Abstract

We present a flexible coherent Mid-Infrared (Mid-IR) fiber bundle for thermal imaging made of 1200 Ge30As13Se32Te25 glass cores embedded in a Fluorinated Ethylene Propylene (FEP) polymer cladding. The high index contrast between the chalcogenide glass and the polymer cladding helps minimizing inter-pixel cross-talk, while the low Young’s modulus of the polymer cladding gives the bundle good flexibility despite its millimeter scale outer diameter. The delivery of high contrast and high spatial resolution thermal images of a human hand through a 62.5 cm long bundle indicates its excellent imaging potential.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution chalcogenide fiber bundles for longwave infrared imaging

Sisheng Qi, Bin Zhang, Chengcheng Zhai, Yaocheng Li, Anping Yang, Yi Yu, Dingyuan Tang, Zhiyong Yang, and Barry Luther-Davies
Opt. Express 25(21) 26160-26165 (2017)

Flexible hollow optical fiber bundle for infrared thermal imaging

Yuji Matsuura and Keisuke Naito
Biomed. Opt. Express 2(1) 65-70 (2011)

Coherent hollow-core waveguide bundles for thermal imaging

Udi Gal, James Harrington, Moshe Ben-David, Carlos Bledt, Nicholas Syzonenko, and Israel Gannot
Appl. Opt. 49(25) 4700-4709 (2010)

References

  • View by:
  • |
  • |
  • |

  1. E. F. J. Ring and K. Ammer, “Infrared thermal imaging in medicine,” Physiol. Meas. 33(3), R33–R46 (2012).
    [Crossref] [PubMed]
  2. B. F. Jones, “A Reappraisal of the Use of Infrared Thermal Image Analysis in Medicine,” IEEE 17(6), 1019–1027 (1998).
    [Crossref] [PubMed]
  3. A. Glowacz and Z. Glowacz, “Diagnosis of three-phase induction motor using thermal imaging,” Infrared Phys. Technol. 81, 7–16 (2017).
    [Crossref]
  4. H. H. Hopkins and N. S. Kapany, “A Flexible Fibrescope, using Static Scanning,” Nature 173(4392), 39–41 (1954).
    [Crossref]
  5. E. Rave, L. Nagli, and A. Katzir, “Ordered bundles of infrared-transmitting AgClBr fibers: optical characterization of individual fibers,” Opt. Lett. 25(17), 1237–1239 (2000).
    [Crossref] [PubMed]
  6. Y. Lavi, A. Millo, and A. Katzir, “Flexible ordered bundles of infrared transmitting silver-halide fibers: design, fabrication, and optical measurements,” Appl. Opt. 45(23), 5808–5814 (2006).
    [Crossref] [PubMed]
  7. V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollow-core waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).
    [Crossref]
  8. T. Kobayashi, T. Katagiri, and Y. Matsuura, “Fabrication of bundle-structured tube-leaky optical fibers for infrared thermal imaging,” Proc. SPIE, 10058, 100580X (2017).
  9. M. Saito, M. Takizawa, S. Sakuragi, and F. Tanei, “Infrared image guide with bundled As-S glass fibers,” Appl. Opt. 24(15), 2304–2309 (1985).
    [Crossref] [PubMed]
  10. J. Nishii, T. Yamashita, T. Yamagishi, C. Tanaka, and H. Sone, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59(21), 2639–2641 (1991).
    [Crossref]
  11. B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang, A. Yang, X. Gai, Y. Yu, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for infrared imaging,” Opt. Lett. 40(19), 4384–4387 (2015).
    [Crossref] [PubMed]
  12. F. Chenard, O. Alvarez, D. Gibson, L. Brandon Shaw, and J. Sanghera, “Mid-Infrared Imaging Fiber Bundle,” Proc. SPIE10181, 101810V (2017).
  13. S. Qi, B. Zhang, C. Zhai, Y. Li, A. Yang, Y. Yu, D. Tang, Z. Yang, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for longwave infrared imaging,” Opt. Express 25(21), 26160–26165 (2017).
    [Crossref] [PubMed]
  14. Hamamatsu, “Infrared Detectors,” https://www.hamamatsu.com/resources/pdf/ssd/infrared_kird0001e.pdf .
  15. Vitron, “Vitron IG3,” http://www.vitron.de/datasheets/VITRON%20IG-3%20Datenblatt%20Juni%202014%20.pdf .
  16. G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
    [Crossref]
  17. Du Pont, “FEP handbook,” http://www.rjchase.com/fep_handbook.pdf .
  18. Fluorotherm, “FEP Properties,” https://www.fluorotherm.com/technical-information/materials-overview/fep-properties/ .
  19. A. M. S. Galante, O. L. Galante, and L. L. Campos, “Study on application of PTFE, FEP and PFA fluoropolymers on radiation dosimetry,” Nucl. Instrum. Methods Phys. Res. A 619(1-3), 177–180 (2010).
    [Crossref]
  20. N. S. Kapany, Fiber Optics, (Academic Press, 1967).
  21. A. W. Snyder, “Asymptotic Expressions for Eigenfunctions and Eigenvalues of a Dielectric or Optical Waveguide,” IEEE Trans. MTT 17(12), 1130–1138 (1969).
    [Crossref]
  22. J. P. Berenger, “A Perfectly Matched Layer for the Absorption of the Electromagnetic Waves,” J. Comput. Phys. 114(2), 185–200 (1994).
    [Crossref]

2017 (2)

2015 (1)

2012 (1)

E. F. J. Ring and K. Ammer, “Infrared thermal imaging in medicine,” Physiol. Meas. 33(3), R33–R46 (2012).
[Crossref] [PubMed]

2010 (1)

A. M. S. Galante, O. L. Galante, and L. L. Campos, “Study on application of PTFE, FEP and PFA fluoropolymers on radiation dosimetry,” Nucl. Instrum. Methods Phys. Res. A 619(1-3), 177–180 (2010).
[Crossref]

2009 (1)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

2006 (1)

2004 (1)

V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollow-core waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).
[Crossref]

2000 (1)

1998 (1)

B. F. Jones, “A Reappraisal of the Use of Infrared Thermal Image Analysis in Medicine,” IEEE 17(6), 1019–1027 (1998).
[Crossref] [PubMed]

1994 (1)

J. P. Berenger, “A Perfectly Matched Layer for the Absorption of the Electromagnetic Waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[Crossref]

1991 (1)

J. Nishii, T. Yamashita, T. Yamagishi, C. Tanaka, and H. Sone, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59(21), 2639–2641 (1991).
[Crossref]

1985 (1)

1969 (1)

A. W. Snyder, “Asymptotic Expressions for Eigenfunctions and Eigenvalues of a Dielectric or Optical Waveguide,” IEEE Trans. MTT 17(12), 1130–1138 (1969).
[Crossref]

1954 (1)

H. H. Hopkins and N. S. Kapany, “A Flexible Fibrescope, using Static Scanning,” Nature 173(4392), 39–41 (1954).
[Crossref]

Alvarez, O.

F. Chenard, O. Alvarez, D. Gibson, L. Brandon Shaw, and J. Sanghera, “Mid-Infrared Imaging Fiber Bundle,” Proc. SPIE10181, 101810V (2017).

Ammer, K.

E. F. J. Ring and K. Ammer, “Infrared thermal imaging in medicine,” Physiol. Meas. 33(3), R33–R46 (2012).
[Crossref] [PubMed]

Berenger, J. P.

J. P. Berenger, “A Perfectly Matched Layer for the Absorption of the Electromagnetic Waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[Crossref]

Brandon Shaw, L.

F. Chenard, O. Alvarez, D. Gibson, L. Brandon Shaw, and J. Sanghera, “Mid-Infrared Imaging Fiber Bundle,” Proc. SPIE10181, 101810V (2017).

Campos, L. L.

A. M. S. Galante, O. L. Galante, and L. L. Campos, “Study on application of PTFE, FEP and PFA fluoropolymers on radiation dosimetry,” Nucl. Instrum. Methods Phys. Res. A 619(1-3), 177–180 (2010).
[Crossref]

Chenard, F.

F. Chenard, O. Alvarez, D. Gibson, L. Brandon Shaw, and J. Sanghera, “Mid-Infrared Imaging Fiber Bundle,” Proc. SPIE10181, 101810V (2017).

Churbanov, M. F.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Dianov, E. M.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Gai, X.

Galante, A. M. S.

A. M. S. Galante, O. L. Galante, and L. L. Campos, “Study on application of PTFE, FEP and PFA fluoropolymers on radiation dosimetry,” Nucl. Instrum. Methods Phys. Res. A 619(1-3), 177–180 (2010).
[Crossref]

Galante, O. L.

A. M. S. Galante, O. L. Galante, and L. L. Campos, “Study on application of PTFE, FEP and PFA fluoropolymers on radiation dosimetry,” Nucl. Instrum. Methods Phys. Res. A 619(1-3), 177–180 (2010).
[Crossref]

Gannot, I.

V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollow-core waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).
[Crossref]

Gibson, D.

F. Chenard, O. Alvarez, D. Gibson, L. Brandon Shaw, and J. Sanghera, “Mid-Infrared Imaging Fiber Bundle,” Proc. SPIE10181, 101810V (2017).

Glowacz, A.

A. Glowacz and Z. Glowacz, “Diagnosis of three-phase induction motor using thermal imaging,” Infrared Phys. Technol. 81, 7–16 (2017).
[Crossref]

Glowacz, Z.

A. Glowacz and Z. Glowacz, “Diagnosis of three-phase induction motor using thermal imaging,” Infrared Phys. Technol. 81, 7–16 (2017).
[Crossref]

Gopal, V.

V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollow-core waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).
[Crossref]

Goren, A.

V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollow-core waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).
[Crossref]

Guo, W.

Harrington, J. A.

V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollow-core waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).
[Crossref]

Hopkins, H. H.

H. H. Hopkins and N. S. Kapany, “A Flexible Fibrescope, using Static Scanning,” Nature 173(4392), 39–41 (1954).
[Crossref]

Jones, B. F.

B. F. Jones, “A Reappraisal of the Use of Infrared Thermal Image Analysis in Medicine,” IEEE 17(6), 1019–1027 (1998).
[Crossref] [PubMed]

Kapany, N. S.

H. H. Hopkins and N. S. Kapany, “A Flexible Fibrescope, using Static Scanning,” Nature 173(4392), 39–41 (1954).
[Crossref]

Katagiri, T.

T. Kobayashi, T. Katagiri, and Y. Matsuura, “Fabrication of bundle-structured tube-leaky optical fibers for infrared thermal imaging,” Proc. SPIE, 10058, 100580X (2017).

Katzir, A.

Kobayashi, T.

T. Kobayashi, T. Katagiri, and Y. Matsuura, “Fabrication of bundle-structured tube-leaky optical fibers for infrared thermal imaging,” Proc. SPIE, 10058, 100580X (2017).

Lavi, Y.

Li, Y.

Luther-Davies, B.

Matsuura, Y.

T. Kobayashi, T. Katagiri, and Y. Matsuura, “Fabrication of bundle-structured tube-leaky optical fibers for infrared thermal imaging,” Proc. SPIE, 10058, 100580X (2017).

Millo, A.

Nagli, L.

Nishii, J.

J. Nishii, T. Yamashita, T. Yamagishi, C. Tanaka, and H. Sone, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59(21), 2639–2641 (1991).
[Crossref]

Plotnichenko, V. G.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Qi, S.

Rave, E.

Ring, E. F. J.

E. F. J. Ring and K. Ammer, “Infrared thermal imaging in medicine,” Physiol. Meas. 33(3), R33–R46 (2012).
[Crossref] [PubMed]

Saito, M.

Sakuragi, S.

Sanghera, J.

F. Chenard, O. Alvarez, D. Gibson, L. Brandon Shaw, and J. Sanghera, “Mid-Infrared Imaging Fiber Bundle,” Proc. SPIE10181, 101810V (2017).

Shiryaev, V. S.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Snopatin, G. E.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Snyder, A. W.

A. W. Snyder, “Asymptotic Expressions for Eigenfunctions and Eigenvalues of a Dielectric or Optical Waveguide,” IEEE Trans. MTT 17(12), 1130–1138 (1969).
[Crossref]

Sone, H.

J. Nishii, T. Yamashita, T. Yamagishi, C. Tanaka, and H. Sone, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59(21), 2639–2641 (1991).
[Crossref]

Takizawa, M.

Tanaka, C.

J. Nishii, T. Yamashita, T. Yamagishi, C. Tanaka, and H. Sone, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59(21), 2639–2641 (1991).
[Crossref]

Tanei, F.

Tang, D.

Tao, G.

Wang, R.

Yamagishi, T.

J. Nishii, T. Yamashita, T. Yamagishi, C. Tanaka, and H. Sone, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59(21), 2639–2641 (1991).
[Crossref]

Yamashita, T.

J. Nishii, T. Yamashita, T. Yamagishi, C. Tanaka, and H. Sone, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59(21), 2639–2641 (1991).
[Crossref]

Yang, A.

Yang, Z.

Yu, Y.

Zhai, C.

Zhang, B.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. Nishii, T. Yamashita, T. Yamagishi, C. Tanaka, and H. Sone, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59(21), 2639–2641 (1991).
[Crossref]

IEEE (1)

B. F. Jones, “A Reappraisal of the Use of Infrared Thermal Image Analysis in Medicine,” IEEE 17(6), 1019–1027 (1998).
[Crossref] [PubMed]

IEEE Trans. MTT (1)

A. W. Snyder, “Asymptotic Expressions for Eigenfunctions and Eigenvalues of a Dielectric or Optical Waveguide,” IEEE Trans. MTT 17(12), 1130–1138 (1969).
[Crossref]

Infrared Phys. Technol. (1)

A. Glowacz and Z. Glowacz, “Diagnosis of three-phase induction motor using thermal imaging,” Infrared Phys. Technol. 81, 7–16 (2017).
[Crossref]

Inorg. Mater. (1)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-Purity Chalcogenide Glasses for Fiber Optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

J. Comput. Phys. (1)

J. P. Berenger, “A Perfectly Matched Layer for the Absorption of the Electromagnetic Waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[Crossref]

Nature (1)

H. H. Hopkins and N. S. Kapany, “A Flexible Fibrescope, using Static Scanning,” Nature 173(4392), 39–41 (1954).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (1)

A. M. S. Galante, O. L. Galante, and L. L. Campos, “Study on application of PTFE, FEP and PFA fluoropolymers on radiation dosimetry,” Nucl. Instrum. Methods Phys. Res. A 619(1-3), 177–180 (2010).
[Crossref]

Opt. Eng. (1)

V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollow-core waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Physiol. Meas. (1)

E. F. J. Ring and K. Ammer, “Infrared thermal imaging in medicine,” Physiol. Meas. 33(3), R33–R46 (2012).
[Crossref] [PubMed]

Other (7)

F. Chenard, O. Alvarez, D. Gibson, L. Brandon Shaw, and J. Sanghera, “Mid-Infrared Imaging Fiber Bundle,” Proc. SPIE10181, 101810V (2017).

Hamamatsu, “Infrared Detectors,” https://www.hamamatsu.com/resources/pdf/ssd/infrared_kird0001e.pdf .

Vitron, “Vitron IG3,” http://www.vitron.de/datasheets/VITRON%20IG-3%20Datenblatt%20Juni%202014%20.pdf .

T. Kobayashi, T. Katagiri, and Y. Matsuura, “Fabrication of bundle-structured tube-leaky optical fibers for infrared thermal imaging,” Proc. SPIE, 10058, 100580X (2017).

N. S. Kapany, Fiber Optics, (Academic Press, 1967).

Du Pont, “FEP handbook,” http://www.rjchase.com/fep_handbook.pdf .

Fluorotherm, “FEP Properties,” https://www.fluorotherm.com/technical-information/materials-overview/fep-properties/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Refractive index of Vitron IG3 chalcogenide glass provided by Vitron [15] (blue curve) and of the FEP polymer (green curve) measured by the J.A. Woollam Co IR-VASE spectroscopic ellipsometer. (b) The blue curve represents Vitron IG3 glass loss measured on an uncladded fiber of 240 µm of diameter for λ between 3 and 5.4 µm combined with the loss measured on a fiber of 700 µm for λ between 5.4 and 11.5 µm. The inset shows the fiber transmission in dB at 4 µm in wavelength measured at different fiber lengths. The green curve represents the FEP polymer loss measured on a sample 0.86 mm thick for λ between 3 and 7.3 µm and on a sample 0.05 mm thick for λ between 7.3 and 11.5 µm. The dotted vertical line represents the delimitation between the FEP loss measurement on the 0.86 and 0.05 mm thick samples.
Fig. 2
Fig. 2 Micrographs of Vitron IG3 glass core and FEP polymer cladding fiber bundle with outer and core diameter of (a) 1.1 mm and 22 µm and (b) 0.675 mm and 13 µm.
Fig. 3
Fig. 3 Flexibility of the larger fiber bundle with an outer diameter of 1.1 mm.
Fig. 4
Fig. 4 Average attenuation of fiber bundles of 22 µm (dashed curve) and 13 µm (dashed-dotted curve) of core diameter and attenuation of the Vitron IG3 chalcogenide glass (green curve). The orange curve represents the additional loss due to the polymer cladding. The black curve represents the expected fiber bundle loss.
Fig. 5
Fig. 5 Experimental setup for thermal imaging.
Fig. 6
Fig. 6 Thermal image of a ceramic heating element at temperature (a) T = 115 °C and (b) T = 80 °C, through a fiber bundle 1.15 m long (1.1 mm outer diameter) performed by using the Xenics Onca MWIR 320 thermal camera. The insets of (a) show a sequence of thermal images of the heating element, produced by changing the position of the input of the fiber bundle through the translation stage.
Fig. 7
Fig. 7 Thermal image of a human hand through a fiber bundle 62.5 cm long (1.1 mm outer diameter) performed by using the Xenics Onca MWIR 320 thermal camera. The insets show a sequence of thermal images by moving the hand.
Fig. 8
Fig. 8 Thermal image through a fiber bundle 62.5 cm long (1.1 mm outer diameter) by placing a metal target with inscribed letters between the input of the fiber bundle and the ceramic heating element at temperature T = 115 °C.
Fig. 9
Fig. 9 Intensity distribution at the output of the fiber bundle 62.5 cm long (1.1 mm outer diameter) by exciting several cores (blue curve) and a single core (green curve). Inset shows perpendicular cut of single pixel excited fiber (right upper corner – green) and excitation of single pixel with 6 nearest neighbors (left upper corner – blue).
Fig. 10
Fig. 10 Attenuation calculated by using the procedure explained in the Appendix for core diameter of 13 (solid magenta curve), 22 (solid green curve), 40 (solid black curve), 80 (solid red curve) and 100 µm (solid blue curve). The dashed curves represent the attenuation simulated of the fundamental mode. The brown curve represents the IG3 loss. The grey hashed bar represents the spectral region where the FEP polymer loss were too high to be measured.
Fig. 11
Fig. 11 Fraction of power in the cladding of the bundle of 13 µm calculated from measurement (green curve). Fraction of power in the cladding of the fundamental mode simulated on a fiber with core of 13 µm (black squares) and its fit (blue curve). Estimated fraction of power in the cladding (dashed red curve).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η clad U 2 V 3
η clad = k 1 λ 3 e k 2 λ
η clad = k 3 e k 4 r r 3

Metrics