewing resolution using holographic diffuser,” Opt. Commun. 402, 437–441 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Other (1)

G. Park, J. Hong, Y. Kim, and B. Lee, “Enhancement of viewing angle and viewing distance in integral imaging by head tracking,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2009), p. DWB27 (2009).

Supplementary Material (1)

NameDescription
» Visualization 1       Visualization 1 shows the comparative experiment of the lenticular tracking display and the conventional integral photography display. In the comparative experiment, the image quality of the lenticular tracking display is relatively high.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 The system configuration of the 3D lenticular tracking display.
Fig. 2
Fig. 2 (a) Optical model of the viewing area; Simulation of the image resolution, the gap and the viewing distance with the parameter D equaling (b) 0 mm, (c)10 mm, and (d) 20 mm.
Fig. 3
Fig. 3 (a) The flow chart of the real-time viewpoint tracking and rendering algorithm for the lenticular tracking display; (b) The calculation of model rotation when the viewer moves; (c) The calculation of the elemental image shift when the viewer moves.
Fig. 4
Fig. 4 The prototype of the 3D lenticular tracking display.
Fig. 5
Fig. 5 The experimental setup of the viewpoint tracking evaluation.
Fig. 6
Fig. 6 The motion trajectory on the x-axis (a), y-axis (b), and z-axis (c) from the depth camera (blue) and the optical tracking system (red); the tracking errors on the x-axis (d).
Fig. 7
Fig. 7 (a) The experimental setup of the comparative experiments; (b) the lenticular tracking display device; (c) the tracking based integral photography device; (d) the traditional integral photography device.
Fig. 8
Fig. 8 A brain model displayed by the 3D lenticular tracking display (a) and the integral photography display (b).
Fig. 9
Fig. 9 The resolution chart displayed by the 3D lenticular tracking display (a) and the integral photography display (b).
Fig. 10
Fig. 10 The horizontal parallax of the 3D lenticular tracking display (a), the tracking based integral photography display (b) and the traditional integral photography display (c) from different viewing angles.
Fig. 11
Fig. 11 The 3D lenticular tracking display shows vertical parallax from different viewing angles.

Tables (1)

Tables Icon

Table 1 The Comparative Results of the Image Resolution and Viewing Angle

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

θ v = θ tr + θ l ,
R(D)=1/( l ptich + l pixel |D| d gap ),
lpitch= lview dviewdgap dgap,
R(D)=1/( lview dviewdgap dgap+ l pixel |D| d gap ).
lthreshold= lviewlpupil 2 .
y k = i=0 4 x ki 5 .
θ rot =arctan( l move d view ),
x offset = l move d view d gap d gap ,
P τ = { t| ϕ t >τ } t=1 N N ,

Metrics