Abstract

We modeled cascade lasing at 1.6 and 1.7 µm and studied how it affects Q-switching at the 2.8 µm in Er:YLF. We showed that enabling 1.7 µm continuous wave (CW) operation in the pre-Q-switch, energy accumulation stage not only reduces heating of the laser media, but also boosts population inversion of the 4I11/24I13/2 laser transition, and increases output pulse energy at 2.8 µm. A cascade, gain-switched operation at 1.62 µm also reduces heating. However, while it does not affect the Q-switched pulse energy, it provides faster de-population of the 4I13/2 level and enables 2.8 µm Q-switching at a higher repetition rate, i.e. increases its average output power. A first cascade assisted, 2.8 µm Q-switched laser based on Er:YLF was experimentally demonstrated in a dual-cavity setup.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Acousto-optically Q-switched, resonantly pumped, Er:YVO4 laser

V. Fromzel, N. Ter-Gabrielyan, and M. Dubinskii
Opt. Express 21(13) 15253-15258 (2013)

Theoretical and experimental investigation of actively Q-switched Tm,Ho:YLF lasers

Xinlu Zhang, Youlun Ju, and Yuezhu Wang
Opt. Express 14(17) 7745-7750 (2006)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Rudy, “Mid-IR Lasers: Power and pulse capability ramp up for mid-IR lasers,” Laser Focus World 50(5), 63–66 (2014).
  2. N. U. Wetter, A. M. Deana, I. M. Ranieri, L. Gomes, and S. L. Baldochi, “Influence of excited-state-energy upconversion on pulse shape in quasi-continuous-wave diode-pumped Er:YLF4 lasers,” IEEE J. Quantum Electron. 46(1), 99–104 (2010).
    [Crossref]
  3. R. C. Stoneman, J. G. Lynn, and L. Esterowitz, “Direct upper-state pumping of the 2.8 µm Er3+:YLF laser,” IEEE J. Quantum Electron. 28(4), 1041–1045 (1992).
    [Crossref]
  4. G. J. Kintz, R. Allen, and L. Esterowitz, “cw and pulsed 2.8 µm laser emission from diode pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50(22), 1553–1555 (1987).
    [Crossref]
  5. M. Pollnau, T. Graf, J. E. Balmer, W. Lüthy, and H. P. Weber, “Explanation of the cw operation of the Er3+ 3- microm crystal laser,” Phys. Rev. A 49(5), 3990–3996 (1994).
    [Crossref] [PubMed]
  6. V. Lupei and S. Georgesku, “Erbium 3-µm laser as an upconversion system,” Opt. Eng. 35(5), 1265–1272 (1996).
    [Crossref]
  7. E. V. Zharikov, V. I. Zhekov, I. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, and M. A. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ=2.94 µm,” Sov. J. Quantum Electron. 4(8), 1039–1040 (1975).
    [Crossref]
  8. M. Messner, A. Heinrich, and K. Unterrainer, “High-energy diode side-pumped Er:LiYF4 laser,” Appl. Opt. 57(6), 1497–1503 (2018).
    [Crossref] [PubMed]
  9. M. Messner, A. Henrich, C. Hagen, and K. Unterrainer, “Acousto-optically Q-switched diode side-pumped Er:YLF laser generating 50-kW peak power in 70-ns pulses,” Proceedings SPIE 10896, Solid State Lasers XXVIII: Technology and Devices; 1089607 (2019).
  10. T. Jensen, A. Diening, G. Huber, and B. H. T. Chai, “Investigation of diode-pumped 2.8-µm Er:LiYF4 lasers with various doping levels,” Opt. Lett. 21(8), 582–584 (1996).
    [Crossref] [PubMed]
  11. H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, S. Shimizu, and R. Yasuhara, “Optimization of laser emission at 2.8 μm by Er:Lu2O3 ceramics,” Opt. Express 26(3), 3497–3507 (2018).
    [Crossref] [PubMed]
  12. B. Schmaul, G. Huber, R. Clausen, C. Chai, P. LiKamWa, and M. Bass, “Er3+:YLiF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature,” Appl. Phys. Lett. 62(6), 541–543 (1993).
    [Crossref]
  13. J. Schneider, “Mid-infrared fluoride fiber lasers in multiple cascade operation,” IEEE Photonics Technol. Lett. 7(4), 354–356 (1995).
    [Crossref]
  14. S. Jackson, M. Pollnau, and J. Li, “Diode-pumped Erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47(4), 471–478 (2011).
    [Crossref]
  15. T. Sanamyan, “Diode-pumped cascade Er:Y2O3 laser,” Laser Phys. Lett. 12(12), 125804 (2015).
    [Crossref]
  16. T. Sanamyan, “Efficient, cryogenic mid-IR and eye-safe Er:YAG laser,” J. Opt. Soc. Am. B 33(11), D1–D6 (2016).
    [Crossref]
  17. M. Pollnau, C. Ghisler, W. Lüthy, H. P. Weber, J. Schneider, and U. B. Unrau, “Three-transition cascade erbium laser at 1.7, 2.7, and 1.6 microm,” Opt. Lett. 22(9), 612–614 (1997).
    [Crossref] [PubMed]
  18. J. Li, T. Hu, and S. D. Jackson, “Q-switched induced gain switching of a two-transition cascade laser,” Opt. Express 20(12), 13123–13128 (2012).
    [Crossref] [PubMed]
  19. C. Li, Y. Guyot, C. Linares, R. Moncorge, and M. F. Joubert, “Radiative transition probabilities of trivalent rare-earth ions in LiYF4,” in “Advanced Solid State Lasers and Compact Blue-Green Lasers” OSA Technical Digest 2, 423–425 (1993).
  20. V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 µm Er3+ lasers,” IEEE J. Quantum Electron. 29(2), 426–434 (1993).
    [Crossref]
  21. H. Chou and H. Jenssen, “Upconversion processes in Er-activated solid state laser materials in Advanced Solid State Lasers, M. Shand and H. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, 1989), paper DD5.
  22. M. Pollnau, W. Lüthy, H. P. Weber, K. Krämer, H. U. Güdel, and R. A. McFarlane, “Excited-state absorption in Er:BaY2F8 and Cs3Er2Br9 and comparison with Er:LiYF4,” Appl. Phys. B 62(4), 339–344 (1996).
    [Crossref]
  23. M. Pollnau, R. Spring, S. Wittwer, W. Lüthy, and H. P. Weber, “Investigation on the slope efficiency of a pulsed 2.8-µm Er:LiYF laser,” Opt. Soc. Am. B 14(4), 974–978 (1997).
    [Crossref]
  24. C. Labbe, J.-L. Doualan, S. Girard, R. Moncorge, and M. Thuau, “Absolute excited state absorption cross section measurements in Er3+:LiYF4 for laser applications around 2.8 mm and 551 nm,” J. Phys. Condens. Matter 12(30), 6943–6957 (2000).
    [Crossref]
  25. S. Hubert, D. Meichenin, B. Zhou, and F. Auzel, “Emission properties, oscillator strengths and laser parameters of Er3+ in LiYF4 at 2.7 mm,” J. Lumin. 50(1), 7–15 (1991).
    [Crossref]
  26. A. A. Mak, Yu. A. Anan’ev, and B. A. Ermakov, “Solid State Lasers,” Sov. Phys. Usp. 10(4), 419–452 (1968).
    [Crossref]
  27. M. V. Inochkin, V. V. Nazarov, D. Yu. Sachkov, L. V. Khloponin, and V. Yu. Khramov, “Dynamics of the lasing spectrum of a 3-µm Er:YLF laser with semiconductor pumping,” J. Opt. Technol. 76(11), 720–724 (2009).
    [Crossref]
  28. X. Ren, Y. Wang, J. Zhang, D. Tang, and D. Shen, “Short-Pulse-Width Repetitively Q-Switched ~2.7-µm Er:Y2O3 Ceramic Laser,” Appl. Sci. (Basel) 7(11), 1201–1207 (2017).
    [Crossref]

2018 (2)

2017 (1)

X. Ren, Y. Wang, J. Zhang, D. Tang, and D. Shen, “Short-Pulse-Width Repetitively Q-Switched ~2.7-µm Er:Y2O3 Ceramic Laser,” Appl. Sci. (Basel) 7(11), 1201–1207 (2017).
[Crossref]

2016 (1)

2015 (1)

T. Sanamyan, “Diode-pumped cascade Er:Y2O3 laser,” Laser Phys. Lett. 12(12), 125804 (2015).
[Crossref]

2014 (1)

C. W. Rudy, “Mid-IR Lasers: Power and pulse capability ramp up for mid-IR lasers,” Laser Focus World 50(5), 63–66 (2014).

2012 (1)

2011 (1)

S. Jackson, M. Pollnau, and J. Li, “Diode-pumped Erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47(4), 471–478 (2011).
[Crossref]

2010 (1)

N. U. Wetter, A. M. Deana, I. M. Ranieri, L. Gomes, and S. L. Baldochi, “Influence of excited-state-energy upconversion on pulse shape in quasi-continuous-wave diode-pumped Er:YLF4 lasers,” IEEE J. Quantum Electron. 46(1), 99–104 (2010).
[Crossref]

2009 (1)

2000 (1)

C. Labbe, J.-L. Doualan, S. Girard, R. Moncorge, and M. Thuau, “Absolute excited state absorption cross section measurements in Er3+:LiYF4 for laser applications around 2.8 mm and 551 nm,” J. Phys. Condens. Matter 12(30), 6943–6957 (2000).
[Crossref]

1997 (2)

M. Pollnau, R. Spring, S. Wittwer, W. Lüthy, and H. P. Weber, “Investigation on the slope efficiency of a pulsed 2.8-µm Er:LiYF laser,” Opt. Soc. Am. B 14(4), 974–978 (1997).
[Crossref]

M. Pollnau, C. Ghisler, W. Lüthy, H. P. Weber, J. Schneider, and U. B. Unrau, “Three-transition cascade erbium laser at 1.7, 2.7, and 1.6 microm,” Opt. Lett. 22(9), 612–614 (1997).
[Crossref] [PubMed]

1996 (3)

T. Jensen, A. Diening, G. Huber, and B. H. T. Chai, “Investigation of diode-pumped 2.8-µm Er:LiYF4 lasers with various doping levels,” Opt. Lett. 21(8), 582–584 (1996).
[Crossref] [PubMed]

V. Lupei and S. Georgesku, “Erbium 3-µm laser as an upconversion system,” Opt. Eng. 35(5), 1265–1272 (1996).
[Crossref]

M. Pollnau, W. Lüthy, H. P. Weber, K. Krämer, H. U. Güdel, and R. A. McFarlane, “Excited-state absorption in Er:BaY2F8 and Cs3Er2Br9 and comparison with Er:LiYF4,” Appl. Phys. B 62(4), 339–344 (1996).
[Crossref]

1995 (1)

J. Schneider, “Mid-infrared fluoride fiber lasers in multiple cascade operation,” IEEE Photonics Technol. Lett. 7(4), 354–356 (1995).
[Crossref]

1994 (1)

M. Pollnau, T. Graf, J. E. Balmer, W. Lüthy, and H. P. Weber, “Explanation of the cw operation of the Er3+ 3- microm crystal laser,” Phys. Rev. A 49(5), 3990–3996 (1994).
[Crossref] [PubMed]

1993 (2)

B. Schmaul, G. Huber, R. Clausen, C. Chai, P. LiKamWa, and M. Bass, “Er3+:YLiF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature,” Appl. Phys. Lett. 62(6), 541–543 (1993).
[Crossref]

V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 µm Er3+ lasers,” IEEE J. Quantum Electron. 29(2), 426–434 (1993).
[Crossref]

1992 (1)

R. C. Stoneman, J. G. Lynn, and L. Esterowitz, “Direct upper-state pumping of the 2.8 µm Er3+:YLF laser,” IEEE J. Quantum Electron. 28(4), 1041–1045 (1992).
[Crossref]

1991 (1)

S. Hubert, D. Meichenin, B. Zhou, and F. Auzel, “Emission properties, oscillator strengths and laser parameters of Er3+ in LiYF4 at 2.7 mm,” J. Lumin. 50(1), 7–15 (1991).
[Crossref]

1987 (1)

G. J. Kintz, R. Allen, and L. Esterowitz, “cw and pulsed 2.8 µm laser emission from diode pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50(22), 1553–1555 (1987).
[Crossref]

1975 (1)

E. V. Zharikov, V. I. Zhekov, I. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, and M. A. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ=2.94 µm,” Sov. J. Quantum Electron. 4(8), 1039–1040 (1975).
[Crossref]

1968 (1)

A. A. Mak, Yu. A. Anan’ev, and B. A. Ermakov, “Solid State Lasers,” Sov. Phys. Usp. 10(4), 419–452 (1968).
[Crossref]

Allen, R.

G. J. Kintz, R. Allen, and L. Esterowitz, “cw and pulsed 2.8 µm laser emission from diode pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50(22), 1553–1555 (1987).
[Crossref]

Anan’ev, Yu. A.

A. A. Mak, Yu. A. Anan’ev, and B. A. Ermakov, “Solid State Lasers,” Sov. Phys. Usp. 10(4), 419–452 (1968).
[Crossref]

Auzel, F.

S. Hubert, D. Meichenin, B. Zhou, and F. Auzel, “Emission properties, oscillator strengths and laser parameters of Er3+ in LiYF4 at 2.7 mm,” J. Lumin. 50(1), 7–15 (1991).
[Crossref]

Baldochi, S. L.

N. U. Wetter, A. M. Deana, I. M. Ranieri, L. Gomes, and S. L. Baldochi, “Influence of excited-state-energy upconversion on pulse shape in quasi-continuous-wave diode-pumped Er:YLF4 lasers,” IEEE J. Quantum Electron. 46(1), 99–104 (2010).
[Crossref]

Balmer, J. E.

M. Pollnau, T. Graf, J. E. Balmer, W. Lüthy, and H. P. Weber, “Explanation of the cw operation of the Er3+ 3- microm crystal laser,” Phys. Rev. A 49(5), 3990–3996 (1994).
[Crossref] [PubMed]

Bass, M.

B. Schmaul, G. Huber, R. Clausen, C. Chai, P. LiKamWa, and M. Bass, “Er3+:YLiF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature,” Appl. Phys. Lett. 62(6), 541–543 (1993).
[Crossref]

Chai, B. H. T.

Chai, C.

B. Schmaul, G. Huber, R. Clausen, C. Chai, P. LiKamWa, and M. Bass, “Er3+:YLiF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature,” Appl. Phys. Lett. 62(6), 541–543 (1993).
[Crossref]

Clausen, R.

B. Schmaul, G. Huber, R. Clausen, C. Chai, P. LiKamWa, and M. Bass, “Er3+:YLiF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature,” Appl. Phys. Lett. 62(6), 541–543 (1993).
[Crossref]

Deana, A. M.

N. U. Wetter, A. M. Deana, I. M. Ranieri, L. Gomes, and S. L. Baldochi, “Influence of excited-state-energy upconversion on pulse shape in quasi-continuous-wave diode-pumped Er:YLF4 lasers,” IEEE J. Quantum Electron. 46(1), 99–104 (2010).
[Crossref]

Diening, A.

Doualan, J.-L.

C. Labbe, J.-L. Doualan, S. Girard, R. Moncorge, and M. Thuau, “Absolute excited state absorption cross section measurements in Er3+:LiYF4 for laser applications around 2.8 mm and 551 nm,” J. Phys. Condens. Matter 12(30), 6943–6957 (2000).
[Crossref]

Ermakov, B. A.

A. A. Mak, Yu. A. Anan’ev, and B. A. Ermakov, “Solid State Lasers,” Sov. Phys. Usp. 10(4), 419–452 (1968).
[Crossref]

Esterowitz, L.

R. C. Stoneman, J. G. Lynn, and L. Esterowitz, “Direct upper-state pumping of the 2.8 µm Er3+:YLF laser,” IEEE J. Quantum Electron. 28(4), 1041–1045 (1992).
[Crossref]

G. J. Kintz, R. Allen, and L. Esterowitz, “cw and pulsed 2.8 µm laser emission from diode pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50(22), 1553–1555 (1987).
[Crossref]

Florea, V.

V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 µm Er3+ lasers,” IEEE J. Quantum Electron. 29(2), 426–434 (1993).
[Crossref]

Georgescu, S.

V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 µm Er3+ lasers,” IEEE J. Quantum Electron. 29(2), 426–434 (1993).
[Crossref]

Georgesku, S.

V. Lupei and S. Georgesku, “Erbium 3-µm laser as an upconversion system,” Opt. Eng. 35(5), 1265–1272 (1996).
[Crossref]

Ghisler, C.

Girard, S.

C. Labbe, J.-L. Doualan, S. Girard, R. Moncorge, and M. Thuau, “Absolute excited state absorption cross section measurements in Er3+:LiYF4 for laser applications around 2.8 mm and 551 nm,” J. Phys. Condens. Matter 12(30), 6943–6957 (2000).
[Crossref]

Gomes, L.

N. U. Wetter, A. M. Deana, I. M. Ranieri, L. Gomes, and S. L. Baldochi, “Influence of excited-state-energy upconversion on pulse shape in quasi-continuous-wave diode-pumped Er:YLF4 lasers,” IEEE J. Quantum Electron. 46(1), 99–104 (2010).
[Crossref]

Graf, T.

M. Pollnau, T. Graf, J. E. Balmer, W. Lüthy, and H. P. Weber, “Explanation of the cw operation of the Er3+ 3- microm crystal laser,” Phys. Rev. A 49(5), 3990–3996 (1994).
[Crossref] [PubMed]

Güdel, H. U.

M. Pollnau, W. Lüthy, H. P. Weber, K. Krämer, H. U. Güdel, and R. A. McFarlane, “Excited-state absorption in Er:BaY2F8 and Cs3Er2Br9 and comparison with Er:LiYF4,” Appl. Phys. B 62(4), 339–344 (1996).
[Crossref]

Heinrich, A.

Hu, T.

Huber, G.

T. Jensen, A. Diening, G. Huber, and B. H. T. Chai, “Investigation of diode-pumped 2.8-µm Er:LiYF4 lasers with various doping levels,” Opt. Lett. 21(8), 582–584 (1996).
[Crossref] [PubMed]

B. Schmaul, G. Huber, R. Clausen, C. Chai, P. LiKamWa, and M. Bass, “Er3+:YLiF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature,” Appl. Phys. Lett. 62(6), 541–543 (1993).
[Crossref]

Hubert, S.

S. Hubert, D. Meichenin, B. Zhou, and F. Auzel, “Emission properties, oscillator strengths and laser parameters of Er3+ in LiYF4 at 2.7 mm,” J. Lumin. 50(1), 7–15 (1991).
[Crossref]

Inochkin, M. V.

Jackson, S.

S. Jackson, M. Pollnau, and J. Li, “Diode-pumped Erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47(4), 471–478 (2011).
[Crossref]

Jackson, S. D.

Jensen, T.

Kawanaka, J.

Khloponin, L. V.

Khramov, V. Yu.

Kintz, G. J.

G. J. Kintz, R. Allen, and L. Esterowitz, “cw and pulsed 2.8 µm laser emission from diode pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50(22), 1553–1555 (1987).
[Crossref]

Konishi, D.

Krämer, K.

M. Pollnau, W. Lüthy, H. P. Weber, K. Krämer, H. U. Güdel, and R. A. McFarlane, “Excited-state absorption in Er:BaY2F8 and Cs3Er2Br9 and comparison with Er:LiYF4,” Appl. Phys. B 62(4), 339–344 (1996).
[Crossref]

Kulevskii, I. A.

E. V. Zharikov, V. I. Zhekov, I. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, and M. A. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ=2.94 µm,” Sov. J. Quantum Electron. 4(8), 1039–1040 (1975).
[Crossref]

Labbe, C.

C. Labbe, J.-L. Doualan, S. Girard, R. Moncorge, and M. Thuau, “Absolute excited state absorption cross section measurements in Er3+:LiYF4 for laser applications around 2.8 mm and 551 nm,” J. Phys. Condens. Matter 12(30), 6943–6957 (2000).
[Crossref]

Li, J.

J. Li, T. Hu, and S. D. Jackson, “Q-switched induced gain switching of a two-transition cascade laser,” Opt. Express 20(12), 13123–13128 (2012).
[Crossref] [PubMed]

S. Jackson, M. Pollnau, and J. Li, “Diode-pumped Erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47(4), 471–478 (2011).
[Crossref]

LiKamWa, P.

B. Schmaul, G. Huber, R. Clausen, C. Chai, P. LiKamWa, and M. Bass, “Er3+:YLiF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature,” Appl. Phys. Lett. 62(6), 541–543 (1993).
[Crossref]

Lupei, V.

V. Lupei and S. Georgesku, “Erbium 3-µm laser as an upconversion system,” Opt. Eng. 35(5), 1265–1272 (1996).
[Crossref]

V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 µm Er3+ lasers,” IEEE J. Quantum Electron. 29(2), 426–434 (1993).
[Crossref]

Lüthy, W.

M. Pollnau, R. Spring, S. Wittwer, W. Lüthy, and H. P. Weber, “Investigation on the slope efficiency of a pulsed 2.8-µm Er:LiYF laser,” Opt. Soc. Am. B 14(4), 974–978 (1997).
[Crossref]

M. Pollnau, C. Ghisler, W. Lüthy, H. P. Weber, J. Schneider, and U. B. Unrau, “Three-transition cascade erbium laser at 1.7, 2.7, and 1.6 microm,” Opt. Lett. 22(9), 612–614 (1997).
[Crossref] [PubMed]

M. Pollnau, W. Lüthy, H. P. Weber, K. Krämer, H. U. Güdel, and R. A. McFarlane, “Excited-state absorption in Er:BaY2F8 and Cs3Er2Br9 and comparison with Er:LiYF4,” Appl. Phys. B 62(4), 339–344 (1996).
[Crossref]

M. Pollnau, T. Graf, J. E. Balmer, W. Lüthy, and H. P. Weber, “Explanation of the cw operation of the Er3+ 3- microm crystal laser,” Phys. Rev. A 49(5), 3990–3996 (1994).
[Crossref] [PubMed]

Lynn, J. G.

R. C. Stoneman, J. G. Lynn, and L. Esterowitz, “Direct upper-state pumping of the 2.8 µm Er3+:YLF laser,” IEEE J. Quantum Electron. 28(4), 1041–1045 (1992).
[Crossref]

Mak, A. A.

A. A. Mak, Yu. A. Anan’ev, and B. A. Ermakov, “Solid State Lasers,” Sov. Phys. Usp. 10(4), 419–452 (1968).
[Crossref]

McFarlane, R. A.

M. Pollnau, W. Lüthy, H. P. Weber, K. Krämer, H. U. Güdel, and R. A. McFarlane, “Excited-state absorption in Er:BaY2F8 and Cs3Er2Br9 and comparison with Er:LiYF4,” Appl. Phys. B 62(4), 339–344 (1996).
[Crossref]

Meichenin, D.

S. Hubert, D. Meichenin, B. Zhou, and F. Auzel, “Emission properties, oscillator strengths and laser parameters of Er3+ in LiYF4 at 2.7 mm,” J. Lumin. 50(1), 7–15 (1991).
[Crossref]

Messner, M.

Moncorge, R.

C. Labbe, J.-L. Doualan, S. Girard, R. Moncorge, and M. Thuau, “Absolute excited state absorption cross section measurements in Er3+:LiYF4 for laser applications around 2.8 mm and 551 nm,” J. Phys. Condens. Matter 12(30), 6943–6957 (2000).
[Crossref]

Murakami, M.

Murina, T. M.

E. V. Zharikov, V. I. Zhekov, I. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, and M. A. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ=2.94 µm,” Sov. J. Quantum Electron. 4(8), 1039–1040 (1975).
[Crossref]

Nazarov, V. V.

Osiko, V. V.

E. V. Zharikov, V. I. Zhekov, I. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, and M. A. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ=2.94 µm,” Sov. J. Quantum Electron. 4(8), 1039–1040 (1975).
[Crossref]

Pollnau, M.

S. Jackson, M. Pollnau, and J. Li, “Diode-pumped Erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47(4), 471–478 (2011).
[Crossref]

M. Pollnau, R. Spring, S. Wittwer, W. Lüthy, and H. P. Weber, “Investigation on the slope efficiency of a pulsed 2.8-µm Er:LiYF laser,” Opt. Soc. Am. B 14(4), 974–978 (1997).
[Crossref]

M. Pollnau, C. Ghisler, W. Lüthy, H. P. Weber, J. Schneider, and U. B. Unrau, “Three-transition cascade erbium laser at 1.7, 2.7, and 1.6 microm,” Opt. Lett. 22(9), 612–614 (1997).
[Crossref] [PubMed]

M. Pollnau, W. Lüthy, H. P. Weber, K. Krämer, H. U. Güdel, and R. A. McFarlane, “Excited-state absorption in Er:BaY2F8 and Cs3Er2Br9 and comparison with Er:LiYF4,” Appl. Phys. B 62(4), 339–344 (1996).
[Crossref]

M. Pollnau, T. Graf, J. E. Balmer, W. Lüthy, and H. P. Weber, “Explanation of the cw operation of the Er3+ 3- microm crystal laser,” Phys. Rev. A 49(5), 3990–3996 (1994).
[Crossref] [PubMed]

Prokhorov, A. M.

E. V. Zharikov, V. I. Zhekov, I. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, and M. A. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ=2.94 µm,” Sov. J. Quantum Electron. 4(8), 1039–1040 (1975).
[Crossref]

Ranieri, I. M.

N. U. Wetter, A. M. Deana, I. M. Ranieri, L. Gomes, and S. L. Baldochi, “Influence of excited-state-energy upconversion on pulse shape in quasi-continuous-wave diode-pumped Er:YLF4 lasers,” IEEE J. Quantum Electron. 46(1), 99–104 (2010).
[Crossref]

Ren, X.

X. Ren, Y. Wang, J. Zhang, D. Tang, and D. Shen, “Short-Pulse-Width Repetitively Q-Switched ~2.7-µm Er:Y2O3 Ceramic Laser,” Appl. Sci. (Basel) 7(11), 1201–1207 (2017).
[Crossref]

Rudy, C. W.

C. W. Rudy, “Mid-IR Lasers: Power and pulse capability ramp up for mid-IR lasers,” Laser Focus World 50(5), 63–66 (2014).

Sachkov, D. Yu.

Sanamyan, T.

T. Sanamyan, “Efficient, cryogenic mid-IR and eye-safe Er:YAG laser,” J. Opt. Soc. Am. B 33(11), D1–D6 (2016).
[Crossref]

T. Sanamyan, “Diode-pumped cascade Er:Y2O3 laser,” Laser Phys. Lett. 12(12), 125804 (2015).
[Crossref]

Savelev, A. D.

E. V. Zharikov, V. I. Zhekov, I. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, and M. A. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ=2.94 µm,” Sov. J. Quantum Electron. 4(8), 1039–1040 (1975).
[Crossref]

Schmaul, B.

B. Schmaul, G. Huber, R. Clausen, C. Chai, P. LiKamWa, and M. Bass, “Er3+:YLiF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature,” Appl. Phys. Lett. 62(6), 541–543 (1993).
[Crossref]

Schneider, J.

Shen, D.

X. Ren, Y. Wang, J. Zhang, D. Tang, and D. Shen, “Short-Pulse-Width Repetitively Q-Switched ~2.7-µm Er:Y2O3 Ceramic Laser,” Appl. Sci. (Basel) 7(11), 1201–1207 (2017).
[Crossref]

Shimizu, S.

Smirnov, V. V.

E. V. Zharikov, V. I. Zhekov, I. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, and M. A. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ=2.94 µm,” Sov. J. Quantum Electron. 4(8), 1039–1040 (1975).
[Crossref]

Spring, R.

M. Pollnau, R. Spring, S. Wittwer, W. Lüthy, and H. P. Weber, “Investigation on the slope efficiency of a pulsed 2.8-µm Er:LiYF laser,” Opt. Soc. Am. B 14(4), 974–978 (1997).
[Crossref]

Starikov, B. P.

E. V. Zharikov, V. I. Zhekov, I. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, and M. A. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ=2.94 µm,” Sov. J. Quantum Electron. 4(8), 1039–1040 (1975).
[Crossref]

Stoneman, R. C.

R. C. Stoneman, J. G. Lynn, and L. Esterowitz, “Direct upper-state pumping of the 2.8 µm Er3+:YLF laser,” IEEE J. Quantum Electron. 28(4), 1041–1045 (1992).
[Crossref]

Tang, D.

X. Ren, Y. Wang, J. Zhang, D. Tang, and D. Shen, “Short-Pulse-Width Repetitively Q-Switched ~2.7-µm Er:Y2O3 Ceramic Laser,” Appl. Sci. (Basel) 7(11), 1201–1207 (2017).
[Crossref]

Thuau, M.

C. Labbe, J.-L. Doualan, S. Girard, R. Moncorge, and M. Thuau, “Absolute excited state absorption cross section measurements in Er3+:LiYF4 for laser applications around 2.8 mm and 551 nm,” J. Phys. Condens. Matter 12(30), 6943–6957 (2000).
[Crossref]

Timoshechkin, M. A.

E. V. Zharikov, V. I. Zhekov, I. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, and M. A. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ=2.94 µm,” Sov. J. Quantum Electron. 4(8), 1039–1040 (1975).
[Crossref]

Tokita, S.

Uehara, H.

Unrau, U. B.

Unterrainer, K.

Wang, Y.

X. Ren, Y. Wang, J. Zhang, D. Tang, and D. Shen, “Short-Pulse-Width Repetitively Q-Switched ~2.7-µm Er:Y2O3 Ceramic Laser,” Appl. Sci. (Basel) 7(11), 1201–1207 (2017).
[Crossref]

Weber, H. P.

M. Pollnau, R. Spring, S. Wittwer, W. Lüthy, and H. P. Weber, “Investigation on the slope efficiency of a pulsed 2.8-µm Er:LiYF laser,” Opt. Soc. Am. B 14(4), 974–978 (1997).
[Crossref]

M. Pollnau, C. Ghisler, W. Lüthy, H. P. Weber, J. Schneider, and U. B. Unrau, “Three-transition cascade erbium laser at 1.7, 2.7, and 1.6 microm,” Opt. Lett. 22(9), 612–614 (1997).
[Crossref] [PubMed]

M. Pollnau, W. Lüthy, H. P. Weber, K. Krämer, H. U. Güdel, and R. A. McFarlane, “Excited-state absorption in Er:BaY2F8 and Cs3Er2Br9 and comparison with Er:LiYF4,” Appl. Phys. B 62(4), 339–344 (1996).
[Crossref]

M. Pollnau, T. Graf, J. E. Balmer, W. Lüthy, and H. P. Weber, “Explanation of the cw operation of the Er3+ 3- microm crystal laser,” Phys. Rev. A 49(5), 3990–3996 (1994).
[Crossref] [PubMed]

Wetter, N. U.

N. U. Wetter, A. M. Deana, I. M. Ranieri, L. Gomes, and S. L. Baldochi, “Influence of excited-state-energy upconversion on pulse shape in quasi-continuous-wave diode-pumped Er:YLF4 lasers,” IEEE J. Quantum Electron. 46(1), 99–104 (2010).
[Crossref]

Wittwer, S.

M. Pollnau, R. Spring, S. Wittwer, W. Lüthy, and H. P. Weber, “Investigation on the slope efficiency of a pulsed 2.8-µm Er:LiYF laser,” Opt. Soc. Am. B 14(4), 974–978 (1997).
[Crossref]

Yasuhara, R.

Zhang, J.

X. Ren, Y. Wang, J. Zhang, D. Tang, and D. Shen, “Short-Pulse-Width Repetitively Q-Switched ~2.7-µm Er:Y2O3 Ceramic Laser,” Appl. Sci. (Basel) 7(11), 1201–1207 (2017).
[Crossref]

Zharikov, E. V.

E. V. Zharikov, V. I. Zhekov, I. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, and M. A. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ=2.94 µm,” Sov. J. Quantum Electron. 4(8), 1039–1040 (1975).
[Crossref]

Zhekov, V. I.

E. V. Zharikov, V. I. Zhekov, I. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, and M. A. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ=2.94 µm,” Sov. J. Quantum Electron. 4(8), 1039–1040 (1975).
[Crossref]

Zhou, B.

S. Hubert, D. Meichenin, B. Zhou, and F. Auzel, “Emission properties, oscillator strengths and laser parameters of Er3+ in LiYF4 at 2.7 mm,” J. Lumin. 50(1), 7–15 (1991).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

M. Pollnau, W. Lüthy, H. P. Weber, K. Krämer, H. U. Güdel, and R. A. McFarlane, “Excited-state absorption in Er:BaY2F8 and Cs3Er2Br9 and comparison with Er:LiYF4,” Appl. Phys. B 62(4), 339–344 (1996).
[Crossref]

Appl. Phys. Lett. (2)

G. J. Kintz, R. Allen, and L. Esterowitz, “cw and pulsed 2.8 µm laser emission from diode pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50(22), 1553–1555 (1987).
[Crossref]

B. Schmaul, G. Huber, R. Clausen, C. Chai, P. LiKamWa, and M. Bass, “Er3+:YLiF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature,” Appl. Phys. Lett. 62(6), 541–543 (1993).
[Crossref]

Appl. Sci. (Basel) (1)

X. Ren, Y. Wang, J. Zhang, D. Tang, and D. Shen, “Short-Pulse-Width Repetitively Q-Switched ~2.7-µm Er:Y2O3 Ceramic Laser,” Appl. Sci. (Basel) 7(11), 1201–1207 (2017).
[Crossref]

IEEE J. Quantum Electron. (4)

V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 µm Er3+ lasers,” IEEE J. Quantum Electron. 29(2), 426–434 (1993).
[Crossref]

S. Jackson, M. Pollnau, and J. Li, “Diode-pumped Erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47(4), 471–478 (2011).
[Crossref]

N. U. Wetter, A. M. Deana, I. M. Ranieri, L. Gomes, and S. L. Baldochi, “Influence of excited-state-energy upconversion on pulse shape in quasi-continuous-wave diode-pumped Er:YLF4 lasers,” IEEE J. Quantum Electron. 46(1), 99–104 (2010).
[Crossref]

R. C. Stoneman, J. G. Lynn, and L. Esterowitz, “Direct upper-state pumping of the 2.8 µm Er3+:YLF laser,” IEEE J. Quantum Electron. 28(4), 1041–1045 (1992).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Schneider, “Mid-infrared fluoride fiber lasers in multiple cascade operation,” IEEE Photonics Technol. Lett. 7(4), 354–356 (1995).
[Crossref]

J. Lumin. (1)

S. Hubert, D. Meichenin, B. Zhou, and F. Auzel, “Emission properties, oscillator strengths and laser parameters of Er3+ in LiYF4 at 2.7 mm,” J. Lumin. 50(1), 7–15 (1991).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Opt. Technol. (1)

J. Phys. Condens. Matter (1)

C. Labbe, J.-L. Doualan, S. Girard, R. Moncorge, and M. Thuau, “Absolute excited state absorption cross section measurements in Er3+:LiYF4 for laser applications around 2.8 mm and 551 nm,” J. Phys. Condens. Matter 12(30), 6943–6957 (2000).
[Crossref]

Laser Focus World (1)

C. W. Rudy, “Mid-IR Lasers: Power and pulse capability ramp up for mid-IR lasers,” Laser Focus World 50(5), 63–66 (2014).

Laser Phys. Lett. (1)

T. Sanamyan, “Diode-pumped cascade Er:Y2O3 laser,” Laser Phys. Lett. 12(12), 125804 (2015).
[Crossref]

Opt. Eng. (1)

V. Lupei and S. Georgesku, “Erbium 3-µm laser as an upconversion system,” Opt. Eng. 35(5), 1265–1272 (1996).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Soc. Am. B (1)

M. Pollnau, R. Spring, S. Wittwer, W. Lüthy, and H. P. Weber, “Investigation on the slope efficiency of a pulsed 2.8-µm Er:LiYF laser,” Opt. Soc. Am. B 14(4), 974–978 (1997).
[Crossref]

Phys. Rev. A (1)

M. Pollnau, T. Graf, J. E. Balmer, W. Lüthy, and H. P. Weber, “Explanation of the cw operation of the Er3+ 3- microm crystal laser,” Phys. Rev. A 49(5), 3990–3996 (1994).
[Crossref] [PubMed]

Sov. J. Quantum Electron. (1)

E. V. Zharikov, V. I. Zhekov, I. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, and M. A. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ=2.94 µm,” Sov. J. Quantum Electron. 4(8), 1039–1040 (1975).
[Crossref]

Sov. Phys. Usp. (1)

A. A. Mak, Yu. A. Anan’ev, and B. A. Ermakov, “Solid State Lasers,” Sov. Phys. Usp. 10(4), 419–452 (1968).
[Crossref]

Other (3)

C. Li, Y. Guyot, C. Linares, R. Moncorge, and M. F. Joubert, “Radiative transition probabilities of trivalent rare-earth ions in LiYF4,” in “Advanced Solid State Lasers and Compact Blue-Green Lasers” OSA Technical Digest 2, 423–425 (1993).

H. Chou and H. Jenssen, “Upconversion processes in Er-activated solid state laser materials in Advanced Solid State Lasers, M. Shand and H. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, 1989), paper DD5.

M. Messner, A. Henrich, C. Hagen, and K. Unterrainer, “Acousto-optically Q-switched diode side-pumped Er:YLF laser generating 50-kW peak power in 70-ns pulses,” Proceedings SPIE 10896, Solid State Lasers XXVIII: Technology and Devices; 1089607 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Energy levels in Er:YLF, after [5]. Solid arrows denote absorption and laser transitions. Dashed arrows denote energy transfer processes. Broken, arrows denote heat generating non-radiative decay. Also listed on the right are the lifetimes of the levels involved in numerical simulations.
Fig. 2
Fig. 2 Population dynamics of the 4I11/2, 4I13/2, and 4S3/2 levels, top row, (in red, blue and green correspondingly). Dynamics of the coefficient of amplification α2.8 is shown in the bottom row. Frames (a) & (b) represent the case of high cavity loss for all 3 wavelengths. Frames (c) & (d) represent the case of high cavity loss only for the 2.8 µm emission, while lasing at the 1.73 and 1.62 µm wavelengths is allowed. Cavity parameters: R1.6 = 0.99, R1.7 = 0.97, G1.6 = G1.7 = 0.033, LCR = 15 mm, Pump = 80W.
Fig. 3
Fig. 3 Simulation of the 2.8 µm pulse energy vs time at different pump powers. (a) 2.8 µm lasing only; (b) 2.8 µm lasing with 1.6 + 1.7 µm cascade.. Cavity parameters: R1.6 = 0.99, R1.7 = 0.97, G1.6 = G1.7 = 0.033, LCR = 15 mm.
Fig. 4
Fig. 4 Simulation of the Q-switched + Gain-switched, 4I11/24I13/24I15/2 cascade lasing at the 2.8 and 1.62 µm wavelengths. Cavity parameters: R1.6 = 0.99, R1.7 = 0.97, R2.8 = 0.8, G1.6 = G1.7 = 0.033, LCR = 15 mm, Pump = 80W.
Fig. 5
Fig. 5 Simplified schematics of (a) single-cavity and (b) spilt-channel cascade lasers.
Fig. 6
Fig. 6 Er:YLF cascade laser experimental layout. Spectral overlap of the pump emission and Er:YLF absorption is pictured on the left. Pump spectrum was measured with Yokogawa Optical Spectrum Analyzer 3624 and Er:YLF π-absorption spectrum was collected with Cary 600 spectrometer (resolution 0.5 nm).
Fig. 7
Fig. 7 Er(1%):YLF cascade laser performance in the free running, QCW operation. (a) – Oscilloscope traces of pump (grey), 2.8 µm (red) and 1.62 µm lasing (blue). (b) – Wavelength resolved cascade laser output vs the absorbed pump. Inset shows output spectrum consisting of the 2.66, 2.72 and 2.81 µm lines. ΔtPUMP = 10 msec, PRF = 20 Hz.
Fig. 8
Fig. 8 Er(1%):YLF cascade laser performance (1.6 + 1.7 + 2.8 µm) in the Q-switched mode. Shown are the oscilloscope traces of the pump (grey), 2.8 µm (red), 1.73 µm (green) and 1.62 µm lasing (blue). Pump pulsewidth ΔtPUMP = 1.25 msec, PRF = 160 Hz. Inset shows 1.62 and 1.73 µm laser spectral lines.

Tables (1)

Tables Icon

Table 1 Selected Er(1%):YLF parameters used in numerical simulations.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

d N 1 dt = N 1 τ 1 + β 21 N 2 τ 2 +( β 51 τ 5 + W 50 N 0 ) N 5 2 W 11 N 1 2 + R SE 2.8 R SE 1.6 ;
d N 2 dt = R 02 pump N 2 τ 2 2 W 22 N 2 2 +( β 54 τ 5 + W 50 N 0 ) N 5 + W 11 N 1 2 R SE 2.8 + R SE 1.7 ;
d N 5 dt = N 5 τ 5 W 50 N 0 N 5 + W 22 N 2 2 R SE 1.7 ;
d φ 2.8 dt = R SE 2.8 ln( R 2.8 1 )+ G 2.8 2 L cr c φ 2.8 + N 2 τ 2 β 21 f G 2.8 ;
d φ 1.7 dt = R SE 1.7 ln( R 1.7 1 )+ G 1.7 2 L cr c φ 1.7 + N 5 τ 5 β 54 f G 1.7 ;
d φ 1.6 dt = R SE 1.6 ln( R 1.6 1 )+ G 1.6 2 L cr c φ 1.6 + N 1 τ 1 β 10 f G 1.6 ;
R SE 2.8 =( b 24 N 2 g 2 g 1 b 17 N 1 )c σ 2.8 φ 2.8 ;
R SE 1.6 =( b 10 N 1 g 1 g 0 b 08 ( N N 1 N 2 N 5 ) )c σ 1.6 φ 1.6 ;
R SE 1.7 = b 50 N 5 c σ 1.7 φ 1.7 ;
R 02 pump = P p λ p hc L cr S mod ( 1exp( σ p N 0 L cr ) );
E 2.8 ST = α 2.8 hc S mod σ 2.8 λ 2.8 ( 1 b 17 b 17 + b 24 );
α 2.8 =( b 24 N 2 g 2 g 1 b 07 N 1 ) σ 2.8 ;
E 2.8 = E 2.8 st ln( R 2.8 1 ) 1 α end / α 2.8 ln( R 2.8 1 )+ G 2.8 ;
2 α 2.8 α end L cr ( ln( R 2.8 1 )+ G 2.8 ) =ln( α 2.8 α end );
P out i = φ i h λ i S mod 1 R i 1+ R i ln( R i 1 ) ln( R i 1 )+ G i ;

Metrics