Abstract

Strong coupling between solid-state quantum emitters and microcavities paves the way for optical coherent manipulation of quantum state and provides opportunities for quantum information processing. However, it is still a challenge to realize strong coupling due to the spectral and spatial mismatch between quantum emitters and cavity modes. Here, we propose a scheme to tune the coupling between a single QD and a microdisk with 1D photonic crystal nanobeam cavity. Based on Finite-Difference Time-Domain (FDTD) method and Green’s function expression for the evolution operator, we demonstrate that QDs with emission wavelengths +1.27 nm and −1.44 nm detuned from the bare microdisk mode can be coupled to the system strongly. Particularly, we observe simultaneous coupling between QD and two cavity supermodes, which enriches the optical coherent control methods of quantum states. By adjusting the distance between the two cavities, we can control the coupling between QD and photons. Furthermore, benefiting from the natural integration of nanobeam cavity to waveguide, such a system provides advantages for implementing quantum internet.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Strong coupling between two quantum dots and a photonic crystal cavity using magnetic field tuning

Hyochul Kim, Deepak Sridharan, Thomas C. Shen, Glenn S. Solomon, and Edo Waks
Opt. Express 19(3) 2589-2598 (2011)

Strong coupling of different cavity modes in photonic molecules formed by two adjacent microdisk microcavities

Hsuan Lin, Jhih-Hao Chen, Shih-Shing Chao, Ming-Cheng Lo, Sheng-Di Lin, and Wen-Hao Chang
Opt. Express 18(23) 23948-23956 (2010)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404, 247 (2000).
    [Crossref] [PubMed]
  2. H. J. Kimble, “The quantum internet,” Nature 453, 1023 (2008).
    [Crossref] [PubMed]
  3. H. Mabuchi and A. Doherty, “Cavity Quantum Electrodynamics: Coherence in Context,” Science 298, 1372–1377 (2002).
    [Crossref] [PubMed]
  4. H. Walther, B. T. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325 (2006).
    [Crossref]
  5. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896 (2007).
    [Crossref] [PubMed]
  6. S.-B. Zheng and G.-C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity qed,” Phys. Rev. Lett. 85, 2392 (2000).
    [Crossref] [PubMed]
  7. A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87, 1379 (2015).
    [Crossref]
  8. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature 432, 197 (2004).
    [Crossref] [PubMed]
  9. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
    [Crossref] [PubMed]
  10. K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862 (2007).
    [Crossref] [PubMed]
  11. Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84, 011805 (2011).
    [Crossref]
  12. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
    [Crossref] [PubMed]
  13. K. Kuruma, Y. Ota, M. Kakuda, D. Takamiya, S. Iwamoto, and Y. Arakawa, “Position dependent optical coupling between single quantum dots and photonic crystal nanocavities,” Appl. Phys. Lett. 109, 071110 (2016).
    [Crossref]
  14. Y. Ota, D. Takamiya, R. Ohta, H. Takagi, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Large vacuum Rabi splitting between a single quantum dot and an H0 photonic crystal nanocavity,” Appl. Phys. Lett. 112, 093101 (2018).
    [Crossref]
  15. C. Qian, X. Xie, J. Yang, K. Peng, S. Wu, F. Song, S. Sun, J. Dang, Y. Yu, M. J. Steer, I. G. Thayne, K. Jin, C. Gu, and X. Xu, “Enhanced Strong Interaction between Nanocavities and p-shell Excitons Beyond the Dipole Approximation,” Phys. Rev. Lett. 122, 087401 (2019).
    [Crossref] [PubMed]
  16. R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, and Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett. 98, 173104 (2011).
    [Crossref]
  17. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15, 4694–4704 (2007).
    [Crossref] [PubMed]
  18. W. Yang, Z. Xu, M. Feng, and J. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys. 12, 113039 (2010).
    [Crossref]
  19. S. Liu, J. Li, R. Yu, and Y. Wu, “Achieving maximum entanglement between two nitrogen-vacancy centers coupling to a whispering-gallery-mode microresonator,” Opt. Express 21, 3501–3515 (2013).
    [Crossref] [PubMed]
  20. W. Song, W. Yang, Q. Chen, Q. Hou, and M. Feng, “Entanglement dynamics for three nitrogen-vacancy centers coupled to a whispering-gallery-mode microcavity,” Opt. Express 23, 13734–13751 (2015).
    [Crossref] [PubMed]
  21. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16, 11095–11102 (2008).
    [Crossref] [PubMed]
  22. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
    [Crossref]
  23. P. Seidler, K. Lister, U. Drechsler, J. Hofrichter, and T. Stöferle, “Slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio,” Opt. Express 21, 32468–32483 (2013).
    [Crossref]
  24. H. Choi, M. Heuck, and D. Englund, “Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities,” Phys. Rev. Lett. 118, 223605 (2017).
    [Crossref] [PubMed]
  25. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
    [Crossref]
  26. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95, 031102 (2009).
    [Crossref]
  27. S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006).
    [Crossref]
  28. A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90, 213110 (2007).
    [Crossref]
  29. H. Kim, S. M. Thon, P. M. Petroff, and D. Bouwmeester, “Independent tuning of quantum dots in a photonic crystal cavity,” Appl. Phys. Lett. 95, 243107 (2009).
    [Crossref]
  30. C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
    [Crossref]
  31. H. Kim, D. Sridharan, T. C. Shen, G. S. Solomon, and E. Waks, “Strong coupling between two quantum dots and a photonic crystal cavity using magnetic field tuning,” Opt. Express 19, 2589–2598 (2011).
    [Crossref] [PubMed]
  32. S. Cao, J. Tang, Y. Gao, Y. Sun, K. Qiu, Y. Zhao, M. He, J.-A. Shi, L. Gu, D. A. Williams, W. Sheng, K. Jin, and X. Xu, “Longitudinal wave function control in single quantum dots with an applied magnetic field,” Sci. Rep. 5, 8041 (2015).
    [Crossref] [PubMed]
  33. S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. Irvine, P. M. Petroff, and D. Bouwmeester, “Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity,” Appl. Phys. Lett. 94, 111115 (2009).
    [Crossref]
  34. T. Van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, T. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
    [Crossref]
  35. L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
    [Crossref] [PubMed]
  36. J. Liu, M. I. Davanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88, 023116 (2017).
    [Crossref] [PubMed]
  37. L.-H. Chen, G. Chen, R. Liu, and X.-H. Wang, “Dynamically tunable multifunctional QED platform,” Sci. China Phys. Mech. Astron. 62, 974211 (2019).
    [Crossref]
  38. V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
    [Crossref]
  39. T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
    [Crossref] [PubMed]
  40. L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2012).
    [Crossref]
  41. A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86, 045315 (2012).
    [Crossref]
  42. Y. Zhao, C. Qian, K. Qiu, Y. Gao, and X. Xu, “Ultrafast optical switching using photonic molecules in photonic crystal waveguides,” Opt. Express 23, 9211–9220 (2015).
    [Crossref] [PubMed]
  43. P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen, and S. Bay, “Fundamental quantum optics in structured reservoirs,” Rep. Prog. Phys. 63, 455 (2000).
    [Crossref]
  44. X.-H. Wang, B.-Y. Gu, R. Wang, and H.-Q. Xu, “Decay kinetic properties of atoms in photonic crystals with absolute gaps,” Phys. Rev. Lett. 91, 113904 (2003).
    [Crossref] [PubMed]
  45. R. Sprik, B. Van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265 (1996).
    [Crossref]
  46. E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109 (1963).
    [Crossref]

2019 (2)

C. Qian, X. Xie, J. Yang, K. Peng, S. Wu, F. Song, S. Sun, J. Dang, Y. Yu, M. J. Steer, I. G. Thayne, K. Jin, C. Gu, and X. Xu, “Enhanced Strong Interaction between Nanocavities and p-shell Excitons Beyond the Dipole Approximation,” Phys. Rev. Lett. 122, 087401 (2019).
[Crossref] [PubMed]

L.-H. Chen, G. Chen, R. Liu, and X.-H. Wang, “Dynamically tunable multifunctional QED platform,” Sci. China Phys. Mech. Astron. 62, 974211 (2019).
[Crossref]

2018 (1)

Y. Ota, D. Takamiya, R. Ohta, H. Takagi, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Large vacuum Rabi splitting between a single quantum dot and an H0 photonic crystal nanocavity,” Appl. Phys. Lett. 112, 093101 (2018).
[Crossref]

2017 (2)

H. Choi, M. Heuck, and D. Englund, “Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities,” Phys. Rev. Lett. 118, 223605 (2017).
[Crossref] [PubMed]

J. Liu, M. I. Davanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88, 023116 (2017).
[Crossref] [PubMed]

2016 (1)

K. Kuruma, Y. Ota, M. Kakuda, D. Takamiya, S. Iwamoto, and Y. Arakawa, “Position dependent optical coupling between single quantum dots and photonic crystal nanocavities,” Appl. Phys. Lett. 109, 071110 (2016).
[Crossref]

2015 (5)

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87, 1379 (2015).
[Crossref]

W. Song, W. Yang, Q. Chen, Q. Hou, and M. Feng, “Entanglement dynamics for three nitrogen-vacancy centers coupled to a whispering-gallery-mode microcavity,” Opt. Express 23, 13734–13751 (2015).
[Crossref] [PubMed]

S. Cao, J. Tang, Y. Gao, Y. Sun, K. Qiu, Y. Zhao, M. He, J.-A. Shi, L. Gu, D. A. Williams, W. Sheng, K. Jin, and X. Xu, “Longitudinal wave function control in single quantum dots with an applied magnetic field,” Sci. Rep. 5, 8041 (2015).
[Crossref] [PubMed]

Y. Zhao, C. Qian, K. Qiu, Y. Gao, and X. Xu, “Ultrafast optical switching using photonic molecules in photonic crystal waveguides,” Opt. Express 23, 9211–9220 (2015).
[Crossref] [PubMed]

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref] [PubMed]

2013 (2)

2012 (1)

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86, 045315 (2012).
[Crossref]

2011 (6)

T. Van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, T. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
[Crossref] [PubMed]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

H. Kim, D. Sridharan, T. C. Shen, G. S. Solomon, and E. Waks, “Strong coupling between two quantum dots and a photonic crystal cavity using magnetic field tuning,” Opt. Express 19, 2589–2598 (2011).
[Crossref] [PubMed]

R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, and Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett. 98, 173104 (2011).
[Crossref]

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84, 011805 (2011).
[Crossref]

2010 (2)

W. Yang, Z. Xu, M. Feng, and J. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys. 12, 113039 (2010).
[Crossref]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

2009 (4)

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95, 031102 (2009).
[Crossref]

S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. Irvine, P. M. Petroff, and D. Bouwmeester, “Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity,” Appl. Phys. Lett. 94, 111115 (2009).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[Crossref]

H. Kim, S. M. Thon, P. M. Petroff, and D. Bouwmeester, “Independent tuning of quantum dots in a photonic crystal cavity,” Appl. Phys. Lett. 95, 243107 (2009).
[Crossref]

2008 (2)

2007 (4)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862 (2007).
[Crossref] [PubMed]

M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15, 4694–4704 (2007).
[Crossref] [PubMed]

A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90, 213110 (2007).
[Crossref]

2006 (2)

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006).
[Crossref]

H. Walther, B. T. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325 (2006).
[Crossref]

2005 (1)

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

2004 (2)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

2003 (1)

X.-H. Wang, B.-Y. Gu, R. Wang, and H.-Q. Xu, “Decay kinetic properties of atoms in photonic crystals with absolute gaps,” Phys. Rev. Lett. 91, 113904 (2003).
[Crossref] [PubMed]

2002 (1)

H. Mabuchi and A. Doherty, “Cavity Quantum Electrodynamics: Coherence in Context,” Science 298, 1372–1377 (2002).
[Crossref] [PubMed]

2000 (3)

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404, 247 (2000).
[Crossref] [PubMed]

S.-B. Zheng and G.-C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity qed,” Phys. Rev. Lett. 85, 2392 (2000).
[Crossref] [PubMed]

P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen, and S. Bay, “Fundamental quantum optics in structured reservoirs,” Rep. Prog. Phys. 63, 455 (2000).
[Crossref]

1999 (1)

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[Crossref]

1996 (1)

R. Sprik, B. Van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265 (1996).
[Crossref]

1963 (1)

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109 (1963).
[Crossref]

Adibi, A.

Alferov, Z. I.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[Crossref]

Arakawa, Y.

Y. Ota, D. Takamiya, R. Ohta, H. Takagi, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Large vacuum Rabi splitting between a single quantum dot and an H0 photonic crystal nanocavity,” Appl. Phys. Lett. 112, 093101 (2018).
[Crossref]

K. Kuruma, Y. Ota, M. Kakuda, D. Takamiya, S. Iwamoto, and Y. Arakawa, “Position dependent optical coupling between single quantum dots and photonic crystal nanocavities,” Appl. Phys. Lett. 109, 071110 (2016).
[Crossref]

R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, and Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett. 98, 173104 (2011).
[Crossref]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Badolato, A.

J. Liu, M. I. Davanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88, 023116 (2017).
[Crossref] [PubMed]

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006).
[Crossref]

Bajcsy, M.

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86, 045315 (2012).
[Crossref]

Bay, S.

P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen, and S. Bay, “Fundamental quantum optics in structured reservoirs,” Rep. Prog. Phys. 63, 455 (2000).
[Crossref]

Becker, T.

H. Walther, B. T. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325 (2006).
[Crossref]

Bennett, C. H.

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404, 247 (2000).
[Crossref] [PubMed]

Bert, N. A.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[Crossref]

Bimberg, D.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[Crossref]

Bloch, J.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Bonato, C.

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

Bouwmeester, D.

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

T. Van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, T. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. Irvine, P. M. Petroff, and D. Bouwmeester, “Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity,” Appl. Phys. Lett. 94, 111115 (2009).
[Crossref]

H. Kim, S. M. Thon, P. M. Petroff, and D. Bouwmeester, “Independent tuning of quantum dots in a photonic crystal cavity,” Appl. Phys. Lett. 95, 243107 (2009).
[Crossref]

Cao, S.

S. Cao, J. Tang, Y. Gao, Y. Sun, K. Qiu, Y. Zhao, M. He, J.-A. Shi, L. Gu, D. A. Williams, W. Sheng, K. Jin, and X. Xu, “Longitudinal wave function control in single quantum dots with an applied magnetic field,” Sci. Rep. 5, 8041 (2015).
[Crossref] [PubMed]

Chen, G.

L.-H. Chen, G. Chen, R. Liu, and X.-H. Wang, “Dynamically tunable multifunctional QED platform,” Sci. China Phys. Mech. Astron. 62, 974211 (2019).
[Crossref]

Chen, L.-H.

L.-H. Chen, G. Chen, R. Liu, and X.-H. Wang, “Dynamically tunable multifunctional QED platform,” Sci. China Phys. Mech. Astron. 62, 974211 (2019).
[Crossref]

Chen, Q.

Choi, H.

H. Choi, M. Heuck, and D. Englund, “Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities,” Phys. Rev. Lett. 118, 223605 (2017).
[Crossref] [PubMed]

Cummings, F. W.

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109 (1963).
[Crossref]

Dang, J.

C. Qian, X. Xie, J. Yang, K. Peng, S. Wu, F. Song, S. Sun, J. Dang, Y. Yu, M. J. Steer, I. G. Thayne, K. Jin, C. Gu, and X. Xu, “Enhanced Strong Interaction between Nanocavities and p-shell Excitons Beyond the Dipole Approximation,” Phys. Rev. Lett. 122, 087401 (2019).
[Crossref] [PubMed]

Davanço, M.

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref] [PubMed]

Davanço, M. I.

J. Liu, M. I. Davanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88, 023116 (2017).
[Crossref] [PubMed]

De Miranda Cardoso, J. V.

J. Liu, M. I. Davanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88, 023116 (2017).
[Crossref] [PubMed]

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95, 031102 (2009).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[Crossref]

Deppe, D.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

DiVincenzo, D. P.

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404, 247 (2000).
[Crossref] [PubMed]

Doherty, A.

H. Mabuchi and A. Doherty, “Cavity Quantum Electrodynamics: Coherence in Context,” Science 298, 1372–1377 (2002).
[Crossref] [PubMed]

Drechsler, U.

Du, J.

W. Yang, Z. Xu, M. Feng, and J. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys. 12, 113039 (2010).
[Crossref]

Egorov, A. Y.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[Crossref]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Englert, B.-G.

H. Walther, B. T. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325 (2006).
[Crossref]

Englund, D.

H. Choi, M. Heuck, and D. Englund, “Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities,” Phys. Rev. Lett. 118, 223605 (2017).
[Crossref] [PubMed]

A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90, 213110 (2007).
[Crossref]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Faraon, A.

A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90, 213110 (2007).
[Crossref]

Feng, M.

W. Song, W. Yang, Q. Chen, Q. Hou, and M. Feng, “Entanglement dynamics for three nitrogen-vacancy centers coupled to a whispering-gallery-mode microcavity,” Opt. Express 23, 13734–13751 (2015).
[Crossref] [PubMed]

W. Yang, Z. Xu, M. Feng, and J. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys. 12, 113039 (2010).
[Crossref]

Forchel, A.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95, 031102 (2009).
[Crossref]

Fushman, I.

A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90, 213110 (2007).
[Crossref]

Gao, Y.

Y. Zhao, C. Qian, K. Qiu, Y. Gao, and X. Xu, “Ultrafast optical switching using photonic molecules in photonic crystal waveguides,” Opt. Express 23, 9211–9220 (2015).
[Crossref] [PubMed]

S. Cao, J. Tang, Y. Gao, Y. Sun, K. Qiu, Y. Zhao, M. He, J.-A. Shi, L. Gu, D. A. Williams, W. Sheng, K. Jin, and X. Xu, “Longitudinal wave function control in single quantum dots with an applied magnetic field,” Sci. Rep. 5, 8041 (2015).
[Crossref] [PubMed]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Gérard, J.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Gibbs, H.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Gong, Q.

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84, 011805 (2011).
[Crossref]

Gu, B.-Y.

X.-H. Wang, B.-Y. Gu, R. Wang, and H.-Q. Xu, “Decay kinetic properties of atoms in photonic crystals with absolute gaps,” Phys. Rev. Lett. 91, 113904 (2003).
[Crossref] [PubMed]

Gu, C.

C. Qian, X. Xie, J. Yang, K. Peng, S. Wu, F. Song, S. Sun, J. Dang, Y. Yu, M. J. Steer, I. G. Thayne, K. Jin, C. Gu, and X. Xu, “Enhanced Strong Interaction between Nanocavities and p-shell Excitons Beyond the Dipole Approximation,” Phys. Rev. Lett. 122, 087401 (2019).
[Crossref] [PubMed]

Gu, L.

S. Cao, J. Tang, Y. Gao, Y. Sun, K. Qiu, Y. Zhao, M. He, J.-A. Shi, L. Gu, D. A. Williams, W. Sheng, K. Jin, and X. Xu, “Longitudinal wave function control in single quantum dots with an applied magnetic field,” Sci. Rep. 5, 8041 (2015).
[Crossref] [PubMed]

Gudat, J.

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. Irvine, P. M. Petroff, and D. Bouwmeester, “Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity,” Appl. Phys. Lett. 94, 111115 (2009).
[Crossref]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Guo, G.-C.

S.-B. Zheng and G.-C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity qed,” Phys. Rev. Lett. 85, 2392 (2000).
[Crossref] [PubMed]

Hagemeier, J.

T. Van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, T. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

Hanson, R.

T. Van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, T. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

He, M.

S. Cao, J. Tang, Y. Gao, Y. Sun, K. Qiu, Y. Zhao, M. He, J.-A. Shi, L. Gu, D. A. Williams, W. Sheng, K. Jin, and X. Xu, “Longitudinal wave function control in single quantum dots with an applied magnetic field,” Sci. Rep. 5, 8041 (2015).
[Crossref] [PubMed]

Hecht, B.

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2012).
[Crossref]

Heeres, E.

T. Van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, T. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Heuck, M.

H. Choi, M. Heuck, and D. Englund, “Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities,” Phys. Rev. Lett. 118, 223605 (2017).
[Crossref] [PubMed]

Hofmann, C.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Hofrichter, J.

Högele, A.

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006).
[Crossref]

Hou, Q.

Hours, J.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Irvine, W. T.

S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. Irvine, P. M. Petroff, and D. Bouwmeester, “Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity,” Appl. Phys. Lett. 94, 111115 (2009).
[Crossref]

Ishida, S.

R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, and Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett. 98, 173104 (2011).
[Crossref]

Iwamoto, S.

Y. Ota, D. Takamiya, R. Ohta, H. Takagi, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Large vacuum Rabi splitting between a single quantum dot and an H0 photonic crystal nanocavity,” Appl. Phys. Lett. 112, 093101 (2018).
[Crossref]

K. Kuruma, Y. Ota, M. Kakuda, D. Takamiya, S. Iwamoto, and Y. Arakawa, “Position dependent optical coupling between single quantum dots and photonic crystal nanocavities,” Appl. Phys. Lett. 109, 071110 (2016).
[Crossref]

R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, and Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett. 98, 173104 (2011).
[Crossref]

Jaynes, E. T.

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109 (1963).
[Crossref]

Jiang, X.-F.

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84, 011805 (2011).
[Crossref]

Jin, K.

C. Qian, X. Xie, J. Yang, K. Peng, S. Wu, F. Song, S. Sun, J. Dang, Y. Yu, M. J. Steer, I. G. Thayne, K. Jin, C. Gu, and X. Xu, “Enhanced Strong Interaction between Nanocavities and p-shell Excitons Beyond the Dipole Approximation,” Phys. Rev. Lett. 122, 087401 (2019).
[Crossref] [PubMed]

S. Cao, J. Tang, Y. Gao, Y. Sun, K. Qiu, Y. Zhao, M. He, J.-A. Shi, L. Gu, D. A. Williams, W. Sheng, K. Jin, and X. Xu, “Longitudinal wave function control in single quantum dots with an applied magnetic field,” Sci. Rep. 5, 8041 (2015).
[Crossref] [PubMed]

Kakuda, M.

K. Kuruma, Y. Ota, M. Kakuda, D. Takamiya, S. Iwamoto, and Y. Arakawa, “Position dependent optical coupling between single quantum dots and photonic crystal nanocavities,” Appl. Phys. Lett. 109, 071110 (2016).
[Crossref]

Karrai, K.

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006).
[Crossref]

Keldysh, L.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95, 031102 (2009).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[Crossref]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Kim, H.

T. Van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, T. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

H. Kim, D. Sridharan, T. C. Shen, G. S. Solomon, and E. Waks, “Strong coupling between two quantum dots and a photonic crystal cavity using magnetic field tuning,” Opt. Express 19, 2589–2598 (2011).
[Crossref] [PubMed]

H. Kim, S. M. Thon, P. M. Petroff, and D. Bouwmeester, “Independent tuning of quantum dots in a photonic crystal cavity,” Appl. Phys. Lett. 95, 243107 (2009).
[Crossref]

S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. Irvine, P. M. Petroff, and D. Bouwmeester, “Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity,” Appl. Phys. Lett. 94, 111115 (2009).
[Crossref]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453, 1023 (2008).
[Crossref] [PubMed]

Konthasinghe, K.

J. Liu, M. I. Davanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88, 023116 (2017).
[Crossref] [PubMed]

Kop’ev, P. S.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[Crossref]

Kovsh, A. R.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[Crossref]

Krestnikov, I. L.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[Crossref]

Kroner, M.

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006).
[Crossref]

Kuhn, S.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Kulakovskii, V.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Kumagai, N.

Y. Ota, D. Takamiya, R. Ohta, H. Takagi, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Large vacuum Rabi splitting between a single quantum dot and an H0 photonic crystal nanocavity,” Appl. Phys. Lett. 112, 093101 (2018).
[Crossref]

R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, and Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett. 98, 173104 (2011).
[Crossref]

Kuramochi, E.

Kuruma, K.

K. Kuruma, Y. Ota, M. Kakuda, D. Takamiya, S. Iwamoto, and Y. Arakawa, “Position dependent optical coupling between single quantum dots and photonic crystal nanocavities,” Appl. Phys. Lett. 109, 071110 (2016).
[Crossref]

Lagendijk, A.

R. Sprik, B. Van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265 (1996).
[Crossref]

Lambropoulos, P.

P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen, and S. Bay, “Fundamental quantum optics in structured reservoirs,” Rep. Prog. Phys. 63, 455 (2000).
[Crossref]

Ledentsov, N. N.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[Crossref]

Lee, A.

Lemaître, A.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Li, B.-B.

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84, 011805 (2011).
[Crossref]

Li, J.

Li, Y.

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84, 011805 (2011).
[Crossref]

Lister, K.

Liu, H.

Liu, J.

J. Liu, M. I. Davanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88, 023116 (2017).
[Crossref] [PubMed]

Liu, R.

L.-H. Chen, G. Chen, R. Liu, and X.-H. Wang, “Dynamically tunable multifunctional QED platform,” Sci. China Phys. Mech. Astron. 62, 974211 (2019).
[Crossref]

Liu, S.

Liu, Y.-C.

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84, 011805 (2011).
[Crossref]

Löffler, A.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Loncar, M.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95, 031102 (2009).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[Crossref]

Lunev, A. V.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[Crossref]

Mabuchi, H.

H. Mabuchi and A. Doherty, “Cavity Quantum Electrodynamics: Coherence in Context,” Science 298, 1372–1377 (2002).
[Crossref] [PubMed]

Majumdar, A.

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86, 045315 (2012).
[Crossref]

Maleev, N. A.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[Crossref]

Martrou, D.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95, 031102 (2009).
[Crossref]

Musikhin, Y. G.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[Crossref]

Nielsen, T. R.

P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen, and S. Bay, “Fundamental quantum optics in structured reservoirs,” Rep. Prog. Phys. 63, 455 (2000).
[Crossref]

Nikolopoulos, G. M.

P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen, and S. Bay, “Fundamental quantum optics in structured reservoirs,” Rep. Prog. Phys. 63, 455 (2000).
[Crossref]

Nomura, M.

R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, and Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett. 98, 173104 (2011).
[Crossref]

Notomi, M.

Novotny, L.

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2012).
[Crossref]

Ohta, R.

Y. Ota, D. Takamiya, R. Ohta, H. Takagi, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Large vacuum Rabi splitting between a single quantum dot and an H0 photonic crystal nanocavity,” Appl. Phys. Lett. 112, 093101 (2018).
[Crossref]

R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, and Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett. 98, 173104 (2011).
[Crossref]

Oosterkamp, T.

T. Van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, T. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

Ota, Y.

Y. Ota, D. Takamiya, R. Ohta, H. Takagi, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Large vacuum Rabi splitting between a single quantum dot and an H0 photonic crystal nanocavity,” Appl. Phys. Lett. 112, 093101 (2018).
[Crossref]

K. Kuruma, Y. Ota, M. Kakuda, D. Takamiya, S. Iwamoto, and Y. Arakawa, “Position dependent optical coupling between single quantum dots and photonic crystal nanocavities,” Appl. Phys. Lett. 109, 071110 (2016).
[Crossref]

R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, and Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett. 98, 173104 (2011).
[Crossref]

Painter, O.

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862 (2007).
[Crossref] [PubMed]

Peng, K.

C. Qian, X. Xie, J. Yang, K. Peng, S. Wu, F. Song, S. Sun, J. Dang, Y. Yu, M. J. Steer, I. G. Thayne, K. Jin, C. Gu, and X. Xu, “Enhanced Strong Interaction between Nanocavities and p-shell Excitons Beyond the Dipole Approximation,” Phys. Rev. Lett. 122, 087401 (2019).
[Crossref] [PubMed]

Peter, E.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Petroff, P.

T. Van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, T. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90, 213110 (2007).
[Crossref]

Petroff, P. M.

H. Kim, S. M. Thon, P. M. Petroff, and D. Bouwmeester, “Independent tuning of quantum dots in a photonic crystal cavity,” Appl. Phys. Lett. 95, 243107 (2009).
[Crossref]

S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. Irvine, P. M. Petroff, and D. Bouwmeester, “Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity,” Appl. Phys. Lett. 94, 111115 (2009).
[Crossref]

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006).
[Crossref]

Pfaff, W.

T. Van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, T. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

Pozzi, F.

Qian, C.

C. Qian, X. Xie, J. Yang, K. Peng, S. Wu, F. Song, S. Sun, J. Dang, Y. Yu, M. J. Steer, I. G. Thayne, K. Jin, C. Gu, and X. Xu, “Enhanced Strong Interaction between Nanocavities and p-shell Excitons Beyond the Dipole Approximation,” Phys. Rev. Lett. 122, 087401 (2019).
[Crossref] [PubMed]

Y. Zhao, C. Qian, K. Qiu, Y. Gao, and X. Xu, “Ultrafast optical switching using photonic molecules in photonic crystal waveguides,” Opt. Express 23, 9211–9220 (2015).
[Crossref] [PubMed]

Qiu, K.

Y. Zhao, C. Qian, K. Qiu, Y. Gao, and X. Xu, “Ultrafast optical switching using photonic molecules in photonic crystal waveguides,” Opt. Express 23, 9211–9220 (2015).
[Crossref] [PubMed]

S. Cao, J. Tang, Y. Gao, Y. Sun, K. Qiu, Y. Zhao, M. He, J.-A. Shi, L. Gu, D. A. Williams, W. Sheng, K. Jin, and X. Xu, “Longitudinal wave function control in single quantum dots with an applied magnetic field,” Sci. Rep. 5, 8041 (2015).
[Crossref] [PubMed]

Quan, Q.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

Rakher, M. T.

S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. Irvine, P. M. Petroff, and D. Bouwmeester, “Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity,” Appl. Phys. Lett. 94, 111115 (2009).
[Crossref]

Reinecke, T.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Reiserer, A.

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87, 1379 (2015).
[Crossref]

Reithmaier, J. P.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Reitzenstein, S.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Rempe, G.

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87, 1379 (2015).
[Crossref]

Rundquist, A.

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86, 045315 (2012).
[Crossref]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Sapienza, L.

J. Liu, M. I. Davanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88, 023116 (2017).
[Crossref] [PubMed]

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref] [PubMed]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Seeds, A.

Seidl, S.

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006).
[Crossref]

Seidler, P.

Sek, G.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

Senellart, P.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Shchekin, O.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Shen, T. C.

Sheng, W.

S. Cao, J. Tang, Y. Gao, Y. Sun, K. Qiu, Y. Zhao, M. He, J.-A. Shi, L. Gu, D. A. Williams, W. Sheng, K. Jin, and X. Xu, “Longitudinal wave function control in single quantum dots with an applied magnetic field,” Sci. Rep. 5, 8041 (2015).
[Crossref] [PubMed]

Shi, J.-A.

S. Cao, J. Tang, Y. Gao, Y. Sun, K. Qiu, Y. Zhao, M. He, J.-A. Shi, L. Gu, D. A. Williams, W. Sheng, K. Jin, and X. Xu, “Longitudinal wave function control in single quantum dots with an applied magnetic field,” Sci. Rep. 5, 8041 (2015).
[Crossref] [PubMed]

Solomon, G. S.

Soltani, M.

Song, F.

C. Qian, X. Xie, J. Yang, K. Peng, S. Wu, F. Song, S. Sun, J. Dang, Y. Yu, M. J. Steer, I. G. Thayne, K. Jin, C. Gu, and X. Xu, “Enhanced Strong Interaction between Nanocavities and p-shell Excitons Beyond the Dipole Approximation,” Phys. Rev. Lett. 122, 087401 (2019).
[Crossref] [PubMed]

Song, J. D.

J. Liu, M. I. Davanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88, 023116 (2017).
[Crossref] [PubMed]

Song, W.

Sprik, R.

R. Sprik, B. Van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265 (1996).
[Crossref]

Sridharan, D.

Srinivasan, K.

J. Liu, M. I. Davanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88, 023116 (2017).
[Crossref] [PubMed]

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref] [PubMed]

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862 (2007).
[Crossref] [PubMed]

Steer, M. J.

C. Qian, X. Xie, J. Yang, K. Peng, S. Wu, F. Song, S. Sun, J. Dang, Y. Yu, M. J. Steer, I. G. Thayne, K. Jin, C. Gu, and X. Xu, “Enhanced Strong Interaction between Nanocavities and p-shell Excitons Beyond the Dipole Approximation,” Phys. Rev. Lett. 122, 087401 (2019).
[Crossref] [PubMed]

Stöferle, T.

Stoltz, N.

A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90, 213110 (2007).
[Crossref]

Sun, S.

C. Qian, X. Xie, J. Yang, K. Peng, S. Wu, F. Song, S. Sun, J. Dang, Y. Yu, M. J. Steer, I. G. Thayne, K. Jin, C. Gu, and X. Xu, “Enhanced Strong Interaction between Nanocavities and p-shell Excitons Beyond the Dipole Approximation,” Phys. Rev. Lett. 122, 087401 (2019).
[Crossref] [PubMed]

Sun, Y.

S. Cao, J. Tang, Y. Gao, Y. Sun, K. Qiu, Y. Zhao, M. He, J.-A. Shi, L. Gu, D. A. Williams, W. Sheng, K. Jin, and X. Xu, “Longitudinal wave function control in single quantum dots with an applied magnetic field,” Sci. Rep. 5, 8041 (2015).
[Crossref] [PubMed]

Takagi, H.

Y. Ota, D. Takamiya, R. Ohta, H. Takagi, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Large vacuum Rabi splitting between a single quantum dot and an H0 photonic crystal nanocavity,” Appl. Phys. Lett. 112, 093101 (2018).
[Crossref]

Takamiya, D.

Y. Ota, D. Takamiya, R. Ohta, H. Takagi, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Large vacuum Rabi splitting between a single quantum dot and an H0 photonic crystal nanocavity,” Appl. Phys. Lett. 112, 093101 (2018).
[Crossref]

K. Kuruma, Y. Ota, M. Kakuda, D. Takamiya, S. Iwamoto, and Y. Arakawa, “Position dependent optical coupling between single quantum dots and photonic crystal nanocavities,” Appl. Phys. Lett. 109, 071110 (2016).
[Crossref]

Tang, J.

S. Cao, J. Tang, Y. Gao, Y. Sun, K. Qiu, Y. Zhao, M. He, J.-A. Shi, L. Gu, D. A. Williams, W. Sheng, K. Jin, and X. Xu, “Longitudinal wave function control in single quantum dots with an applied magnetic field,” Sci. Rep. 5, 8041 (2015).
[Crossref] [PubMed]

Taniyama, H.

Thayne, I. G.

C. Qian, X. Xie, J. Yang, K. Peng, S. Wu, F. Song, S. Sun, J. Dang, Y. Yu, M. J. Steer, I. G. Thayne, K. Jin, C. Gu, and X. Xu, “Enhanced Strong Interaction between Nanocavities and p-shell Excitons Beyond the Dipole Approximation,” Phys. Rev. Lett. 122, 087401 (2019).
[Crossref] [PubMed]

Thon, S.

T. Van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, T. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

Thon, S. M.

H. Kim, S. M. Thon, P. M. Petroff, and D. Bouwmeester, “Independent tuning of quantum dots in a photonic crystal cavity,” Appl. Phys. Lett. 95, 243107 (2009).
[Crossref]

S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. Irvine, P. M. Petroff, and D. Bouwmeester, “Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity,” Appl. Phys. Lett. 94, 111115 (2009).
[Crossref]

Ustinov, V. M.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[Crossref]

Van der Sar, T.

T. Van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, T. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

van Exter, M. P.

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

van Nieuwenburg, E.

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

Van Tiggelen, B.

R. Sprik, B. Van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265 (1996).
[Crossref]

Varcoe, B. T.

H. Walther, B. T. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325 (2006).
[Crossref]

Volovik, B. V.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[Crossref]

Vuckovic, J.

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86, 045315 (2012).
[Crossref]

A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90, 213110 (2007).
[Crossref]

Waks, E.

Walther, H.

H. Walther, B. T. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325 (2006).
[Crossref]

Wang, R.

X.-H. Wang, B.-Y. Gu, R. Wang, and H.-Q. Xu, “Decay kinetic properties of atoms in photonic crystals with absolute gaps,” Phys. Rev. Lett. 91, 113904 (2003).
[Crossref] [PubMed]

Wang, T.

Wang, X.-H.

L.-H. Chen, G. Chen, R. Liu, and X.-H. Wang, “Dynamically tunable multifunctional QED platform,” Sci. China Phys. Mech. Astron. 62, 974211 (2019).
[Crossref]

X.-H. Wang, B.-Y. Gu, R. Wang, and H.-Q. Xu, “Decay kinetic properties of atoms in photonic crystals with absolute gaps,” Phys. Rev. Lett. 91, 113904 (2003).
[Crossref] [PubMed]

Warburton, R. J.

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006).
[Crossref]

Williams, D. A.

S. Cao, J. Tang, Y. Gao, Y. Sun, K. Qiu, Y. Zhao, M. He, J.-A. Shi, L. Gu, D. A. Williams, W. Sheng, K. Jin, and X. Xu, “Longitudinal wave function control in single quantum dots with an applied magnetic field,” Sci. Rep. 5, 8041 (2015).
[Crossref] [PubMed]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

Wu, S.

C. Qian, X. Xie, J. Yang, K. Peng, S. Wu, F. Song, S. Sun, J. Dang, Y. Yu, M. J. Steer, I. G. Thayne, K. Jin, C. Gu, and X. Xu, “Enhanced Strong Interaction between Nanocavities and p-shell Excitons Beyond the Dipole Approximation,” Phys. Rev. Lett. 122, 087401 (2019).
[Crossref] [PubMed]

Wu, Y.

Xiao, Y.-F.

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84, 011805 (2011).
[Crossref]

Xie, X.

C. Qian, X. Xie, J. Yang, K. Peng, S. Wu, F. Song, S. Sun, J. Dang, Y. Yu, M. J. Steer, I. G. Thayne, K. Jin, C. Gu, and X. Xu, “Enhanced Strong Interaction between Nanocavities and p-shell Excitons Beyond the Dipole Approximation,” Phys. Rev. Lett. 122, 087401 (2019).
[Crossref] [PubMed]

Xu, H.-Q.

X.-H. Wang, B.-Y. Gu, R. Wang, and H.-Q. Xu, “Decay kinetic properties of atoms in photonic crystals with absolute gaps,” Phys. Rev. Lett. 91, 113904 (2003).
[Crossref] [PubMed]

Xu, X.

C. Qian, X. Xie, J. Yang, K. Peng, S. Wu, F. Song, S. Sun, J. Dang, Y. Yu, M. J. Steer, I. G. Thayne, K. Jin, C. Gu, and X. Xu, “Enhanced Strong Interaction between Nanocavities and p-shell Excitons Beyond the Dipole Approximation,” Phys. Rev. Lett. 122, 087401 (2019).
[Crossref] [PubMed]

S. Cao, J. Tang, Y. Gao, Y. Sun, K. Qiu, Y. Zhao, M. He, J.-A. Shi, L. Gu, D. A. Williams, W. Sheng, K. Jin, and X. Xu, “Longitudinal wave function control in single quantum dots with an applied magnetic field,” Sci. Rep. 5, 8041 (2015).
[Crossref] [PubMed]

Y. Zhao, C. Qian, K. Qiu, Y. Gao, and X. Xu, “Ultrafast optical switching using photonic molecules in photonic crystal waveguides,” Opt. Express 23, 9211–9220 (2015).
[Crossref] [PubMed]

Xu, Z.

W. Yang, Z. Xu, M. Feng, and J. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys. 12, 113039 (2010).
[Crossref]

Yang, J.

C. Qian, X. Xie, J. Yang, K. Peng, S. Wu, F. Song, S. Sun, J. Dang, Y. Yu, M. J. Steer, I. G. Thayne, K. Jin, C. Gu, and X. Xu, “Enhanced Strong Interaction between Nanocavities and p-shell Excitons Beyond the Dipole Approximation,” Phys. Rev. Lett. 122, 087401 (2019).
[Crossref] [PubMed]

Yang, W.

W. Song, W. Yang, Q. Chen, Q. Hou, and M. Feng, “Entanglement dynamics for three nitrogen-vacancy centers coupled to a whispering-gallery-mode microcavity,” Opt. Express 23, 13734–13751 (2015).
[Crossref] [PubMed]

W. Yang, Z. Xu, M. Feng, and J. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys. 12, 113039 (2010).
[Crossref]

Yegnanarayanan, S.

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Yu, R.

Yu, Y.

C. Qian, X. Xie, J. Yang, K. Peng, S. Wu, F. Song, S. Sun, J. Dang, Y. Yu, M. J. Steer, I. G. Thayne, K. Jin, C. Gu, and X. Xu, “Enhanced Strong Interaction between Nanocavities and p-shell Excitons Beyond the Dipole Approximation,” Phys. Rev. Lett. 122, 087401 (2019).
[Crossref] [PubMed]

Zhao, Y.

S. Cao, J. Tang, Y. Gao, Y. Sun, K. Qiu, Y. Zhao, M. He, J.-A. Shi, L. Gu, D. A. Williams, W. Sheng, K. Jin, and X. Xu, “Longitudinal wave function control in single quantum dots with an applied magnetic field,” Sci. Rep. 5, 8041 (2015).
[Crossref] [PubMed]

Y. Zhao, C. Qian, K. Qiu, Y. Gao, and X. Xu, “Ultrafast optical switching using photonic molecules in photonic crystal waveguides,” Opt. Express 23, 9211–9220 (2015).
[Crossref] [PubMed]

Zheng, S.-B.

S.-B. Zheng and G.-C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity qed,” Phys. Rev. Lett. 85, 2392 (2000).
[Crossref] [PubMed]

Zhukov, A. E.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[Crossref]

Appl. Phys. Lett. (12)

K. Kuruma, Y. Ota, M. Kakuda, D. Takamiya, S. Iwamoto, and Y. Arakawa, “Position dependent optical coupling between single quantum dots and photonic crystal nanocavities,” Appl. Phys. Lett. 109, 071110 (2016).
[Crossref]

Y. Ota, D. Takamiya, R. Ohta, H. Takagi, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Large vacuum Rabi splitting between a single quantum dot and an H0 photonic crystal nanocavity,” Appl. Phys. Lett. 112, 093101 (2018).
[Crossref]

R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, and Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett. 98, 173104 (2011).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[Crossref]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95, 031102 (2009).
[Crossref]

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006).
[Crossref]

A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90, 213110 (2007).
[Crossref]

H. Kim, S. M. Thon, P. M. Petroff, and D. Bouwmeester, “Independent tuning of quantum dots in a photonic crystal cavity,” Appl. Phys. Lett. 95, 243107 (2009).
[Crossref]

S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. Irvine, P. M. Petroff, and D. Bouwmeester, “Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity,” Appl. Phys. Lett. 94, 111115 (2009).
[Crossref]

T. Van der Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, T. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011).
[Crossref]

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. G. Musikhin, N. A. Bert, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[Crossref]

Europhys. Lett. (1)

R. Sprik, B. Van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265 (1996).
[Crossref]

Nat. Commun. (1)

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref] [PubMed]

Nature (6)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404, 247 (2000).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453, 1023 (2008).
[Crossref] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature 445, 896 (2007).
[Crossref] [PubMed]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature 432, 197 (2004).
[Crossref] [PubMed]

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862 (2007).
[Crossref] [PubMed]

New J. Phys. (1)

W. Yang, Z. Xu, M. Feng, and J. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys. 12, 113039 (2010).
[Crossref]

Opt. Express (8)

S. Liu, J. Li, R. Yu, and Y. Wu, “Achieving maximum entanglement between two nitrogen-vacancy centers coupling to a whispering-gallery-mode microresonator,” Opt. Express 21, 3501–3515 (2013).
[Crossref] [PubMed]

W. Song, W. Yang, Q. Chen, Q. Hou, and M. Feng, “Entanglement dynamics for three nitrogen-vacancy centers coupled to a whispering-gallery-mode microcavity,” Opt. Express 23, 13734–13751 (2015).
[Crossref] [PubMed]

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16, 11095–11102 (2008).
[Crossref] [PubMed]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
[Crossref] [PubMed]

H. Kim, D. Sridharan, T. C. Shen, G. S. Solomon, and E. Waks, “Strong coupling between two quantum dots and a photonic crystal cavity using magnetic field tuning,” Opt. Express 19, 2589–2598 (2011).
[Crossref] [PubMed]

P. Seidler, K. Lister, U. Drechsler, J. Hofrichter, and T. Stöferle, “Slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio,” Opt. Express 21, 32468–32483 (2013).
[Crossref]

M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15, 4694–4704 (2007).
[Crossref] [PubMed]

Y. Zhao, C. Qian, K. Qiu, Y. Gao, and X. Xu, “Ultrafast optical switching using photonic molecules in photonic crystal waveguides,” Opt. Express 23, 9211–9220 (2015).
[Crossref] [PubMed]

Phys. Rev. A (1)

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84, 011805 (2011).
[Crossref]

Phys. Rev. B (2)

C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B 84, 075306 (2011).
[Crossref]

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86, 045315 (2012).
[Crossref]

Phys. Rev. Lett. (5)

X.-H. Wang, B.-Y. Gu, R. Wang, and H.-Q. Xu, “Decay kinetic properties of atoms in photonic crystals with absolute gaps,” Phys. Rev. Lett. 91, 113904 (2003).
[Crossref] [PubMed]

H. Choi, M. Heuck, and D. Englund, “Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities,” Phys. Rev. Lett. 118, 223605 (2017).
[Crossref] [PubMed]

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

S.-B. Zheng and G.-C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity qed,” Phys. Rev. Lett. 85, 2392 (2000).
[Crossref] [PubMed]

C. Qian, X. Xie, J. Yang, K. Peng, S. Wu, F. Song, S. Sun, J. Dang, Y. Yu, M. J. Steer, I. G. Thayne, K. Jin, C. Gu, and X. Xu, “Enhanced Strong Interaction between Nanocavities and p-shell Excitons Beyond the Dipole Approximation,” Phys. Rev. Lett. 122, 087401 (2019).
[Crossref] [PubMed]

Proc. IEEE (1)

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109 (1963).
[Crossref]

Rep. Prog. Phys. (2)

P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen, and S. Bay, “Fundamental quantum optics in structured reservoirs,” Rep. Prog. Phys. 63, 455 (2000).
[Crossref]

H. Walther, B. T. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325 (2006).
[Crossref]

Rev. Mod. Phys. (1)

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87, 1379 (2015).
[Crossref]

Rev. Sci. Instrum. (1)

J. Liu, M. I. Davanço, L. Sapienza, K. Konthasinghe, J. V. De Miranda Cardoso, J. D. Song, A. Badolato, and K. Srinivasan, “Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters,” Rev. Sci. Instrum. 88, 023116 (2017).
[Crossref] [PubMed]

Sci. China Phys. Mech. Astron. (1)

L.-H. Chen, G. Chen, R. Liu, and X.-H. Wang, “Dynamically tunable multifunctional QED platform,” Sci. China Phys. Mech. Astron. 62, 974211 (2019).
[Crossref]

Sci. Rep. (1)

S. Cao, J. Tang, Y. Gao, Y. Sun, K. Qiu, Y. Zhao, M. He, J.-A. Shi, L. Gu, D. A. Williams, W. Sheng, K. Jin, and X. Xu, “Longitudinal wave function control in single quantum dots with an applied magnetic field,” Sci. Rep. 5, 8041 (2015).
[Crossref] [PubMed]

Science (1)

H. Mabuchi and A. Doherty, “Cavity Quantum Electrodynamics: Coherence in Context,” Science 298, 1372–1377 (2002).
[Crossref] [PubMed]

Other (1)

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The coupled GaAs nanobeam cavity and microdisk structure on the substrate of SiO2. The thickness of the coupled structure is 0.187 μm. The length and width of the nanobeam is 15 μm and 0.425 μm, respectively. The cavity are formed by one-dimensional photonic crystal mirror. The photonic mirror pitch a = 0.3655μm is linearly tapered over a five hole section to a = 0.2805μm at the cavity center. The hole radius is r = 0.28a. The radius of the microdisk is 1.4745 μm. The center of the microdisk is denoted as (xc, yc). The electric field densities of the cavity modes of nanobeam (b) and microcavity (c), respectively. (d) The LDOS of the two cavity modes around the resonant wavelength 1.29225 μm. The quality factors of the nanobeam cavity and the microdisk are 5.9 × 104 and 6.1 × 105, respectively.
Fig. 2
Fig. 2 The LDOS of the coupled nanobeam cavity and microdisk structure with yc changed from −1.8 to −2.3 μm. The dipole is located 1.25 μm away from the center of the microdisk and at the middle of the microdisk slab.
Fig. 3
Fig. 3 (a) The evolution spectrum of the QD in the coupled nanobeam cavity and microdisk structure. The splitting indicates that the QD and photon enter into the strong coupling regime. (b) The population of the excited states of the QD. Rabi oscillation appears due to strong coupling.
Fig. 4
Fig. 4 The evolution spectra with different yc and transition frequencies of QD f0 which are signified by dot lines.
Fig. 5
Fig. 5 The contour plot of the evolution spectra with sweeping the transition frequencies of QD across the splitting supermodes of the coupled nanobeam cavity and microdisk system at (a) yc = −1.8 μm and (b) yc = −2.2 μm, respectively.
Fig. 6
Fig. 6 The population of the excited states of QD with different yc and QD transition frequency f0.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

G y y ( r , r 0 ) = E y ( r ) c 2 ε 0 ω 2 μ ,
ρ ( r 0 , ω ) = 2 ω π c 2 Im [ G y y ( r 0 , r 0 ; ω ) ] .
H = H 0 + V ,
H 0 = ω 0 σ + σ + n k ω n k a n k a n k ,
V = n k [ g n k ( r ) a n k σ + c . c . ] ,
g n k ( r ) = i ω 0 ( 2 0 ω n k ) 1 / 2 E n k ( r ) u d ,
| ψ ( t ) = C e ( t ) | a + n k C 1 , n k | b n k U ( t ) | a .
U ( t ) = 1 2 π i + d ω [ G ( ω ) G + ( ω ) ] exp ( i ω t ) ,
( z ω 0 ) G a a ( z ) = 1 + n k V a b n k G b n k a ( z ) ,
( z ω n k ) G b n k a ( z ) = V b n k a G a a ( z ) .
G a a ( z ) = 1 z ω 0 n k V a b n k V b n k a z ω n k = 1 z ω 0 n k | g n k ( r ) | 2 z ω n k .
G a a ± ( ω ) = lim η 0 + G a a ( z = ω ± i η ) = 1 ω ω 0 Δ ( r , ω ) ± i Γ ( r , ω ) / 2 ,
Γ ( r , ω ) = 2 π n k | g n k ( r ) | 2 δ ( ω ω n k ) = π ω 0 2 d 2 0 ω ρ ( r , ω , d ^ ) ,
Δ ( r , ω ) = P 2 π 0 Γ ( r , ω ) ω ω d ω .
U a a ( t ) = + d ω C e ( r , ω ) exp ( i ω t ) ,
C e ( r , ω ) = 1 2 π i [ G a a ( ω ) G a a + ( ω ) ] = 1 π Γ ( r , ω ) / 2 [ ω ω 0 Δ ( r , ω ) ] 2 + Γ ( r , ω ) 2 / 4 ,
ρ ( r , ω , d ^ ) = n k | E n k ( r ) d ^ | 2 δ ( ω ω n k ) .

Metrics