Abstract

Active use of phase transition phenomena for reversibly tuning the properties of functional materials in devices currently is an attractive research area of materials science. We designed and fabricated two kinds of metasurface modulators for dynamically controlling the wavefront of terahertz (THz) radiation based on the temperature-induced insulator-to-metal phase transition of vanadium dioxide (VO2). The modulators designed are based on the C-shaped slot antenna array. The slot antennas are made of the VO2 films on c-sapphire substrates. The C-shaped slot antennas are active only when the VO2 is in its metallic phase, i.e. at temperatures T > TC ∼68 °C. At T > TC, the first kind acts as a THz multi-focus lens which converges an incident THz plane wave into four focal spots and the second kind as an Airy beam generator. We characterized the function of two THz wavefront modulators over a broad frequency range, i.e. from 0.3 to 1.2 THz. Such thermally switchable THz wavefront metasurface modulators with a capability of dynamically steering THz fields will be of great significance for the future development of THz active devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz modulator based on insulator–metal transition in photonic crystal waveguide

Fei Fan, Yu Hou, Zi-Wei Jiang, Xiang-Hui Wang, and Sheng-Jiang Chang
Appl. Opt. 51(20) 4589-4596 (2012)

Dynamically Babinet-invertible metasurface: a capacitive-inductive reconfigurable filter for terahertz waves using vanadium-dioxide metal-insulator transition

Yoshiro Urade, Yosuke Nakata, Kunio Okimura, Toshihiro Nakanishi, Fumiaki Miyamaru, Mitsuo W. Takeda, and Masao Kitano
Opt. Express 24(5) 4405-4410 (2016)

Emission of terahertz pulses from vanadium dioxide films undergoing metal–insulator phase transition

Mikhail Esaulkov, Petr Solyankin, Artem Sidorov, Lyubov Parshina, Artem Makarevich, Qi Jin, Qin Luo, Oleg Novodvorsky, Andrey Kaul, Elena Cherepetskaya, Alexander Shkurinov, Vladimir Makarov, and Xi-Cheng Zhang
Optica 2(9) 790-796 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, “Diffuse scattering from rough surfaces in THz communication channels,” IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011).
    [Crossref]
  2. H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
    [Crossref] [PubMed]
  3. W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33(9), 974–976 (2008).
    [Crossref] [PubMed]
  4. M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
    [Crossref]
  5. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  6. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [Crossref]
  7. C. L. Chang, W. C. Wang, H. R. Lin, J. H. Feng, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
    [Crossref]
  8. Z. W. Xie, X. K. Wang, J. S. Ye, S. F. Feng, W. F. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3(1), 3347 (2013).
    [Crossref]
  9. H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
    [Crossref]
  10. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
    [Crossref] [PubMed]
  11. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
    [Crossref] [PubMed]
  12. W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
    [Crossref] [PubMed]
  13. S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
    [Crossref] [PubMed]
  14. K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
    [Crossref]
  15. J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
    [Crossref]
  16. A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
    [Crossref]
  17. F. Fan, W. H. Gu, S. Chen, X. H. Wang, and S. J. Chang, “State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping,” Opt. Lett. 38(9), 1582–1584 (2013).
    [Crossref] [PubMed]
  18. Y. Zhang, S. Qiao, L. Sun, Q. W. Shi, W. Huang, L. Li, and Z. Yang, “Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method,” Opt. Express 22(9), 11070–11078 (2014).
    [Crossref] [PubMed]
  19. A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
    [Crossref] [PubMed]
  20. M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
    [Crossref] [PubMed]
  21. S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
    [Crossref]
  22. P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
    [Crossref]
  23. L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
    [Crossref]
  24. M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
    [Crossref] [PubMed]
  25. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
    [Crossref] [PubMed]
  26. F. Ding, S. M. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
    [Crossref]
  27. S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
    [Crossref] [PubMed]
  28. Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
    [Crossref] [PubMed]
  29. N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D. S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm Gap,” ACS Photonics 5(2), 278–283 (2018).
    [Crossref]
  30. E. P. J. Parrott, C. Han, F. Yan, G. Humbert, A. Bessaudou, A. Crunteanu, and E. Pickwell-MacPherson, “Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures,” Nanotechnology 27(20), 205206 (2016).
    [Crossref] [PubMed]
  31. Y. C. Zhao, Y. X. Zhang, Q. W. Shi, S. X. Liang, W. X. Huang, W. Kou, and Z. Q. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
    [Crossref]
  32. Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
    [Crossref] [PubMed]
  33. J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
    [Crossref]
  34. P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
    [Crossref]
  35. L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
    [Crossref] [PubMed]
  36. X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
    [Crossref] [PubMed]
  37. J. He, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “A broadband terahertz ultrathin multi-focus lens,” Sci. Rep. 6(1), 28800 (2016).
    [Crossref] [PubMed]
  38. J. He, S. Wang, Z. Xie, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “Abruptly autofocusing terahertz waves with meta-hologram,” Opt. Lett. 41(12), 2787–2790 (2016).
    [Crossref] [PubMed]
  39. B. Gu, G. Yang, and B. Dong, “General theory for performing an optical transform,” Appl. Opt. 25(18), 3197–3206 (1986).
    [Crossref] [PubMed]
  40. X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27(11), 2387–2393 (2010).
    [Crossref] [PubMed]
  41. X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010).
    [Crossref] [PubMed]
  42. C. Y. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52(1), 106–114 (2014).
    [Crossref]

2018 (5)

F. Ding, S. M. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D. S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm Gap,” ACS Photonics 5(2), 278–283 (2018).
[Crossref]

Y. C. Zhao, Y. X. Zhang, Q. W. Shi, S. X. Liang, W. X. Huang, W. Kou, and Z. Q. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref] [PubMed]

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

2017 (1)

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
[Crossref] [PubMed]

2016 (6)

E. P. J. Parrott, C. Han, F. Yan, G. Humbert, A. Bessaudou, A. Crunteanu, and E. Pickwell-MacPherson, “Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures,” Nanotechnology 27(20), 205206 (2016).
[Crossref] [PubMed]

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

J. He, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “A broadband terahertz ultrathin multi-focus lens,” Sci. Rep. 6(1), 28800 (2016).
[Crossref] [PubMed]

J. He, S. Wang, Z. Xie, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “Abruptly autofocusing terahertz waves with meta-hologram,” Opt. Lett. 41(12), 2787–2790 (2016).
[Crossref] [PubMed]

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

2015 (2)

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

2014 (3)

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Y. Zhang, S. Qiao, L. Sun, Q. W. Shi, W. Huang, L. Li, and Z. Yang, “Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method,” Opt. Express 22(9), 11070–11078 (2014).
[Crossref] [PubMed]

C. Y. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52(1), 106–114 (2014).
[Crossref]

2013 (8)

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

F. Fan, W. H. Gu, S. Chen, X. H. Wang, and S. J. Chang, “State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping,” Opt. Lett. 38(9), 1582–1584 (2013).
[Crossref] [PubMed]

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

C. L. Chang, W. C. Wang, H. R. Lin, J. H. Feng, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Z. W. Xie, X. K. Wang, J. S. Ye, S. F. Feng, W. F. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
[Crossref]

2012 (5)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

2011 (1)

C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, “Diffuse scattering from rough surfaces in THz communication channels,” IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011).
[Crossref]

2010 (3)

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27(11), 2387–2393 (2010).
[Crossref] [PubMed]

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010).
[Crossref] [PubMed]

2009 (1)

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

2008 (2)

W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33(9), 974–976 (2008).
[Crossref] [PubMed]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

2007 (1)

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

2000 (2)

M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

1986 (1)

1975 (1)

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

Abbott, D.

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Ahn, K.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Ahn, Y. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Aigouy, L.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Akalin, T.

Z. W. Xie, X. K. Wang, J. S. Ye, S. F. Feng, W. F. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

Averitt, R. D.

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Baraniuk, R. G.

Bernien, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Bessaudou, A.

E. P. J. Parrott, C. Han, F. Yan, G. Humbert, A. Bessaudou, A. Crunteanu, and E. Pickwell-MacPherson, “Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures,” Nanotechnology 27(20), 205206 (2016).
[Crossref] [PubMed]

Bhaskaran, M.

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Bolivar, P. H.

M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

Bozhevolnyi, S. I.

F. Ding, S. M. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

Brucherseifer, M.

M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

Cao, H. X.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Chan, C. H.

C. L. Chang, W. C. Wang, H. R. Lin, J. H. Feng, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Chan, W. L.

Chang, C. L.

C. L. Chang, W. C. Wang, H. R. Lin, J. H. Feng, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Chang, S.

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Chang, S. J.

Chen, C. Y.

C. Y. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52(1), 106–114 (2014).
[Crossref]

Chen, H. T.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Chen, S.

Chen, Y.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

Chernykh, I. A.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Choe, J. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Choi, C. G.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, H. K.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, J. W.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Choi, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, S. Y.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Cich, M. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Conley, H. J.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Crunteanu, A.

E. P. J. Parrott, C. Han, F. Yan, G. Humbert, A. Bessaudou, A. Crunteanu, and E. Pickwell-MacPherson, “Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures,” Nanotechnology 27(20), 205206 (2016).
[Crossref] [PubMed]

Cui, Y.

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010).
[Crossref] [PubMed]

X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27(11), 2387–2393 (2010).
[Crossref] [PubMed]

Dai, P. H.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Dierke, H.

C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, “Diffuse scattering from rough surfaces in THz communication channels,” IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011).
[Crossref]

Ding, F.

F. Ding, S. M. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

Dong, B.

Earley, S.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

Esaulkov, M. N.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Fan, F.

Fan, K.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Fan, K. B.

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

Feng, J. H.

C. L. Chang, W. C. Wang, H. R. Lin, J. H. Feng, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Feng, S. F.

Z. W. Xie, X. K. Wang, J. S. Ye, S. F. Feng, W. F. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

Ferguson, B.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

Geng, K.

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

Gu, B.

Gu, J.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Gu, W. H.

Haglund, R. F.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Han, C.

E. P. J. Parrott, C. Han, F. Yan, G. Humbert, A. Bessaudou, A. Crunteanu, and E. Pickwell-MacPherson, “Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures,” Nanotechnology 27(20), 205206 (2016).
[Crossref] [PubMed]

Han, J.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Han, S.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Hao, L. Y.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Hatano, T.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

He, J.

He, J. W.

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Hong, S.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Huang, W.

Huang, W. X.

Y. C. Zhao, Y. X. Zhang, Q. W. Shi, S. X. Liang, W. X. Huang, W. Kou, and Z. Q. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Huang, X.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Humbert, G.

E. P. J. Parrott, C. Han, F. Yan, G. Humbert, A. Bessaudou, A. Crunteanu, and E. Pickwell-MacPherson, “Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures,” Nanotechnology 27(20), 205206 (2016).
[Crossref] [PubMed]

Hwang, H. Y.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

In, S.

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D. S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm Gap,” ACS Photonics 5(2), 278–283 (2018).
[Crossref]

Iwasa, Y.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Jacob, M.

C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, “Diffuse scattering from rough surfaces in THz communication channels,” IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011).
[Crossref]

Jagadish, C.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Jansen, C.

C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, “Diffuse scattering from rough surfaces in THz communication channels,” IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011).
[Crossref]

Jeong, J.

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D. S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm Gap,” ACS Photonics 5(2), 278–283 (2018).
[Crossref]

Jeong, Y. G.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Ji, Y. D.

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Jin, B.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Kahng, B.

S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
[Crossref]

Kameshkov, O. E.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Kan, Q.

Kang, L.

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
[Crossref] [PubMed]

Kaul, A. R.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Kavehrad, M.

C. Y. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52(1), 106–114 (2014).
[Crossref]

Kawasaki, M.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Keiser, G. R.

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Kenney, M.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Kim, B. J.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, D. S.

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D. S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm Gap,” ACS Photonics 5(2), 278–283 (2018).
[Crossref]

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, H. S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, H. T.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, K.

S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
[Crossref]

Kim, N.

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D. S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm Gap,” ACS Photonics 5(2), 278–283 (2018).
[Crossref]

Kim, T. T.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Kittiwatanakul, S.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Knyazev, B. A.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Koch, M.

C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, “Diffuse scattering from rough surfaces in THz communication channels,” IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011).
[Crossref]

Koo, S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kou, W.

Y. C. Zhao, Y. X. Zhang, Q. W. Shi, S. X. Liang, W. X. Huang, W. Kou, and Z. Q. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Kulikov, I. V.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Kurner, T.

C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, “Diffuse scattering from rough surfaces in THz communication channels,” IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011).
[Crossref]

Kurz, H.

M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

Kyoung, J.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kyoung, J. S.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Lee, D.

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D. S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm Gap,” ACS Photonics 5(2), 278–283 (2018).
[Crossref]

Lee, J. S.

S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
[Crossref]

Lee, S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. B.

S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
[Crossref]

Lee, S. H.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Li, J.

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref] [PubMed]

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Li, J. N.

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Li, L.

Liang, L.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Liang, S. X.

Y. C. Zhao, Y. X. Zhang, Q. W. Shi, S. X. Liang, W. X. Huang, W. Kou, and Z. Q. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Lin, H. R.

C. L. Chang, W. C. Wang, H. R. Lin, J. H. Feng, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Lin, Y.

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Liu, H. B.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

Liu, L.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Liu, M.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Liu, Q. H.

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Lu, H.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Lu, J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Makarevich, A. M.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Markov, P.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Marvel, R. E.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Metcalfe, G. D.

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

Miller, K. J.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Min, B.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Mitchell, A.

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Mittleman, D. M.

Moller, C.

C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, “Diffuse scattering from rough surfaces in THz communication channels,” IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011).
[Crossref]

Moravec, M. L.

Mortier, M.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Mott, N. F.

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

Nagel, M.

M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

Nakano, M.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Nam, S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Nelson, K. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

O’Hara, J. F.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Oh, J. S.

S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
[Crossref]

Okuyama, D.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Omenetto, F. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Ono, S.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Ouyang, C.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Padilla, W. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Park, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Park, N.

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D. S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm Gap,” ACS Photonics 5(2), 278–283 (2018).
[Crossref]

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Park, Q. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Park, Y. S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Parrott, E. P. J.

E. P. J. Parrott, C. Han, F. Yan, G. Humbert, A. Bessaudou, A. Crunteanu, and E. Pickwell-MacPherson, “Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures,” Nanotechnology 27(20), 205206 (2016).
[Crossref] [PubMed]

Pickwell-MacPherson, E.

E. P. J. Parrott, C. Han, F. Yan, G. Humbert, A. Bessaudou, A. Crunteanu, and E. Pickwell-MacPherson, “Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures,” Nanotechnology 27(20), 205206 (2016).
[Crossref] [PubMed]

Plopper, G.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

Powell, D. A.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Priebe, S.

C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, “Diffuse scattering from rough surfaces in THz communication channels,” IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011).
[Crossref]

Pun, Y. B.

C. L. Chang, W. C. Wang, H. R. Lin, J. H. Feng, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Qiao, S.

Ramirez, J. G.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Ren, F. F.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Rhie, J.

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D. S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm Gap,” ACS Photonics 5(2), 278–283 (2018).
[Crossref]

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Rho, J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Schuller, I. K.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Seo, M.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Seren, H. R.

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

Shadrivov, I. V.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Shah, C. M.

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Sharoni, A.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Sharovarov, D. I.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Shi, Q. W.

Y. C. Zhao, Y. X. Zhang, Q. W. Shi, S. X. Liang, W. X. Huang, W. Kou, and Z. Q. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Y. Zhang, S. Qiao, L. Sun, Q. W. Shi, W. Huang, L. Li, and Z. Yang, “Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method,” Opt. Express 22(9), 11070–11078 (2014).
[Crossref] [PubMed]

Shi, Y.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Shibuya, K.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Shkurinov, A. P.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Shrekenhamer, D. B.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Singh, R.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Solyankin, P. M.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Song, Z.

Sriram, S.

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Sternbach, A. J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Strikwerda, A. C.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Su, X.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Sun, H. C.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Sun, L.

Sun, W.

Sun, W. F.

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Z. W. Xie, X. K. Wang, J. S. Ye, S. F. Feng, W. F. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010).
[Crossref] [PubMed]

Tan, H. H.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Tao, H.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Taylor, A. J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Tian, Z.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Tokura, Y.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Ung, B. S. Y.

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Wang, H. B.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Wang, K.

Wang, S.

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
[Crossref] [PubMed]

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

J. He, S. Wang, Z. Xie, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “Abruptly autofocusing terahertz waves with meta-hologram,” Opt. Lett. 41(12), 2787–2790 (2016).
[Crossref] [PubMed]

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Wang, W. C.

C. L. Chang, W. C. Wang, H. R. Lin, J. H. Feng, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Wang, X.

Wang, X. H.

Wang, X. K.

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Z. W. Xie, X. K. Wang, J. S. Ye, S. F. Feng, W. F. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010).
[Crossref] [PubMed]

Weiss, S. M.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

Wen, Q. Y.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Werner, D. H.

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
[Crossref] [PubMed]

West, K. G.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Withayachumnankul, W.

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Wolf, S. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Wraback, M.

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

Wu, P. H.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Xie, Z.

Xie, Z. W.

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Z. W. Xie, X. K. Wang, J. S. Ye, S. F. Feng, W. F. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

Xu, N.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Xu, W. Z.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Yan, F.

E. P. J. Parrott, C. Han, F. Yan, G. Humbert, A. Bessaudou, A. Crunteanu, and E. Pickwell-MacPherson, “Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures,” Nanotechnology 27(20), 205206 (2016).
[Crossref] [PubMed]

Yang, G.

Yang, H.

C. Y. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52(1), 106–114 (2014).
[Crossref]

Yang, Z.

Yang, Z. B.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Yang, Z. Q.

Y. C. Zhao, Y. X. Zhang, Q. W. Shi, S. X. Liang, W. X. Huang, W. Kou, and Z. Q. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Ye, J.

J. He, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “A broadband terahertz ultrathin multi-focus lens,” Sci. Rep. 6(1), 28800 (2016).
[Crossref] [PubMed]

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

J. He, S. Wang, Z. Xie, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “Abruptly autofocusing terahertz waves with meta-hologram,” Opt. Lett. 41(12), 2787–2790 (2016).
[Crossref] [PubMed]

X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27(11), 2387–2393 (2010).
[Crossref] [PubMed]

Ye, J. S.

Z. W. Xie, X. K. Wang, J. S. Ye, S. F. Feng, W. F. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010).
[Crossref] [PubMed]

Yin, X.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Yu, G.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Yue, W.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Zanaveskin, M. L.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Zhang, H. L.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Zhang, J. D.

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

Zhang, R.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Zhang, S.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Zhang, W.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Zhang, X.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Zhang, X. C.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

Zhang, Y.

J. He, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “A broadband terahertz ultrathin multi-focus lens,” Sci. Rep. 6(1), 28800 (2016).
[Crossref] [PubMed]

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

J. He, S. Wang, Z. Xie, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “Abruptly autofocusing terahertz waves with meta-hologram,” Opt. Lett. 41(12), 2787–2790 (2016).
[Crossref] [PubMed]

Y. Zhang, S. Qiao, L. Sun, Q. W. Shi, W. Huang, L. Li, and Z. Yang, “Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method,” Opt. Express 22(9), 11070–11078 (2014).
[Crossref] [PubMed]

Z. W. Xie, X. K. Wang, J. S. Ye, S. F. Feng, W. F. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010).
[Crossref] [PubMed]

X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27(11), 2387–2393 (2010).
[Crossref] [PubMed]

Zhang, Y. X.

Y. C. Zhao, Y. X. Zhang, Q. W. Shi, S. X. Liang, W. X. Huang, W. Kou, and Z. Q. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Zhao, X. G.

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

Zhao, Y. C.

Y. C. Zhao, Y. X. Zhang, Q. W. Shi, S. X. Liang, W. X. Huang, W. Kou, and Z. Q. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Zheng, Y.

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

Zhong, S. M.

F. Ding, S. M. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

Zhou, J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Zhou, X. J.

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

Zhou, Z.

C. Y. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52(1), 106–114 (2014).
[Crossref]

Zimmers, A.

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Zylbersztejn, A.

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

ACS Photonics (3)

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically Monitored Electrical Switching in VO2,” ACS Photonics 2(8), 1175–1182 (2015).
[Crossref]

N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D. S. Kim, and N. Park, “Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm Gap,” ACS Photonics 5(2), 278–283 (2018).
[Crossref]

Y. C. Zhao, Y. X. Zhang, Q. W. Shi, S. X. Liang, W. X. Huang, W. Kou, and Z. Q. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Adv. Mater. (2)

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

F. Ding, S. M. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

L. Y. Hao, X. J. Zhou, Z. B. Yang, H. L. Zhang, H. C. Sun, H. X. Cao, P. H. Dai, J. Li, T. Hatano, H. B. Wang, Q. Y. Wen, and P. H. Wu, “A power-adjustable superconducting terahertz source utilizing electrical triggering phase transitions in vanadium dioxide,” Appl. Phys. Lett. 109(23), 233503 (2016).
[Crossref]

S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
[Crossref]

M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[Crossref]

C. L. Chang, W. C. Wang, H. R. Lin, J. H. Feng, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

J. N. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Biosens. Bioelectron. (1)

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

IEEE Trans. Terahertz Sci. Technol. (2)

C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, “Diffuse scattering from rough surfaces in THz communication channels,” IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011).
[Crossref]

K. B. Fan, X. G. Zhao, J. D. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on highly flexible substrates,” IEEE Trans. Terahertz Sci. Technol. 3(6), 702–708 (2013).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz switching focuser based on thin film vanadium dioxide zone plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (2)

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

E. P. J. Parrott, C. Han, F. Yan, G. Humbert, A. Bessaudou, A. Crunteanu, and E. Pickwell-MacPherson, “Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures,” Nanotechnology 27(20), 205206 (2016).
[Crossref] [PubMed]

Nat. Commun. (2)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Nature (2)

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487(7408), 459–462 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lasers Eng. (1)

C. Y. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52(1), 106–114 (2014).
[Crossref]

Opt. Lett. (3)

Phys. Rev. B (1)

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

Phys. Rev. Lett. (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, “Role of thermal heating on the voltage induced insulator-metal transition in VO2.,” Phys. Rev. Lett. 110(5), 056601 (2013).
[Crossref] [PubMed]

Plasmonics (1)

J. W. He, Z. W. Xie, W. F. Sun, X. K. Wang, Y. D. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Sci. Rep. (4)

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
[Crossref] [PubMed]

Z. W. Xie, X. K. Wang, J. S. Ye, S. F. Feng, W. F. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator,” Sci. Rep. 3(1), 3347 (2013).
[Crossref]

W. Z. Xu, F. F. Ren, J. Ye, H. Lu, L. Liang, X. Huang, M. Liu, I. V. Shadrivov, D. A. Powell, G. Yu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays,” Sci. Rep. 6(1), 23486 (2016).
[Crossref] [PubMed]

J. He, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “A broadband terahertz ultrathin multi-focus lens,” Sci. Rep. 6(1), 28800 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic image of the setup used for studying operational characteristics of the THz wavefront modulators as a function of temperature. (a) The device has no effect on the THz wave in its off-state (e.g., at T = 20 °C < TC). The THz device acts on the THz wave in its on-state (e.g., at T = 70 °C > TC) as (b) a multiple foci lens or (c) a Ariy beam generator. TTML: Temperature controlled THz multi-focus lens. TTAG: Temperature controlled THz Ariy beam gererator.
Fig. 2
Fig. 2 (a) Schematic image of a C-shaped slot antenna indicating the characteristic parameters. (b) Photograph of a part of TML. (c) Transmittance of a VO2 reference thin film sample during heating (red curve) and cooling (blue curve). The phase transition temperature TC is about 68 °C.
Fig. 3
Fig. 3 THz imaging system. HWP: half wavelength plate, PBS: polarization beam splitter, L: lens, PM: parabolic mirror, TTML: Temperature controlled THz multi-focus lens, BS: beam splitter, QWP: quarter-wavelength plate, WP: Wollaston polarizer.
Fig. 4
Fig. 4 Switching characteristics of the TML. Experimental intensity distributions on the nominal focal plane for 0.8 THz radiation at 20 °C in the off-state (a) and at 70 °C in the on-state (b), respectively. (c) Transverse intensity profiles on the focal plane recorded along the dashed lines in (b). The red and blue curves represent the experimental transverse intensities of Line A and Line B, respectively.
Fig. 5
Fig. 5 Characterization of the TML in its on-state. Experimental intensity distributions for different frequencies. (a–d) Intensity distributions of Ey on the focal planes for 0.3, 0.5, 0.8, and 1.2 THz, respectively. (e–h) Longitudinal intensity distributions of the cross-polarized field Ey on the yz plane for 0.3, 0.5, 0.8, and 1.2 THz, respectively.
Fig. 6
Fig. 6 Characterization of the Airy beam generator (THz TAG) in its on-state. (a-d) Simulated cross-section intensity profiles at various propagation distances of (from left to right) z = 3.0, 6.0, 9.0 and 12.0 mm and (e-h) corresponding experimental results.
Fig. 7
Fig. 7 Vertical view of the THz ring-Airy beam propagation on the xz plane. (a) Simulation result and (b) experimental result.

Metrics