Abstract

In this work, we optimize and further advance a noise reduction scheme for heterodyne spectroscopy. This scheme linearly combines data from reference detectors to predict the noise statistics in the signal detector through an optimized coefficient matrix. We validate this scheme for visible white-light-continuum and 800-nm light sources using un-matched CMOS arrays and show that the signal-to-noise ratio can approach the noise floor of the signal detector while using only ~5% of the energy for reference detection. We also optimize the strategy for estimating the coefficient matrix in practical applications. When combined with elaborate algorithms to perform pixel data compression and expansion, our scheme is applicable in difficult situations, including when the sample position is rapidly scanned, when detectors exhibit nonlinear response, and/or when laser fluctuations are large. The scheme is generalized to scenarios with complex chopping or phase cycling patterns, and a simple approach is provided for the chopping case. Finally, a robust and computationally efficient method is devised to remove multiplicative noise.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
General noise suppression scheme with reference detection in heterodyne nonlinear spectroscopy

Yuan Feng, Ilya Vinogradov, and Nien-Hui Ge
Opt. Express 25(21) 26262-26279 (2017)

Improved heterodyne mixing efficiency and signal-to-noise ratio with an array of hexagonal detectors

Kamal K. Das, Khan M. Iftekharuddin, and Mohammad A. Karim
Appl. Opt. 36(27) 7023-7026 (1997)

Reduction of phase-induced intensity noise in a fiber-based coherent Doppler lidar using polarization control

Peter John Rodrigo and Christian Pedersen
Opt. Express 18(5) 5320-5327 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. Brazard, L. A. Bizimana, and D. B. Turner, “Accurate convergence of transient-absorption spectra using pulsed lasers,” Rev. Sci. Instrum. 86(5), 053106 (2015).
    [Crossref] [PubMed]
  2. M. Bradler and E. Riedle, “Temporal and spectral correlations in bulk continua and improved use in transient spectroscopy,” J. Opt. Soc. Am. B 31(7), 1465–1475 (2014).
    [Crossref]
  3. C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79(1), 013107 (2008).
    [Crossref] [PubMed]
  4. A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum. 81(11), 113106 (2010).
    [Crossref] [PubMed]
  5. C. A. Werley, S. M. Teo, and K. A. Nelson, “Pulsed laser noise analysis and pump-probe signal detection with a data acquisition card,” Rev. Sci. Instrum. 82(12), 123108 (2011).
    [Crossref] [PubMed]
  6. M. Kaucikas, J. Barber, and J. J. Van Thor, “Polarization sensitive ultrafast mid-IR pump probe micro-spectrometer with diffraction limited spatial resolution,” Opt. Express 21(7), 8357–8370 (2013).
    [Crossref] [PubMed]
  7. S. Mukamel, Principles of Nonlinear Optical Spectroscopy, Oxford Series on Optical and Imaging Sciences (Oxford University Press, 1999).
  8. T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
    [Crossref] [PubMed]
  9. M. J. Nee, R. McCanne, K. J. Kubarych, and M. Joffre, “Two-dimensional infrared spectroscopy detected by chirped pulse upconversion,” Opt. Lett. 32(6), 713–715 (2007).
    [Crossref] [PubMed]
  10. L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
    [Crossref] [PubMed]
  11. A. P. Spencer, B. Spokoyny, S. Ray, F. Sarvari, and E. Harel, “Mapping multidimensional electronic structure and ultrafast dynamics with single-element detection and compressive sensing,” Nat. Commun. 7(1), 10434 (2016).
    [Crossref] [PubMed]
  12. J. A. Moon, “Optimization of signal‐to‐noise ratios in pump‐probe spectroscopy,” Rev. Sci. Instrum. 64(7), 1775–1778 (1993).
    [Crossref]
  13. K. Röttger, S. Wang, F. Renth, J. Bahrenburg, and F. Temps, “A femtosecond pump–probe spectrometer for dynamics in transmissive polymer films,” Appl. Phys. B 118(2), 185–193 (2015).
    [Crossref]
  14. M. A. R. Reber, Y. Chen, and T. K. Allison, “Cavity-enhanced ultrafast spectroscopy: ultrafast meets ultrasensitive,” Optica 3(3), 311–317 (2016).
    [Crossref]
  15. S. D. McClure, D. B. Turner, P. C. Arpin, T. Mirkovic, and G. D. Scholes, “Coherent Oscillations in the PC577 Cryptophyte Antenna Occur in the Excited Electronic State,” J. Phys. Chem. B 118(5), 1296–1308 (2014).
    [Crossref] [PubMed]
  16. P. Hamm, S. Wiemann, M. Zurek, and W. Zinth, “Highly sensitive multichannel spectrometer for subpicosecond spectroscopy in the midinfrared,” Opt. Lett. 19(20), 1642–1644 (1994).
    [Crossref] [PubMed]
  17. A. Ghosh, A. L. Serrano, T. A. Oudenhoven, J. S. Ostrander, E. C. Eklund, A. F. Blair, and M. T. Zanni, “Experimental implementations of 2D IR spectroscopy through a horizontal pulse shaper design and a focal plane array detector,” Opt. Lett. 41(3), 524–527 (2016).
    [Crossref] [PubMed]
  18. D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
    [Crossref] [PubMed]
  19. Y. Feng, I. Vinogradov, and N.-H. Ge, “General noise suppression scheme with reference detection in heterodyne nonlinear spectroscopy,” Opt. Express 25(21), 26262–26279 (2017).
    [Crossref] [PubMed]
  20. J. F. Holmes and B. J. Rask, “Optimum optical local-oscillator power levels for coherent detection with photodiodes,” Appl. Opt. 34(6), 927–933 (1995).
    [Crossref] [PubMed]
  21. B. M. Luther, K. M. Tracy, M. Gerrity, S. Brown, and A. T. Krummel, “2D IR spectroscopy at 100 kHz utilizing a Mid-IR OPCPA laser source,” Opt. Express 24(4), 4117–4127 (2016).
    [Crossref] [PubMed]
  22. F. Kanal, S. Keiber, R. Eck, and T. Brixner, “100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump-probe spectroscopy,” Opt. Express 22(14), 16965–16975 (2014).
    [Crossref] [PubMed]
  23. G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van Mourik, and M. Chergui, “Femtosecond pump/supercontinuum-probe setup with 20 kHz repetition rate,” Rev. Sci. Instrum. 83(9), 093105 (2012).
    [Crossref] [PubMed]
  24. W. Rock, Y.-L. Li, P. Pagano, and C. M. Cheatum, “2D IR Spectroscopy using Four-Wave Mixing, Pulse Shaping, and IR Upconversion: A Quantitative Comparison,” J. Phys. Chem. A 117(29), 6073–6083 (2013).
    [Crossref] [PubMed]
  25. A. L. van den Wollenberg, “Redundancy analysis an alternative for canonical correlation analysis,” Psychometrika 42(2), 207–219 (1977).
    [Crossref]
  26. K. E. Muller, “Relationships between redundancy analysis, canonical correlation, and multivariate regression,” Psychometrika 46(2), 139–142 (1981).
    [Crossref]
  27. Z. Zhang, K. L. Wells, E. W. J. Hyland, and H.-S. Tan, “Phase-cycling schemes for pump–probe beam geometry two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 550, 156–161 (2012).
    [Crossref]
  28. R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, and P. Donaldson, “Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments,” Opt. Express 18(26), 27067–27078 (2010).
    [Crossref] [PubMed]
  29. J. Helbing and P. Hamm, “Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B 28(1), 171–178 (2011).
    [Crossref]
  30. H. Seiler, S. Palato, and P. Kambhampati, “Coherent multi-dimensional spectroscopy at optical frequencies in a single beam with optical readout,” J. Chem. Phys. 147(9), 094203 (2017).
    [Crossref] [PubMed]
  31. K. E. H. Anderson, S. L. Sewall, R. R. Cooney, and P. Kambhampati, “Noise analysis and noise reduction methods in kilohertz pump-probe experiments,” Rev. Sci. Instrum. 78(7), 073101 (2007).
    [Crossref] [PubMed]

2017 (2)

Y. Feng, I. Vinogradov, and N.-H. Ge, “General noise suppression scheme with reference detection in heterodyne nonlinear spectroscopy,” Opt. Express 25(21), 26262–26279 (2017).
[Crossref] [PubMed]

H. Seiler, S. Palato, and P. Kambhampati, “Coherent multi-dimensional spectroscopy at optical frequencies in a single beam with optical readout,” J. Chem. Phys. 147(9), 094203 (2017).
[Crossref] [PubMed]

2016 (4)

2015 (3)

J. Brazard, L. A. Bizimana, and D. B. Turner, “Accurate convergence of transient-absorption spectra using pulsed lasers,” Rev. Sci. Instrum. 86(5), 053106 (2015).
[Crossref] [PubMed]

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

K. Röttger, S. Wang, F. Renth, J. Bahrenburg, and F. Temps, “A femtosecond pump–probe spectrometer for dynamics in transmissive polymer films,” Appl. Phys. B 118(2), 185–193 (2015).
[Crossref]

2014 (3)

2013 (2)

M. Kaucikas, J. Barber, and J. J. Van Thor, “Polarization sensitive ultrafast mid-IR pump probe micro-spectrometer with diffraction limited spatial resolution,” Opt. Express 21(7), 8357–8370 (2013).
[Crossref] [PubMed]

W. Rock, Y.-L. Li, P. Pagano, and C. M. Cheatum, “2D IR Spectroscopy using Four-Wave Mixing, Pulse Shaping, and IR Upconversion: A Quantitative Comparison,” J. Phys. Chem. A 117(29), 6073–6083 (2013).
[Crossref] [PubMed]

2012 (2)

G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van Mourik, and M. Chergui, “Femtosecond pump/supercontinuum-probe setup with 20 kHz repetition rate,” Rev. Sci. Instrum. 83(9), 093105 (2012).
[Crossref] [PubMed]

Z. Zhang, K. L. Wells, E. W. J. Hyland, and H.-S. Tan, “Phase-cycling schemes for pump–probe beam geometry two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 550, 156–161 (2012).
[Crossref]

2011 (2)

J. Helbing and P. Hamm, “Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B 28(1), 171–178 (2011).
[Crossref]

C. A. Werley, S. M. Teo, and K. A. Nelson, “Pulsed laser noise analysis and pump-probe signal detection with a data acquisition card,” Rev. Sci. Instrum. 82(12), 123108 (2011).
[Crossref] [PubMed]

2010 (2)

A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum. 81(11), 113106 (2010).
[Crossref] [PubMed]

R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, and P. Donaldson, “Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments,” Opt. Express 18(26), 27067–27078 (2010).
[Crossref] [PubMed]

2008 (1)

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79(1), 013107 (2008).
[Crossref] [PubMed]

2007 (2)

M. J. Nee, R. McCanne, K. J. Kubarych, and M. Joffre, “Two-dimensional infrared spectroscopy detected by chirped pulse upconversion,” Opt. Lett. 32(6), 713–715 (2007).
[Crossref] [PubMed]

K. E. H. Anderson, S. L. Sewall, R. R. Cooney, and P. Kambhampati, “Noise analysis and noise reduction methods in kilohertz pump-probe experiments,” Rev. Sci. Instrum. 78(7), 073101 (2007).
[Crossref] [PubMed]

2004 (2)

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
[Crossref] [PubMed]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[Crossref] [PubMed]

1995 (1)

1994 (1)

1993 (1)

J. A. Moon, “Optimization of signal‐to‐noise ratios in pump‐probe spectroscopy,” Rev. Sci. Instrum. 64(7), 1775–1778 (1993).
[Crossref]

1981 (1)

K. E. Muller, “Relationships between redundancy analysis, canonical correlation, and multivariate regression,” Psychometrika 46(2), 139–142 (1981).
[Crossref]

1977 (1)

A. L. van den Wollenberg, “Redundancy analysis an alternative for canonical correlation analysis,” Psychometrika 42(2), 207–219 (1977).
[Crossref]

Allison, T. K.

Anderson, K. E. H.

K. E. H. Anderson, S. L. Sewall, R. R. Cooney, and P. Kambhampati, “Noise analysis and noise reduction methods in kilohertz pump-probe experiments,” Rev. Sci. Instrum. 78(7), 073101 (2007).
[Crossref] [PubMed]

Arpin, P. C.

S. D. McClure, D. B. Turner, P. C. Arpin, T. Mirkovic, and G. D. Scholes, “Coherent Oscillations in the PC577 Cryptophyte Antenna Occur in the Excited Electronic State,” J. Phys. Chem. B 118(5), 1296–1308 (2014).
[Crossref] [PubMed]

Auböck, G.

G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van Mourik, and M. Chergui, “Femtosecond pump/supercontinuum-probe setup with 20 kHz repetition rate,” Rev. Sci. Instrum. 83(9), 093105 (2012).
[Crossref] [PubMed]

Bahrenburg, J.

K. Röttger, S. Wang, F. Renth, J. Bahrenburg, and F. Temps, “A femtosecond pump–probe spectrometer for dynamics in transmissive polymer films,” Appl. Phys. B 118(2), 185–193 (2015).
[Crossref]

Barber, J.

Bizimana, L. A.

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

J. Brazard, L. A. Bizimana, and D. B. Turner, “Accurate convergence of transient-absorption spectra using pulsed lasers,” Rev. Sci. Instrum. 86(5), 053106 (2015).
[Crossref] [PubMed]

Blair, A. F.

Bloem, R.

Bradler, M.

Brazard, J.

J. Brazard, L. A. Bizimana, and D. B. Turner, “Accurate convergence of transient-absorption spectra using pulsed lasers,” Rev. Sci. Instrum. 86(5), 053106 (2015).
[Crossref] [PubMed]

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

Brixner, T.

Brown, S.

Cannizzo, A.

G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van Mourik, and M. Chergui, “Femtosecond pump/supercontinuum-probe setup with 20 kHz repetition rate,” Rev. Sci. Instrum. 83(9), 093105 (2012).
[Crossref] [PubMed]

Carbery, W. P.

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

Cheatum, C. M.

W. Rock, Y.-L. Li, P. Pagano, and C. M. Cheatum, “2D IR Spectroscopy using Four-Wave Mixing, Pulse Shaping, and IR Upconversion: A Quantitative Comparison,” J. Phys. Chem. A 117(29), 6073–6083 (2013).
[Crossref] [PubMed]

Chen, Y.

Chergui, M.

G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van Mourik, and M. Chergui, “Femtosecond pump/supercontinuum-probe setup with 20 kHz repetition rate,” Rev. Sci. Instrum. 83(9), 093105 (2012).
[Crossref] [PubMed]

Consani, C.

G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van Mourik, and M. Chergui, “Femtosecond pump/supercontinuum-probe setup with 20 kHz repetition rate,” Rev. Sci. Instrum. 83(9), 093105 (2012).
[Crossref] [PubMed]

Cooney, R. R.

K. E. H. Anderson, S. L. Sewall, R. R. Cooney, and P. Kambhampati, “Noise analysis and noise reduction methods in kilohertz pump-probe experiments,” Rev. Sci. Instrum. 78(7), 073101 (2007).
[Crossref] [PubMed]

Dobryakov, A. L.

A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum. 81(11), 113106 (2010).
[Crossref] [PubMed]

Donaldson, P.

Eck, R.

Eklund, E. C.

Ernsting, N. P.

A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum. 81(11), 113106 (2010).
[Crossref] [PubMed]

Feng, Y.

Fleming, G. R.

Garrett-Roe, S.

Ge, N.-H.

Gellen, T.

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

Gerrity, M.

Ghosh, A.

Hamm, P.

Harel, E.

A. P. Spencer, B. Spokoyny, S. Ray, F. Sarvari, and E. Harel, “Mapping multidimensional electronic structure and ultrafast dynamics with single-element detection and compressive sensing,” Nat. Commun. 7(1), 10434 (2016).
[Crossref] [PubMed]

Helbing, J.

Holmes, J. F.

Hyland, E. W. J.

Z. Zhang, K. L. Wells, E. W. J. Hyland, and H.-S. Tan, “Phase-cycling schemes for pump–probe beam geometry two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 550, 156–161 (2012).
[Crossref]

Joffre, M.

Kambhampati, P.

H. Seiler, S. Palato, and P. Kambhampati, “Coherent multi-dimensional spectroscopy at optical frequencies in a single beam with optical readout,” J. Chem. Phys. 147(9), 094203 (2017).
[Crossref] [PubMed]

K. E. H. Anderson, S. L. Sewall, R. R. Cooney, and P. Kambhampati, “Noise analysis and noise reduction methods in kilohertz pump-probe experiments,” Rev. Sci. Instrum. 78(7), 073101 (2007).
[Crossref] [PubMed]

Kanal, F.

Kaucikas, M.

Keiber, S.

Kovalenko, S. A.

A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum. 81(11), 113106 (2010).
[Crossref] [PubMed]

Krummel, A. T.

Kubarych, K. J.

Kukura, P.

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[Crossref] [PubMed]

Lange, J.

A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum. 81(11), 113106 (2010).
[Crossref] [PubMed]

Li, Y.-L.

W. Rock, Y.-L. Li, P. Pagano, and C. M. Cheatum, “2D IR Spectroscopy using Four-Wave Mixing, Pulse Shaping, and IR Upconversion: A Quantitative Comparison,” J. Phys. Chem. A 117(29), 6073–6083 (2013).
[Crossref] [PubMed]

Lochbrunner, S.

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79(1), 013107 (2008).
[Crossref] [PubMed]

Luther, B. M.

Mathies, R. A.

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[Crossref] [PubMed]

McCamant, D. W.

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[Crossref] [PubMed]

McCanne, R.

McClure, S. D.

S. D. McClure, D. B. Turner, P. C. Arpin, T. Mirkovic, and G. D. Scholes, “Coherent Oscillations in the PC577 Cryptophyte Antenna Occur in the Excited Electronic State,” J. Phys. Chem. B 118(5), 1296–1308 (2014).
[Crossref] [PubMed]

Mirkovic, T.

S. D. McClure, D. B. Turner, P. C. Arpin, T. Mirkovic, and G. D. Scholes, “Coherent Oscillations in the PC577 Cryptophyte Antenna Occur in the Excited Electronic State,” J. Phys. Chem. B 118(5), 1296–1308 (2014).
[Crossref] [PubMed]

Monni, R.

G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van Mourik, and M. Chergui, “Femtosecond pump/supercontinuum-probe setup with 20 kHz repetition rate,” Rev. Sci. Instrum. 83(9), 093105 (2012).
[Crossref] [PubMed]

Moon, J. A.

J. A. Moon, “Optimization of signal‐to‐noise ratios in pump‐probe spectroscopy,” Rev. Sci. Instrum. 64(7), 1775–1778 (1993).
[Crossref]

Muller, K. E.

K. E. Muller, “Relationships between redundancy analysis, canonical correlation, and multivariate regression,” Psychometrika 46(2), 139–142 (1981).
[Crossref]

Müller, A.

A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum. 81(11), 113106 (2010).
[Crossref] [PubMed]

Nee, M. J.

Nelson, K. A.

C. A. Werley, S. M. Teo, and K. A. Nelson, “Pulsed laser noise analysis and pump-probe signal detection with a data acquisition card,” Rev. Sci. Instrum. 82(12), 123108 (2011).
[Crossref] [PubMed]

Nesbitt, D. J.

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79(1), 013107 (2008).
[Crossref] [PubMed]

Ostrander, J. S.

Oudenhoven, T. A.

Pagano, P.

W. Rock, Y.-L. Li, P. Pagano, and C. M. Cheatum, “2D IR Spectroscopy using Four-Wave Mixing, Pulse Shaping, and IR Upconversion: A Quantitative Comparison,” J. Phys. Chem. A 117(29), 6073–6083 (2013).
[Crossref] [PubMed]

Palato, S.

H. Seiler, S. Palato, and P. Kambhampati, “Coherent multi-dimensional spectroscopy at optical frequencies in a single beam with optical readout,” J. Chem. Phys. 147(9), 094203 (2017).
[Crossref] [PubMed]

Pérez-Lustres, J. L.

A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum. 81(11), 113106 (2010).
[Crossref] [PubMed]

Rask, B. J.

Ray, S.

A. P. Spencer, B. Spokoyny, S. Ray, F. Sarvari, and E. Harel, “Mapping multidimensional electronic structure and ultrafast dynamics with single-element detection and compressive sensing,” Nat. Commun. 7(1), 10434 (2016).
[Crossref] [PubMed]

Reber, M. A. R.

Renth, F.

K. Röttger, S. Wang, F. Renth, J. Bahrenburg, and F. Temps, “A femtosecond pump–probe spectrometer for dynamics in transmissive polymer films,” Appl. Phys. B 118(2), 185–193 (2015).
[Crossref]

Riedle, E.

M. Bradler and E. Riedle, “Temporal and spectral correlations in bulk continua and improved use in transient spectroscopy,” J. Opt. Soc. Am. B 31(7), 1465–1475 (2014).
[Crossref]

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79(1), 013107 (2008).
[Crossref] [PubMed]

Rock, W.

W. Rock, Y.-L. Li, P. Pagano, and C. M. Cheatum, “2D IR Spectroscopy using Four-Wave Mixing, Pulse Shaping, and IR Upconversion: A Quantitative Comparison,” J. Phys. Chem. A 117(29), 6073–6083 (2013).
[Crossref] [PubMed]

Röttger, K.

K. Röttger, S. Wang, F. Renth, J. Bahrenburg, and F. Temps, “A femtosecond pump–probe spectrometer for dynamics in transmissive polymer films,” Appl. Phys. B 118(2), 185–193 (2015).
[Crossref]

Sarvari, F.

A. P. Spencer, B. Spokoyny, S. Ray, F. Sarvari, and E. Harel, “Mapping multidimensional electronic structure and ultrafast dynamics with single-element detection and compressive sensing,” Nat. Commun. 7(1), 10434 (2016).
[Crossref] [PubMed]

Scholes, G. D.

S. D. McClure, D. B. Turner, P. C. Arpin, T. Mirkovic, and G. D. Scholes, “Coherent Oscillations in the PC577 Cryptophyte Antenna Occur in the Excited Electronic State,” J. Phys. Chem. B 118(5), 1296–1308 (2014).
[Crossref] [PubMed]

Schriever, C.

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79(1), 013107 (2008).
[Crossref] [PubMed]

Seiler, H.

H. Seiler, S. Palato, and P. Kambhampati, “Coherent multi-dimensional spectroscopy at optical frequencies in a single beam with optical readout,” J. Chem. Phys. 147(9), 094203 (2017).
[Crossref] [PubMed]

Serrano, A. L.

Sewall, S. L.

K. E. H. Anderson, S. L. Sewall, R. R. Cooney, and P. Kambhampati, “Noise analysis and noise reduction methods in kilohertz pump-probe experiments,” Rev. Sci. Instrum. 78(7), 073101 (2007).
[Crossref] [PubMed]

Spencer, A. P.

A. P. Spencer, B. Spokoyny, S. Ray, F. Sarvari, and E. Harel, “Mapping multidimensional electronic structure and ultrafast dynamics with single-element detection and compressive sensing,” Nat. Commun. 7(1), 10434 (2016).
[Crossref] [PubMed]

Spokoyny, B.

A. P. Spencer, B. Spokoyny, S. Ray, F. Sarvari, and E. Harel, “Mapping multidimensional electronic structure and ultrafast dynamics with single-element detection and compressive sensing,” Nat. Commun. 7(1), 10434 (2016).
[Crossref] [PubMed]

Stiopkin, I. V.

Strzalka, H.

Tan, H.-S.

Z. Zhang, K. L. Wells, E. W. J. Hyland, and H.-S. Tan, “Phase-cycling schemes for pump–probe beam geometry two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 550, 156–161 (2012).
[Crossref]

Temps, F.

K. Röttger, S. Wang, F. Renth, J. Bahrenburg, and F. Temps, “A femtosecond pump–probe spectrometer for dynamics in transmissive polymer films,” Appl. Phys. B 118(2), 185–193 (2015).
[Crossref]

Teo, S. M.

C. A. Werley, S. M. Teo, and K. A. Nelson, “Pulsed laser noise analysis and pump-probe signal detection with a data acquisition card,” Rev. Sci. Instrum. 82(12), 123108 (2011).
[Crossref] [PubMed]

Tracy, K. M.

Turner, D. B.

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

J. Brazard, L. A. Bizimana, and D. B. Turner, “Accurate convergence of transient-absorption spectra using pulsed lasers,” Rev. Sci. Instrum. 86(5), 053106 (2015).
[Crossref] [PubMed]

S. D. McClure, D. B. Turner, P. C. Arpin, T. Mirkovic, and G. D. Scholes, “Coherent Oscillations in the PC577 Cryptophyte Antenna Occur in the Excited Electronic State,” J. Phys. Chem. B 118(5), 1296–1308 (2014).
[Crossref] [PubMed]

van den Wollenberg, A. L.

A. L. van den Wollenberg, “Redundancy analysis an alternative for canonical correlation analysis,” Psychometrika 42(2), 207–219 (1977).
[Crossref]

van Mourik, F.

G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van Mourik, and M. Chergui, “Femtosecond pump/supercontinuum-probe setup with 20 kHz repetition rate,” Rev. Sci. Instrum. 83(9), 093105 (2012).
[Crossref] [PubMed]

Van Thor, J. J.

Vinogradov, I.

Wang, S.

K. Röttger, S. Wang, F. Renth, J. Bahrenburg, and F. Temps, “A femtosecond pump–probe spectrometer for dynamics in transmissive polymer films,” Appl. Phys. B 118(2), 185–193 (2015).
[Crossref]

Weigel, A.

A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum. 81(11), 113106 (2010).
[Crossref] [PubMed]

Wells, K. L.

Z. Zhang, K. L. Wells, E. W. J. Hyland, and H.-S. Tan, “Phase-cycling schemes for pump–probe beam geometry two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 550, 156–161 (2012).
[Crossref]

Werley, C. A.

C. A. Werley, S. M. Teo, and K. A. Nelson, “Pulsed laser noise analysis and pump-probe signal detection with a data acquisition card,” Rev. Sci. Instrum. 82(12), 123108 (2011).
[Crossref] [PubMed]

Wiemann, S.

Yoon, S.

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[Crossref] [PubMed]

Zanni, M. T.

Zhang, Z.

Z. Zhang, K. L. Wells, E. W. J. Hyland, and H.-S. Tan, “Phase-cycling schemes for pump–probe beam geometry two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 550, 156–161 (2012).
[Crossref]

Zinth, W.

Zurek, M.

Appl. Opt. (1)

Appl. Phys. B (1)

K. Röttger, S. Wang, F. Renth, J. Bahrenburg, and F. Temps, “A femtosecond pump–probe spectrometer for dynamics in transmissive polymer films,” Appl. Phys. B 118(2), 185–193 (2015).
[Crossref]

Chem. Phys. Lett. (1)

Z. Zhang, K. L. Wells, E. W. J. Hyland, and H.-S. Tan, “Phase-cycling schemes for pump–probe beam geometry two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 550, 156–161 (2012).
[Crossref]

J. Chem. Phys. (2)

H. Seiler, S. Palato, and P. Kambhampati, “Coherent multi-dimensional spectroscopy at optical frequencies in a single beam with optical readout,” J. Chem. Phys. 147(9), 094203 (2017).
[Crossref] [PubMed]

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. A (1)

W. Rock, Y.-L. Li, P. Pagano, and C. M. Cheatum, “2D IR Spectroscopy using Four-Wave Mixing, Pulse Shaping, and IR Upconversion: A Quantitative Comparison,” J. Phys. Chem. A 117(29), 6073–6083 (2013).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

S. D. McClure, D. B. Turner, P. C. Arpin, T. Mirkovic, and G. D. Scholes, “Coherent Oscillations in the PC577 Cryptophyte Antenna Occur in the Excited Electronic State,” J. Phys. Chem. B 118(5), 1296–1308 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

A. P. Spencer, B. Spokoyny, S. Ray, F. Sarvari, and E. Harel, “Mapping multidimensional electronic structure and ultrafast dynamics with single-element detection and compressive sensing,” Nat. Commun. 7(1), 10434 (2016).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Optica (1)

Psychometrika (2)

A. L. van den Wollenberg, “Redundancy analysis an alternative for canonical correlation analysis,” Psychometrika 42(2), 207–219 (1977).
[Crossref]

K. E. Muller, “Relationships between redundancy analysis, canonical correlation, and multivariate regression,” Psychometrika 46(2), 139–142 (1981).
[Crossref]

Rev. Sci. Instrum. (8)

J. Brazard, L. A. Bizimana, and D. B. Turner, “Accurate convergence of transient-absorption spectra using pulsed lasers,” Rev. Sci. Instrum. 86(5), 053106 (2015).
[Crossref] [PubMed]

G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van Mourik, and M. Chergui, “Femtosecond pump/supercontinuum-probe setup with 20 kHz repetition rate,” Rev. Sci. Instrum. 83(9), 093105 (2012).
[Crossref] [PubMed]

K. E. H. Anderson, S. L. Sewall, R. R. Cooney, and P. Kambhampati, “Noise analysis and noise reduction methods in kilohertz pump-probe experiments,” Rev. Sci. Instrum. 78(7), 073101 (2007).
[Crossref] [PubMed]

J. A. Moon, “Optimization of signal‐to‐noise ratios in pump‐probe spectroscopy,” Rev. Sci. Instrum. 64(7), 1775–1778 (1993).
[Crossref]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[Crossref] [PubMed]

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79(1), 013107 (2008).
[Crossref] [PubMed]

A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum. 81(11), 113106 (2010).
[Crossref] [PubMed]

C. A. Werley, S. M. Teo, and K. A. Nelson, “Pulsed laser noise analysis and pump-probe signal detection with a data acquisition card,” Rev. Sci. Instrum. 82(12), 123108 (2011).
[Crossref] [PubMed]

Other (1)

S. Mukamel, Principles of Nonlinear Optical Spectroscopy, Oxford Series on Optical and Imaging Sciences (Oxford University Press, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of the demonstration setup. WP: waveplate; TFP: thin film polarizer; L: lens; Water: a 10-mm thick cuvette filled with H2O; BS: beam splitter; G: grating; CM: concave mirror; D: array detector.
Fig. 2
Fig. 2 Mean spectra of the 800-nm light (a), and WLC (b). The top and bottom x-axes are pixel indices for DH and DL, respectively. Correlation coefficients between Δ I DL and Δ I DH for 800-nm light (c) and WLC (d).
Fig. 3
Fig. 3 Noise statistics of WLC: histogram (top) and amplitude spectrum (bottom). The data I is taken from DH’s 950th pixel, and ΔK is calculated using all of the DL pixels for referencing.
Fig. 4
Fig. 4 The weights of different noise sources as a function of light intensity for DL (a) and DH (b). The units for both x- and y- axes in both plots are ADC counts, up to 65535. Blue and red lines in (a) are almost overlapped.
Fig. 5
Fig. 5 Performance of referencing with the different choices of the signal and reference arrays and different light sources. (a) DH is the signal array and WLC is the light source. (b) DL is the signal array and WLC is the light source. (c) DH is the signal array and 800-nm light is the light source. The common legend describe the denominator in the SNR0 definition: σ( ΔI ), no referencing (blue); σ( ΔK ), referencing using all (red), 1/2 (cyan), 1/8 (magenta), and 1/64 (yellow) of reference array pixels. The pixel noise floor (green) is estimated by (2 N L +2 N D 2 ) 1/2 in the signal array. The black curve in (c) is generated by using part of DH pixels for referencing.
Fig. 6
Fig. 6 Illustration of different training-set distribution patterns: (a) fully-aggregated, (b) fully-dispersed, (c) 3/4-dispersed. Shots in the training set are red, shots in the test set are blue.
Fig. 7
Fig. 7 Effect of training-set size and distribution on B estimation. (a) Convergence of q with an increasing number of consecutive pairs in the training set (nb). The theoretical curve is Eq. (11). (b) Q as a function of Nb for a fixed Nt = 60K. Note that the horizontal axes are different in (a) and (b).
Fig. 8
Fig. 8 Effect of reference-pixel data compression. (a) SNR0 drops with more binning for the one-minute WLC data: no referencing (blue); referencing using all of reference array pixels (green), using 32 (red), 16 (cyan), and 8 (magenta) effective reference pixels. The convergence of q with increasing number of effective reference pixels for WLC (b), and 800-nm (c) using different compression methods: binning (blue), PCR (green), and MRA (red). The horizontal axes in (b) and (c) are in a log scale.
Fig. 9
Fig. 9 Performance of pixel compression after pre-processing with binning for WLC. (a) q as a function of effective pixels (with PCR or MRA), after pre-processing with different level of binning. (b) q as a function of h′ for pre-processing with a fixed m = 8. (c) Q as a function of m for a fast update case, where B is updated every second. The horizontal axes are all in a log scale.
Fig. 10
Fig. 10 SNR0 with reference-pixel data expansion demonstrated with WLC (a), and mid-IR (b). The test set and training set are the same. 〈a, b, c〉 in the legend indicates the binning configuration, where 〈0, 0, 0〉 means no reference.
Fig. 11
Fig. 11 (a) Illustration of Δ definition for data acquisition with a two-shot cycle (top) and a three-shot cycle (bottom). (b) Decrease of SNR0 with increasing lag when Δ1−(1+lag) is used for both the training and application steps of B. (c) The accuracy of B esitmation decreases with increasing lag when Δ1−2, instead of Δ1−(1+lag), is used for the training step of B. The reference array is binned into 64 effective pixels before referencing calculations, and the whole one-minute WLC data set is used as both training set and test set for (b) and (c).

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

I tot = S h + I LO + I Sig
Δ I tot =Δ S h +Δ I LO = χ ( n ) F+Δ I LO
Δ I tot Δ I Ref B= χ ( n ) F+ΔK
ΔKΔ I LO Δ I Ref B
B=cov ( Δ I Ref ) 1 cov( Δ I Ref ,Δ I LO )
var min ( ΔK(i) ) var( Δ I LO (i) ) =1 cov( Δ I LO (i),Δ I Ref )cov ( Δ I Ref ) 1 cov( Δ I Ref ,Δ I LO (i) ) var( Δ I LO (i) )
Δ I tot s Δ I Ref s B= χ ( n ) F s + ΔK s
σ( ΔI ) 2( N L + N D 2 )+ ( N L × p 2 ) 2
var( ΔK )=var( Δ I LO L Δ I Ref L B )+var( Δ I LO P )+var( Δ I Ref P B )
q  σ( ΔK ) based on a specific B estimation σ( ΔK ) based on the standard B rms
q= ( n b 1 )/ ( n b 1h )
Qq 1+ N b / N t
N b min =2+2h+ 4h+2 N t h+4 h 2
Q min 1+ ( 2h/ N t ) 1/2 + ( h+1 )/ N t for N t h
ΔK=Δ I LO Δ I Ref C D=Δ I LO Δ I Ref eff D
D=cov ( Δ I Ref eff ) 1 cov( Δ I Ref eff ,Δ I LO )
C=argmi n C σ( ΔK )w rms
ΔK=Δ I LO Δ f( I Ref )
Δ f( I Ref )Δ I Ref eff B
Δ I Ref eff Δ( I Ref , I Ref (2) , I Ref (3) ,... )
I Ref (2) { δ I Ref (i)δ I Ref (j) }, I Ref (3) { δ I Ref (i)δ I Ref (j)δ I Ref (k) }

Metrics