Abstract

The range of exposure for which the holographic reciprocity law holds in photopolymers, is mainly dependent on the light exposure intensity and polymerization rate between photo-initiator and monomers. Matching this is the key to improving performance. Characterization of the dependence on diffraction efficiency of the volume transmission gratings on holographic reciprocity matching of TI/PMMAs under different milliseconds with different thickness (1-3mm) has been carried out for the novel high-sensitive TI/PMMA polymers. Diffraction gratings can be recorded in TI/PMMAs under 20ms with the exposure intensity of 115mW/cm2. The physical and chemical mechanism under and after single shot exposure is analyzed which can be divided into three parts, namely, photo-induced polymerization, dark diffusion of photosensitive molecules, and counter-diffusion of photoproducts. Holographic properties of TI/PMMAs of different thickness (1-3mm) under different shingle-shot durations and repetition rates are investigated in detail as well. The diffraction efficiency reaches 67% with the response time of 15.69s. By this way, volume holographic gratings with no reciprocity failure can be recorded under multi-pulse exposure, with high grating strength and rapid sensitivity in TI/PMMAs, which indicates the volume holographic memories have the potential for recording and storing transient information in life and in the military.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures

Peng Liu, Fuwei Chang, Yu Zhao, Zeren Li, and Xiudong Sun
Opt. Express 26(2) 1072-1082 (2018)

Holographic memory performances of titanocene dispersed poly (methyl methacrylate) photopolymer with different preparation conditions

Peng Liu, Linlin Wang, Yu Zhao, Zeren Li, and Xiudong Sun
Opt. Mater. Express 8(6) 1441-1453 (2018)

Holographic response characteristics influenced by an absorptive diffusion polymerization model in bulk TI/PMMAs

Peng Liu, Xiudong Sun, and Linlin Wang
Appl. Opt. 58(31) 8622-8630 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. Liu, F. Fan, Y. Hong, J. Zang, G. Kang, and X. Tan, “Volume holographic recording in Irgacure 784-doped PMMA photopolymer,” Opt. Express 25(17), 20654–20662 (2017).
    [Crossref] [PubMed]
  2. P. Liu, L. Wang, Y. Zhao, Z. Li, and X. Sun, “Holographic memory performances of titanocene dispersed poly (methyl methacrylate) photopolymer with different preparation conditions,” Opt. Mater. Express 8(6), 1441–1453 (2018).
    [Crossref]
  3. H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
    [Crossref]
  4. H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
    [Crossref] [PubMed]
  5. S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
    [Crossref]
  6. M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording inphotopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” J. Appl. Phys. 117(5), 053105 (2015).
    [Crossref]
  7. W. S. Kim, Y. C. Jeong, and J. K. Park, “Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer,” Opt. Express 14(20), 8967–8973 (2006).
    [Crossref] [PubMed]
  8. D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
    [Crossref]
  9. J. Wang, X. Sun, S. Luo, and Y. Jiang, “The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording,” Opt. Mater. 32(1), 261–265 (2009).
    [Crossref]
  10. J. Wang, X. Sun, S. Luo, and Y. Jiang, “Study on the mechanism of dark enhancement in phenanthrenequinone doped poly (methyl methacrylate) photopolymer for holographic recording,” Opt. Commun. 283(9), 1707–1710 (2010).
    [Crossref]
  11. P. Liu, L. Wang, Y. Zhao, Z. Li, and X. Sun, “Cationic photo-initiator titanocene dispersed PMMA photopolymers for holographic memories,” OSA Continuum 1(3), 783–795 (2018).
    [Crossref]
  12. P. Liu, X. Sun, Y. Zhao, and Z. Li, “Holographic stability and storage capacity on bulk green-light sensitive TI/PMMA materials,” AIP Adv. 9(3), 035034 (2019).
    [Crossref]
  13. A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography,” Nat. Photonics 12(4), 228–234 (2018).
    [Crossref]
  14. Q. Y. Yue, Z. J. Cheng, L. Han, Y. Yang, and C. S. Guo, “One-shot time-resolved holographic polarization microscopy for imaging laser-induced ultrafast phenomena,” Opt. Express 25(13), 14182–14191 (2017).
    [Crossref] [PubMed]
  15. P. Liu, F. Chang, Y. Zhao, Z. Li, and X. Sun, “Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures,” Opt. Express 26(2), 1072–1082 (2018).
    [Crossref] [PubMed]
  16. P. Liu, Y. Zhao, Z. Li, and X. Sun, “Improvement of ultrafast holographic performance in silver nanoprisms dispersed photopolymer,” Opt. Express 26(6), 6993–7004 (2018).
    [Crossref] [PubMed]
  17. Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80(5), 731–733 (2002).
    [Crossref]
  18. Y. Zhao, J. Zhong, Y. Ye, Z. Luo, J. Li, Z. Li, and J. Zhu, “Sensitive polyvinyl alcohol/acrylamide based photopolymer for single pulse holographic recording,” Mater. Lett. 138, 284–286 (2015).
    [Crossref]
  19. K. M. Johnson, L. Hesselink, and J. W. Goodman, “Holographic reciprocity law failure,” Appl. Opt. 23(2), 218–227 (1984).
    [Crossref] [PubMed]
  20. P. Cheben, T. Belenguer, A. Nuñez, F. Del Monte, and D. Levy, “Holographic diffraction gratings recording in organically modified silica gels,” Opt. Lett. 21(22), 1857–1859 (1996).
    [Crossref] [PubMed]
  21. H. I. Bjelkhagen, “Silver-Halide Recording Materials: for Holography and Their Processing,” Springer, (2013).
  22. P. A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(6), 29027 (2016).
    [Crossref] [PubMed]
  23. G. Zhao and P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
    [Crossref]
  24. H. Li, Y. Qi, and J. T. Sheridan, “Three-dimensional extended nonlocal photopolymerization driven diffusion model. Part I. Absorption,” J. Opt. Soc. Am. B 31(11), 2638–2647 (2014).
    [Crossref]
  25. H. Li, Y. Qi, and J. T. Sheridan, “Three-dimensional extended nonlocal photopolymerization driven diffusion model. Part II. Photopolymerization and model development,” J. Opt. Soc. Am. B 31(11), 2648–2656 (2014).
    [Crossref]
  26. D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
    [Crossref]
  27. D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
    [Crossref]
  28. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Labs Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  29. B. L. Booth, “Photopolymer material for holography,” Appl. Opt. 11(12), 2994–2995 (1972).
    [Crossref] [PubMed]
  30. I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43(14), 2900–2905 (2004).
    [Crossref] [PubMed]
  31. D. Mackey, P. O’Reilly, and I. Naydenova, “Theoretical modeling of the effect of polymer chain immobilization rates on holographic recording in photopolymers,” J. Opt. Soc. Am. A 33(5), 920–929 (2016).
    [Crossref] [PubMed]

2019 (1)

P. Liu, X. Sun, Y. Zhao, and Z. Li, “Holographic stability and storage capacity on bulk green-light sensitive TI/PMMA materials,” AIP Adv. 9(3), 035034 (2019).
[Crossref]

2018 (6)

2017 (2)

2016 (2)

P. A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(6), 29027 (2016).
[Crossref] [PubMed]

D. Mackey, P. O’Reilly, and I. Naydenova, “Theoretical modeling of the effect of polymer chain immobilization rates on holographic recording in photopolymers,” J. Opt. Soc. Am. A 33(5), 920–929 (2016).
[Crossref] [PubMed]

2015 (2)

Y. Zhao, J. Zhong, Y. Ye, Z. Luo, J. Li, Z. Li, and J. Zhu, “Sensitive polyvinyl alcohol/acrylamide based photopolymer for single pulse holographic recording,” Mater. Lett. 138, 284–286 (2015).
[Crossref]

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording inphotopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” J. Appl. Phys. 117(5), 053105 (2015).
[Crossref]

2014 (4)

H. Li, Y. Qi, and J. T. Sheridan, “Three-dimensional extended nonlocal photopolymerization driven diffusion model. Part I. Absorption,” J. Opt. Soc. Am. B 31(11), 2638–2647 (2014).
[Crossref]

H. Li, Y. Qi, and J. T. Sheridan, “Three-dimensional extended nonlocal photopolymerization driven diffusion model. Part II. Photopolymerization and model development,” J. Opt. Soc. Am. B 31(11), 2648–2656 (2014).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
[Crossref]

2010 (3)

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “Study on the mechanism of dark enhancement in phenanthrenequinone doped poly (methyl methacrylate) photopolymer for holographic recording,” Opt. Commun. 283(9), 1707–1710 (2010).
[Crossref]

2009 (2)

S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
[Crossref]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording,” Opt. Mater. 32(1), 261–265 (2009).
[Crossref]

2006 (1)

2004 (1)

2002 (1)

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80(5), 731–733 (2002).
[Crossref]

1996 (1)

1994 (1)

G. Zhao and P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]

1984 (1)

1972 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Labs Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Belenguer, T.

Bielawski, S.

A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography,” Nat. Photonics 12(4), 228–234 (2018).
[Crossref]

Blanche, P. A.

P. A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(6), 29027 (2016).
[Crossref] [PubMed]

Booth, B. L.

Chang, F.

Cheben, P.

Cheng, Z. J.

Churin, D.

P. A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(6), 29027 (2016).
[Crossref] [PubMed]

Del Monte, F.

Fan, F.

Geng, Y.

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
[Crossref]

Gleeson, M. R.

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

Goodman, J. W.

Guo, C. S.

Han, L.

Hesselink, L.

Hong, Y.

Howard, R.

Hsiao, Y. N.

S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
[Crossref]

Hsu, K. Y.

S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
[Crossref]

Jallapuram, R.

Jeong, Y. C.

Jiang, Y.

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “Study on the mechanism of dark enhancement in phenanthrenequinone doped poly (methyl methacrylate) photopolymer for holographic recording,” Opt. Commun. 283(9), 1707–1710 (2010).
[Crossref]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording,” Opt. Mater. 32(1), 261–265 (2009).
[Crossref]

Johnson, K. M.

Kang, G.

Kawana, M.

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording inphotopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” J. Appl. Phys. 117(5), 053105 (2015).
[Crossref]

Kieu, K.

P. A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(6), 29027 (2016).
[Crossref] [PubMed]

Kim, W. S.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Labs Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Levy, D.

Li, H.

Li, J.

Y. Zhao, J. Zhong, Y. Ye, Z. Luo, J. Li, Z. Li, and J. Zhu, “Sensitive polyvinyl alcohol/acrylamide based photopolymer for single pulse holographic recording,” Mater. Lett. 138, 284–286 (2015).
[Crossref]

Li, L.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

Li, X.

Li, Z.

Lin, S. H.

S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
[Crossref]

Liu, H.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
[Crossref]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

Liu, P.

Liu, S.

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

Liu, Y.

Liu, Z.

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80(5), 731–733 (2002).
[Crossref]

Luo, S.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “Study on the mechanism of dark enhancement in phenanthrenequinone doped poly (methyl methacrylate) photopolymer for holographic recording,” Opt. Commun. 283(9), 1707–1710 (2010).
[Crossref]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording,” Opt. Mater. 32(1), 261–265 (2009).
[Crossref]

Luo, Z.

Y. Zhao, J. Zhong, Y. Ye, Z. Luo, J. Li, Z. Li, and J. Zhu, “Sensitive polyvinyl alcohol/acrylamide based photopolymer for single pulse holographic recording,” Mater. Lett. 138, 284–286 (2015).
[Crossref]

Lynn, B.

P. A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(6), 29027 (2016).
[Crossref] [PubMed]

Mackey, D.

Martin, S.

Mouroulis, P.

G. Zhao and P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]

Naydenova, I.

Norwood, R. A.

P. A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(6), 29027 (2016).
[Crossref] [PubMed]

Nuñez, A.

O’Reilly, P.

Park, J. K.

Peyghambarian, N.

P. A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(6), 29027 (2016).
[Crossref] [PubMed]

Psaltis, D.

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80(5), 731–733 (2002).
[Crossref]

Qi, Y.

Randoux, S.

A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography,” Nat. Photonics 12(4), 228–234 (2018).
[Crossref]

Sabol, D.

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

Sheridan, J. T.

Song, Q.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

Steckman, G. J.

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80(5), 731–733 (2002).
[Crossref]

Sun, X.

P. Liu, X. Sun, Y. Zhao, and Z. Li, “Holographic stability and storage capacity on bulk green-light sensitive TI/PMMA materials,” AIP Adv. 9(3), 035034 (2019).
[Crossref]

P. Liu, L. Wang, Y. Zhao, Z. Li, and X. Sun, “Holographic memory performances of titanocene dispersed poly (methyl methacrylate) photopolymer with different preparation conditions,” Opt. Mater. Express 8(6), 1441–1453 (2018).
[Crossref]

P. Liu, L. Wang, Y. Zhao, Z. Li, and X. Sun, “Cationic photo-initiator titanocene dispersed PMMA photopolymers for holographic memories,” OSA Continuum 1(3), 783–795 (2018).
[Crossref]

P. Liu, F. Chang, Y. Zhao, Z. Li, and X. Sun, “Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures,” Opt. Express 26(2), 1072–1082 (2018).
[Crossref] [PubMed]

P. Liu, Y. Zhao, Z. Li, and X. Sun, “Improvement of ultrafast holographic performance in silver nanoprisms dispersed photopolymer,” Opt. Express 26(6), 6993–7004 (2018).
[Crossref] [PubMed]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “Study on the mechanism of dark enhancement in phenanthrenequinone doped poly (methyl methacrylate) photopolymer for holographic recording,” Opt. Commun. 283(9), 1707–1710 (2010).
[Crossref]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording,” Opt. Mater. 32(1), 261–265 (2009).
[Crossref]

Suret, P.

A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography,” Nat. Photonics 12(4), 228–234 (2018).
[Crossref]

Szwaj, C.

A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography,” Nat. Photonics 12(4), 228–234 (2018).
[Crossref]

Takahashi, J.

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording inphotopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” J. Appl. Phys. 117(5), 053105 (2015).
[Crossref]

Tan, X.

Tikan, A.

A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography,” Nat. Photonics 12(4), 228–234 (2018).
[Crossref]

Toal, V.

Tomita, Y.

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording inphotopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” J. Appl. Phys. 117(5), 053105 (2015).
[Crossref]

Wang, J.

J. Wang, X. Sun, S. Luo, and Y. Jiang, “Study on the mechanism of dark enhancement in phenanthrenequinone doped poly (methyl methacrylate) photopolymer for holographic recording,” Opt. Commun. 283(9), 1707–1710 (2010).
[Crossref]

J. Wang, X. Sun, S. Luo, and Y. Jiang, “The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording,” Opt. Mater. 32(1), 261–265 (2009).
[Crossref]

Wang, L.

Wang, S.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

Wang, W.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
[Crossref]

Yang, Y.

Yasui, S.

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording inphotopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” J. Appl. Phys. 117(5), 053105 (2015).
[Crossref]

Ye, Y.

Y. Zhao, J. Zhong, Y. Ye, Z. Luo, J. Li, Z. Li, and J. Zhu, “Sensitive polyvinyl alcohol/acrylamide based photopolymer for single pulse holographic recording,” Mater. Lett. 138, 284–286 (2015).
[Crossref]

Yu, D.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
[Crossref]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

Yue, Q. Y.

Zang, J.

Zhao, G.

G. Zhao and P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]

Zhao, Y.

P. Liu, X. Sun, Y. Zhao, and Z. Li, “Holographic stability and storage capacity on bulk green-light sensitive TI/PMMA materials,” AIP Adv. 9(3), 035034 (2019).
[Crossref]

P. Liu, L. Wang, Y. Zhao, Z. Li, and X. Sun, “Holographic memory performances of titanocene dispersed poly (methyl methacrylate) photopolymer with different preparation conditions,” Opt. Mater. Express 8(6), 1441–1453 (2018).
[Crossref]

P. Liu, L. Wang, Y. Zhao, Z. Li, and X. Sun, “Cationic photo-initiator titanocene dispersed PMMA photopolymers for holographic memories,” OSA Continuum 1(3), 783–795 (2018).
[Crossref]

P. Liu, Y. Zhao, Z. Li, and X. Sun, “Improvement of ultrafast holographic performance in silver nanoprisms dispersed photopolymer,” Opt. Express 26(6), 6993–7004 (2018).
[Crossref] [PubMed]

P. Liu, F. Chang, Y. Zhao, Z. Li, and X. Sun, “Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures,” Opt. Express 26(2), 1072–1082 (2018).
[Crossref] [PubMed]

Y. Zhao, J. Zhong, Y. Ye, Z. Luo, J. Li, Z. Li, and J. Zhu, “Sensitive polyvinyl alcohol/acrylamide based photopolymer for single pulse holographic recording,” Mater. Lett. 138, 284–286 (2015).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
[Crossref]

Zhong, J.

Y. Zhao, J. Zhong, Y. Ye, Z. Luo, J. Li, Z. Li, and J. Zhu, “Sensitive polyvinyl alcohol/acrylamide based photopolymer for single pulse holographic recording,” Mater. Lett. 138, 284–286 (2015).
[Crossref]

Zhou, K.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

Zhu, J.

Y. Zhao, J. Zhong, Y. Ye, Z. Luo, J. Li, Z. Li, and J. Zhu, “Sensitive polyvinyl alcohol/acrylamide based photopolymer for single pulse holographic recording,” Mater. Lett. 138, 284–286 (2015).
[Crossref]

AIP Adv. (1)

P. Liu, X. Sun, Y. Zhao, and Z. Li, “Holographic stability and storage capacity on bulk green-light sensitive TI/PMMA materials,” AIP Adv. 9(3), 035034 (2019).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80(5), 731–733 (2002).
[Crossref]

Bell Labs Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Labs Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

J. Appl. Phys. (2)

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording inphotopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” J. Appl. Phys. 117(5), 053105 (2015).
[Crossref]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107(5), 053113 (2010).
[Crossref]

J. Mod. Opt. (1)

G. Zhao and P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11(2), 024012 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Mater. Lett. (1)

Y. Zhao, J. Zhong, Y. Ye, Z. Luo, J. Li, Z. Li, and J. Zhu, “Sensitive polyvinyl alcohol/acrylamide based photopolymer for single pulse holographic recording,” Mater. Lett. 138, 284–286 (2015).
[Crossref]

Nat. Photonics (1)

A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography,” Nat. Photonics 12(4), 228–234 (2018).
[Crossref]

Opt. Commun. (3)

J. Wang, X. Sun, S. Luo, and Y. Jiang, “Study on the mechanism of dark enhancement in phenanthrenequinone doped poly (methyl methacrylate) photopolymer for holographic recording,” Opt. Commun. 283(9), 1707–1710 (2010).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (1)

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

J. Wang, X. Sun, S. Luo, and Y. Jiang, “The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording,” Opt. Mater. 32(1), 261–265 (2009).
[Crossref]

Opt. Mater. Express (1)

OSA Continuum (1)

Sci. Rep. (1)

P. A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(6), 29027 (2016).
[Crossref] [PubMed]

Other (1)

H. I. Bjelkhagen, “Silver-Halide Recording Materials: for Holography and Their Processing,” Springer, (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Normalized reciprocity factor with different exposure intensity, (a) 0.1J/m2, (b) 1J/m2, (c)10J/m2, (d) reciprocity law failure differences.
Fig. 2
Fig. 2 (a) Normalized reciprocity factor with different polymerization rate, (b) reciprocity law factor differences and matching range of different polymerization rate.
Fig. 3
Fig. 3 Grating strength and dark enhancement under one shot with different durations, (a)-(b) 1mm thick TI/PMMAs, (c)-(d) 2mm thick TI/PMMAs, (e)-(f) 3mm thick TI/PMMAs.
Fig. 4
Fig. 4 Original grating strength after exposure in (a) 1mm TI/PMMAs, (b) 2mm TI/PMMAs, (c) 3mm TI/PMMAs, (d) reciprocity matching coefficient in different thick TI/PMMAs.
Fig. 5
Fig. 5 Grating strength with different repetition rates in same exposure times of (a)1mm sample, (b) 2mm sample and (c) 3mm sample, (d) different diffraction efficiency enhancement in TI/PMMAs.
Fig. 6
Fig. 6 Diffraction efficiency with different single-shot duration in same repetition rate of (a)1mm sample, (b) 2mm sample and (c) 3mm sample, (d) different diffraction efficiency enhancement in TI/PMMAs.
Fig. 7
Fig. 7 Temporal evolution of diffraction efficiency under long time pulse exposure in (a) 1mm TI/PMMA, (b) 2mm TI/PMMA and (c) 3mm TI/PMMA, (d) response time of different sample thickness and one-shot duration.
Fig. 8
Fig. 8 (a) photo-induced polymerization, (b) dark diffusion of photosensitive molecules, (c) counter-diffusion of photoproducts, (d) temporal evolution of grating strength with the accumulation of exposure.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

TI+hv k r k i [TI] * +PMMA/MMA k p TI-nMMA
F(t)=Ch{Tt}=1- e Dt
P(t)=Ch{ k p t}=1- e αt
R(t)=Ch{ k r t}=1- e βt
D R (t,D)=Ch{Ht}
u(t)=f(t)p(t)
M(t)=Ch{Bt}=Ch{ k r >T+ k p ,Bt}+Ch{ k r T+ k p ,Bt} =Ch{Bt| k r >T+ k p }Ch{ k r >T+ k p }+Ch{Bt| k r T+ k p }Ch{ k r T+ k p }
Ch{Bt| k r >T+ k p }=Ch{Tt}=Ch{At}
Ch{Bt| k r T+ k p }=Ch{ k r >T+ k p }Ch{Bt}
Ch{ k r >T+ k p }+Ch{ k r T+ k p }=1
M(t)=Ch{Bt}= Ch{ k r >T+ k p }Ch{Bt} 1Ch{ k r >T+ k p }+ (Ch{ k r >T+ k p }) 2
Ch{ k r >T+ k p }=Ch{T< k r k p }=1-e D( β 1 α 1 ) = 1-e E( β 1 α 1 ) t
D R (t,D)=Ch{Ht}=u(t)M(t)
u(t)=f(t)p(t)= Dα( e Dt e αt ) Dα = Dα( e E e αt ) Dα
[Product](X,t)= 1 εd ln{1+[exp(εTId)1]exp[εdϕ I 0 (1+VcosKgX)t]}
D TI (X,τ)= TI 0 2 (1+VcosKgX)exp(f k d τ)exp(αd)
D Product (X,τ)=Pr oduct 0 D TI (X,τ) =TI 0 D TI (X,τ)

Metrics