Abstract

A concept for position adjustment of the diamond in a ruling engine to enable nanoscale groove positioning is proposed. Based on this concept, we fabricate a diamond carriage, design an optical path, and propose an appropriate control method. Several high-quality gratings are ruled for spectrometer or interferometer applications. After implementation of the improvements, the maximum intensity of ghosts and scattered light of the echelle grating with 79 grooves/mm is reduced to half of that before the improvement, and the highest achievable groove density is increased from 6000 grooves/mm to 8000 grooves/mm. The grating ruling results indicate that the proposed concept and the related improvements to the engine significantly improve the accuracy of the CIOMP-6 ruling engine.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Correcting groove error in gratings ruled on a 500-mm ruling engine using interferometric control

Xiaotao Mi, Haili Yu, Hongzhu Yu, Shanwen Zhang, Xiaotian Li, Xuefeng Yao, Xiangdong Qi, Bayinhedhig, and Qiuhua Wan
Appl. Opt. 56(21) 5857-5864 (2017)

300  mm ruling engine producing gratings and echelles under interferometric control in China

Xiaotian Li, Haili Yu, Xiangdong Qi, Shulong Feng, Jicheng Cui, Shanwen Zhang, Jirigalantu, and Yuguo Tang
Appl. Opt. 54(7) 1819-1826 (2015)

Ruling engine using a piezoelectric device for large and high-groove density gratings

Toshiaki Kita and Tatsuo Harada
Appl. Opt. 31(10) 1399-1406 (1992)

References

  • View by:
  • |
  • |
  • |

  1. T. Sakanoi, Y. Kasaba, M. Kagitani, H. Nakagawa, J. Kuhn, and S. Okana, “Development of infrared Echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary observation,” Proc. SPIE 9147, 91478D (2014).
  2. J. Qiu, X. Qi, X. Li, Z. Ma, Y. Jirigalantu, Y. Tang, X. Mi, X. Zheng, R. Zhang, and Bayanheshig, “Development of a spatial heterodyne Raman spectrometer with echelle-mirror structure,” Opt. Express 26(9), 11994–12006 (2018).
    [Crossref] [PubMed]
  3. B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Geng, “Zero-dimensional polariton laser in a subwavelengh grating-based vertical microcavity,” Light Sci. Appl. 3(1), e135 (2014).
    [Crossref]
  4. F. M. Cheng, J. C. Zhang, D. B. Wang, Z. H. Gu, N. Zhuo, S. Q. Zhai, L. J. Wang, J. Q. Liu, S. M. Liu, F. Q. Liu, and Z. G. Wang, “Demonstration of High-Power and Stable Single-Mode in a Quantum Cascade Laser Using Buried Sampled Grating,” Nanoscale Res. Lett. 14(1), 123 (2019).
    [Crossref] [PubMed]
  5. K. Yang, T. Liu, Z. Wang, G. Li, Y. Han, H. Zhang, and J. Yu, “Five-wavelength –swithable all-fiber erbium-doped laser based on few-mode titled fiber Bragg grating,” Opt. Laser Technol. 108, 273–278 (2018).
    [Crossref]
  6. T. Lei, M. Zhang, Y. Li, P. Jia, G. Ning Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
    [Crossref]
  7. M. Rahlves, A. Günther, M. Rezem, and B. Roth, “Polymer-Based Trasmission Path for Communication and Sensing Applications,” J. Lightwave Technol. 37(3), 729–735 (2019).
    [Crossref]
  8. H. Xu and Y. Shi, “Subwavelength-grating-assisted silicon polarization rotator covering all optical communication bands,” Opt. Express 27(4), 5588–5597 (2019).
    [Crossref] [PubMed]
  9. A. Cotel, M. Castaing, P. Pichon, and C. Le Blanc, “Phased-array grating compression for high-energy chirped pulse amplification lasers,” Opt. Express 15(5), 2742–2752 (2007).
    [Crossref] [PubMed]
  10. J. Qiao, A. W. Schmid, L. J. Waxer, T. Nguyen, J. Bunkenburg, C. Kingsley, A. Kozlov, and D. Weiner, “In situ detection and analysis of laser-induced damage on a 1.5-m multilayer-dielectric grating compressor for high-energy, petawatt-class laser systems,” Opt. Express 18(10), 10423–10431 (2010).
    [Crossref] [PubMed]
  11. D. Nevejans, E. Neefs, E. Van Ransbeeck, S. Berkenbosch, R. Clairquin, L. De Vos, W. Moelans, S. Glorieux, A. Baeke, O. Korablev, I. Vinogradov, Y. Kalinnikov, B. Bach, J.-P. Dubois, and E. Villard, “Compact high-resolution spaceborne echelle grating spectrometer with acousto-optical tunable filter based order sorting for the infrared domain from 2.2 to 4.3 microm,” Appl. Opt. 45(21), 5191–5206 (2006).
    [Crossref] [PubMed]
  12. S. Zhang, X. Mi, Q. Zhang, S. Jirigalantu, S. Feng, H. Yu, and X. Qi, “Groove shape characteristics of echelle gratings with high diffraction efficiency,” Opt. Commun. 387, 401–404 (2017).
    [Crossref]
  13. T. Jitsuno, S. Motokoshi, T. Okamoto, T. Mikami, D. Smith, M. L. Schattenburg, H. Kitamura, H. Matsuo, T. Kawasaki, K. Kondo, H. Shirage, Y. Nakata, H. Habara, K. Tsubakimoto, R. Kodama, K. A. Tanaka, N. Miyanga, and K. Mima, “Development of 91 cm size gratings and mirrors for LEFX laser system,” J. Phys. Conf. Ser. 112(3), 032002 (2008).
    [Crossref]
  14. C. H. Chang, Y. Zhao, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of 50 nm period gratings with multilevel interference lithography,” Opt. Lett. 33(14), 1572–1574 (2008).
    [Crossref] [PubMed]
  15. C. R. Englert, C. M. Brown, B. Bach, E. Bach, K. Bach, J. M. Harlander, J. F. Seely, K. D. Marr, and I. Miller, “High-efficiency echelle gratings for MIGHTI, the spatial heterodyne interferometers for the ICON mission,” Appl. Opt. 56(8), 2090–2098 (2017).
    [Crossref] [PubMed]
  16. S. V. Bykov, B. Sharma, and S. A. Asher, “High-Throughput, High-Resolution Echelle deep-UV Raman Spectrometer,” Appl. Spectrosc. 67(8), 873–883 (2013).
    [Crossref] [PubMed]
  17. M. V. Zorina, S. Y. Zuev, M. S. Mikhailenko, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, and N. I. Chkhalo, “The diffraction efficiency of echelle gratings increased by ion-beam polishing of groove surfaces,” Tech. Phys. Lett. 42(8), 844–847 (2016).
    [Crossref]
  18. C. Yang, X. Li, H. Yu, H. Yu, J. Zhu, S. Zhang, J. Gao Bayanheshig, and Y. Tang, “Practical method study on correcting yaw error of 500 mm grating blank carriage in real time,” Appl. Opt. 54(13), 4084–4088 (2015).
    [Crossref]
  19. X. Mi, H. Yu, H. Yu, S. Zhang, X. Li, X. Yao, X. Qi, Bayinhedhig, and Q. Wan, “Correcting groove error in gratings ruled on a 500-mm ruling engine using interferometric control,” Appl. Opt. 56(21), 5857–5864 (2017).
    [Crossref] [PubMed]
  20. G. R. Harrison, “The Production of Diffraction Gratings I. Development of the Ruling Art,” J. Opt. Soc. Am. 39(6), 413–426 (1949).
    [Crossref]
  21. C. Mitchell, “Diffraction grating fabrication in Australia,” Spectrochim. Acta B At. Spectrosc. 54(14), 2041–2049 (1999).
    [Crossref]
  22. X. Li, H. Yu, X. Qi, S. Feng, J. Chui, S. Z. Jirigalantu, and Y. Tang, “300 mm ruling engine producing gratings and echelles under interferometric control in China,” Appl. Opt. 54(7), 1819–1826 (2015).
    [Crossref]
  23. X. Mi, S. Zhang, H. Yu, H. Yu, M. Cong, and X. Qi, “Using a unique mirror to minimize the effect of ruling engine cosine error on grating performance,” Appl. Opt. 57(35), 10146–10151 (2018).
    [Crossref] [PubMed]
  24. D. A. Davies and G. M. Stiff, “Diffraction Grating Ruling in Australia,” Appl. Opt. 8(7), 1379–1384 (1969).
    [Crossref] [PubMed]
  25. W. R. Horsfield, “Ruling Engine with Hydraulic Drive,” Appl. Opt. 4(2), 189–193 (1965).
    [Crossref]
  26. H. W. Babcock, “Control of a ruling engine by a modulated interferometer,” Appl. Opt. 1(4), 415–420 (1962).
    [Crossref]
  27. G. R. Harrison and S. W. Thompson, “Large diffraction gratings ruled on a commercial measuring machine controlled interferometrically,” J. Opt. Soc. Am. 60(5), 591–595 (1970).
    [Crossref]
  28. G. R. Harrison, S. W. Thompson, H. Kazukonis, and J. R. Connell, “750-mm ruling engine producing large gratings and echelles,” J. Opt. Soc. Am. 62(6), 751–756 (1972).
    [Crossref]
  29. T. Kita and T. Harada, “Ruling engine using a piezoelectric device for large and high-groove density gratings,” Appl. Opt. 31(10), 1399–1406 (1992).
    [Crossref] [PubMed]

2019 (3)

F. M. Cheng, J. C. Zhang, D. B. Wang, Z. H. Gu, N. Zhuo, S. Q. Zhai, L. J. Wang, J. Q. Liu, S. M. Liu, F. Q. Liu, and Z. G. Wang, “Demonstration of High-Power and Stable Single-Mode in a Quantum Cascade Laser Using Buried Sampled Grating,” Nanoscale Res. Lett. 14(1), 123 (2019).
[Crossref] [PubMed]

H. Xu and Y. Shi, “Subwavelength-grating-assisted silicon polarization rotator covering all optical communication bands,” Opt. Express 27(4), 5588–5597 (2019).
[Crossref] [PubMed]

M. Rahlves, A. Günther, M. Rezem, and B. Roth, “Polymer-Based Trasmission Path for Communication and Sensing Applications,” J. Lightwave Technol. 37(3), 729–735 (2019).
[Crossref]

2018 (3)

2017 (3)

2016 (1)

M. V. Zorina, S. Y. Zuev, M. S. Mikhailenko, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, and N. I. Chkhalo, “The diffraction efficiency of echelle gratings increased by ion-beam polishing of groove surfaces,” Tech. Phys. Lett. 42(8), 844–847 (2016).
[Crossref]

2015 (3)

2014 (2)

T. Sakanoi, Y. Kasaba, M. Kagitani, H. Nakagawa, J. Kuhn, and S. Okana, “Development of infrared Echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary observation,” Proc. SPIE 9147, 91478D (2014).

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Geng, “Zero-dimensional polariton laser in a subwavelengh grating-based vertical microcavity,” Light Sci. Appl. 3(1), e135 (2014).
[Crossref]

2013 (1)

2010 (1)

2008 (2)

C. H. Chang, Y. Zhao, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of 50 nm period gratings with multilevel interference lithography,” Opt. Lett. 33(14), 1572–1574 (2008).
[Crossref] [PubMed]

T. Jitsuno, S. Motokoshi, T. Okamoto, T. Mikami, D. Smith, M. L. Schattenburg, H. Kitamura, H. Matsuo, T. Kawasaki, K. Kondo, H. Shirage, Y. Nakata, H. Habara, K. Tsubakimoto, R. Kodama, K. A. Tanaka, N. Miyanga, and K. Mima, “Development of 91 cm size gratings and mirrors for LEFX laser system,” J. Phys. Conf. Ser. 112(3), 032002 (2008).
[Crossref]

2007 (1)

2006 (1)

1999 (1)

C. Mitchell, “Diffraction grating fabrication in Australia,” Spectrochim. Acta B At. Spectrosc. 54(14), 2041–2049 (1999).
[Crossref]

1992 (1)

1972 (1)

1970 (1)

1969 (1)

1965 (1)

1962 (1)

1949 (1)

Asher, S. A.

Babcock, H. W.

Bach, B.

Bach, E.

Bach, K.

Baeke, A.

Bayanheshig,

Bayinhedhig,

Berkenbosch, S.

Brodbeck, S.

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Geng, “Zero-dimensional polariton laser in a subwavelengh grating-based vertical microcavity,” Light Sci. Appl. 3(1), e135 (2014).
[Crossref]

Brown, C. M.

Bunkenburg, J.

Bykov, S. V.

Castaing, M.

Chang, C. H.

Cheng, F. M.

F. M. Cheng, J. C. Zhang, D. B. Wang, Z. H. Gu, N. Zhuo, S. Q. Zhai, L. J. Wang, J. Q. Liu, S. M. Liu, F. Q. Liu, and Z. G. Wang, “Demonstration of High-Power and Stable Single-Mode in a Quantum Cascade Laser Using Buried Sampled Grating,” Nanoscale Res. Lett. 14(1), 123 (2019).
[Crossref] [PubMed]

Chkhalo, N. I.

M. V. Zorina, S. Y. Zuev, M. S. Mikhailenko, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, and N. I. Chkhalo, “The diffraction efficiency of echelle gratings increased by ion-beam polishing of groove surfaces,” Tech. Phys. Lett. 42(8), 844–847 (2016).
[Crossref]

Chui, J.

Clairquin, R.

Cong, M.

Connell, J. R.

Cotel, A.

Davies, D. A.

De Vos, L.

Dubois, J.-P.

Englert, C. R.

Feng, S.

S. Zhang, X. Mi, Q. Zhang, S. Jirigalantu, S. Feng, H. Yu, and X. Qi, “Groove shape characteristics of echelle gratings with high diffraction efficiency,” Opt. Commun. 387, 401–404 (2017).
[Crossref]

X. Li, H. Yu, X. Qi, S. Feng, J. Chui, S. Z. Jirigalantu, and Y. Tang, “300 mm ruling engine producing gratings and echelles under interferometric control in China,” Appl. Opt. 54(7), 1819–1826 (2015).
[Crossref]

Gao Bayanheshig, J.

Geng, H.

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Geng, “Zero-dimensional polariton laser in a subwavelengh grating-based vertical microcavity,” Light Sci. Appl. 3(1), e135 (2014).
[Crossref]

Glorieux, S.

Gu, Z. H.

F. M. Cheng, J. C. Zhang, D. B. Wang, Z. H. Gu, N. Zhuo, S. Q. Zhai, L. J. Wang, J. Q. Liu, S. M. Liu, F. Q. Liu, and Z. G. Wang, “Demonstration of High-Power and Stable Single-Mode in a Quantum Cascade Laser Using Buried Sampled Grating,” Nanoscale Res. Lett. 14(1), 123 (2019).
[Crossref] [PubMed]

Günther, A.

Habara, H.

T. Jitsuno, S. Motokoshi, T. Okamoto, T. Mikami, D. Smith, M. L. Schattenburg, H. Kitamura, H. Matsuo, T. Kawasaki, K. Kondo, H. Shirage, Y. Nakata, H. Habara, K. Tsubakimoto, R. Kodama, K. A. Tanaka, N. Miyanga, and K. Mima, “Development of 91 cm size gratings and mirrors for LEFX laser system,” J. Phys. Conf. Ser. 112(3), 032002 (2008).
[Crossref]

Han, Y.

K. Yang, T. Liu, Z. Wang, G. Li, Y. Han, H. Zhang, and J. Yu, “Five-wavelength –swithable all-fiber erbium-doped laser based on few-mode titled fiber Bragg grating,” Opt. Laser Technol. 108, 273–278 (2018).
[Crossref]

Harada, T.

Harlander, J. M.

Harrison, G. R.

Heilmann, R. K.

Höfling, S.

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Geng, “Zero-dimensional polariton laser in a subwavelengh grating-based vertical microcavity,” Light Sci. Appl. 3(1), e135 (2014).
[Crossref]

Horsfield, W. R.

Jia, P.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Ning Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Jirigalantu, S.

S. Zhang, X. Mi, Q. Zhang, S. Jirigalantu, S. Feng, H. Yu, and X. Qi, “Groove shape characteristics of echelle gratings with high diffraction efficiency,” Opt. Commun. 387, 401–404 (2017).
[Crossref]

Jirigalantu, S. Z.

Jirigalantu, Y.

Jitsuno, T.

T. Jitsuno, S. Motokoshi, T. Okamoto, T. Mikami, D. Smith, M. L. Schattenburg, H. Kitamura, H. Matsuo, T. Kawasaki, K. Kondo, H. Shirage, Y. Nakata, H. Habara, K. Tsubakimoto, R. Kodama, K. A. Tanaka, N. Miyanga, and K. Mima, “Development of 91 cm size gratings and mirrors for LEFX laser system,” J. Phys. Conf. Ser. 112(3), 032002 (2008).
[Crossref]

Kagitani, M.

T. Sakanoi, Y. Kasaba, M. Kagitani, H. Nakagawa, J. Kuhn, and S. Okana, “Development of infrared Echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary observation,” Proc. SPIE 9147, 91478D (2014).

Kalinnikov, Y.

Kamp, M.

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Geng, “Zero-dimensional polariton laser in a subwavelengh grating-based vertical microcavity,” Light Sci. Appl. 3(1), e135 (2014).
[Crossref]

Kasaba, Y.

T. Sakanoi, Y. Kasaba, M. Kagitani, H. Nakagawa, J. Kuhn, and S. Okana, “Development of infrared Echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary observation,” Proc. SPIE 9147, 91478D (2014).

Kawasaki, T.

T. Jitsuno, S. Motokoshi, T. Okamoto, T. Mikami, D. Smith, M. L. Schattenburg, H. Kitamura, H. Matsuo, T. Kawasaki, K. Kondo, H. Shirage, Y. Nakata, H. Habara, K. Tsubakimoto, R. Kodama, K. A. Tanaka, N. Miyanga, and K. Mima, “Development of 91 cm size gratings and mirrors for LEFX laser system,” J. Phys. Conf. Ser. 112(3), 032002 (2008).
[Crossref]

Kazukonis, H.

Kingsley, C.

Kita, T.

Kitamura, H.

T. Jitsuno, S. Motokoshi, T. Okamoto, T. Mikami, D. Smith, M. L. Schattenburg, H. Kitamura, H. Matsuo, T. Kawasaki, K. Kondo, H. Shirage, Y. Nakata, H. Habara, K. Tsubakimoto, R. Kodama, K. A. Tanaka, N. Miyanga, and K. Mima, “Development of 91 cm size gratings and mirrors for LEFX laser system,” J. Phys. Conf. Ser. 112(3), 032002 (2008).
[Crossref]

Kodama, R.

T. Jitsuno, S. Motokoshi, T. Okamoto, T. Mikami, D. Smith, M. L. Schattenburg, H. Kitamura, H. Matsuo, T. Kawasaki, K. Kondo, H. Shirage, Y. Nakata, H. Habara, K. Tsubakimoto, R. Kodama, K. A. Tanaka, N. Miyanga, and K. Mima, “Development of 91 cm size gratings and mirrors for LEFX laser system,” J. Phys. Conf. Ser. 112(3), 032002 (2008).
[Crossref]

Kondo, K.

T. Jitsuno, S. Motokoshi, T. Okamoto, T. Mikami, D. Smith, M. L. Schattenburg, H. Kitamura, H. Matsuo, T. Kawasaki, K. Kondo, H. Shirage, Y. Nakata, H. Habara, K. Tsubakimoto, R. Kodama, K. A. Tanaka, N. Miyanga, and K. Mima, “Development of 91 cm size gratings and mirrors for LEFX laser system,” J. Phys. Conf. Ser. 112(3), 032002 (2008).
[Crossref]

Korablev, O.

Kozlov, A.

Kuhn, J.

T. Sakanoi, Y. Kasaba, M. Kagitani, H. Nakagawa, J. Kuhn, and S. Okana, “Development of infrared Echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary observation,” Proc. SPIE 9147, 91478D (2014).

Le Blanc, C.

Lei, T.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Ning Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Li, G.

K. Yang, T. Liu, Z. Wang, G. Li, Y. Han, H. Zhang, and J. Yu, “Five-wavelength –swithable all-fiber erbium-doped laser based on few-mode titled fiber Bragg grating,” Opt. Laser Technol. 108, 273–278 (2018).
[Crossref]

Li, X.

Li, Y.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Ning Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Li, Z.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Ning Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Lin, J.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Ning Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Liu, F. Q.

F. M. Cheng, J. C. Zhang, D. B. Wang, Z. H. Gu, N. Zhuo, S. Q. Zhai, L. J. Wang, J. Q. Liu, S. M. Liu, F. Q. Liu, and Z. G. Wang, “Demonstration of High-Power and Stable Single-Mode in a Quantum Cascade Laser Using Buried Sampled Grating,” Nanoscale Res. Lett. 14(1), 123 (2019).
[Crossref] [PubMed]

Liu, J. Q.

F. M. Cheng, J. C. Zhang, D. B. Wang, Z. H. Gu, N. Zhuo, S. Q. Zhai, L. J. Wang, J. Q. Liu, S. M. Liu, F. Q. Liu, and Z. G. Wang, “Demonstration of High-Power and Stable Single-Mode in a Quantum Cascade Laser Using Buried Sampled Grating,” Nanoscale Res. Lett. 14(1), 123 (2019).
[Crossref] [PubMed]

Liu, S. M.

F. M. Cheng, J. C. Zhang, D. B. Wang, Z. H. Gu, N. Zhuo, S. Q. Zhai, L. J. Wang, J. Q. Liu, S. M. Liu, F. Q. Liu, and Z. G. Wang, “Demonstration of High-Power and Stable Single-Mode in a Quantum Cascade Laser Using Buried Sampled Grating,” Nanoscale Res. Lett. 14(1), 123 (2019).
[Crossref] [PubMed]

Liu, T.

K. Yang, T. Liu, Z. Wang, G. Li, Y. Han, H. Zhang, and J. Yu, “Five-wavelength –swithable all-fiber erbium-doped laser based on few-mode titled fiber Bragg grating,” Opt. Laser Technol. 108, 273–278 (2018).
[Crossref]

Ma, Z.

Marr, K. D.

Matsuo, H.

T. Jitsuno, S. Motokoshi, T. Okamoto, T. Mikami, D. Smith, M. L. Schattenburg, H. Kitamura, H. Matsuo, T. Kawasaki, K. Kondo, H. Shirage, Y. Nakata, H. Habara, K. Tsubakimoto, R. Kodama, K. A. Tanaka, N. Miyanga, and K. Mima, “Development of 91 cm size gratings and mirrors for LEFX laser system,” J. Phys. Conf. Ser. 112(3), 032002 (2008).
[Crossref]

Mi, X.

Mikami, T.

T. Jitsuno, S. Motokoshi, T. Okamoto, T. Mikami, D. Smith, M. L. Schattenburg, H. Kitamura, H. Matsuo, T. Kawasaki, K. Kondo, H. Shirage, Y. Nakata, H. Habara, K. Tsubakimoto, R. Kodama, K. A. Tanaka, N. Miyanga, and K. Mima, “Development of 91 cm size gratings and mirrors for LEFX laser system,” J. Phys. Conf. Ser. 112(3), 032002 (2008).
[Crossref]

Mikhailenko, M. S.

M. V. Zorina, S. Y. Zuev, M. S. Mikhailenko, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, and N. I. Chkhalo, “The diffraction efficiency of echelle gratings increased by ion-beam polishing of groove surfaces,” Tech. Phys. Lett. 42(8), 844–847 (2016).
[Crossref]

Miller, I.

Mima, K.

T. Jitsuno, S. Motokoshi, T. Okamoto, T. Mikami, D. Smith, M. L. Schattenburg, H. Kitamura, H. Matsuo, T. Kawasaki, K. Kondo, H. Shirage, Y. Nakata, H. Habara, K. Tsubakimoto, R. Kodama, K. A. Tanaka, N. Miyanga, and K. Mima, “Development of 91 cm size gratings and mirrors for LEFX laser system,” J. Phys. Conf. Ser. 112(3), 032002 (2008).
[Crossref]

Min, C.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Ning Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Mitchell, C.

C. Mitchell, “Diffraction grating fabrication in Australia,” Spectrochim. Acta B At. Spectrosc. 54(14), 2041–2049 (1999).
[Crossref]

Miyanga, N.

T. Jitsuno, S. Motokoshi, T. Okamoto, T. Mikami, D. Smith, M. L. Schattenburg, H. Kitamura, H. Matsuo, T. Kawasaki, K. Kondo, H. Shirage, Y. Nakata, H. Habara, K. Tsubakimoto, R. Kodama, K. A. Tanaka, N. Miyanga, and K. Mima, “Development of 91 cm size gratings and mirrors for LEFX laser system,” J. Phys. Conf. Ser. 112(3), 032002 (2008).
[Crossref]

Moelans, W.

Motokoshi, S.

T. Jitsuno, S. Motokoshi, T. Okamoto, T. Mikami, D. Smith, M. L. Schattenburg, H. Kitamura, H. Matsuo, T. Kawasaki, K. Kondo, H. Shirage, Y. Nakata, H. Habara, K. Tsubakimoto, R. Kodama, K. A. Tanaka, N. Miyanga, and K. Mima, “Development of 91 cm size gratings and mirrors for LEFX laser system,” J. Phys. Conf. Ser. 112(3), 032002 (2008).
[Crossref]

Nakagawa, H.

T. Sakanoi, Y. Kasaba, M. Kagitani, H. Nakagawa, J. Kuhn, and S. Okana, “Development of infrared Echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary observation,” Proc. SPIE 9147, 91478D (2014).

Nakata, Y.

T. Jitsuno, S. Motokoshi, T. Okamoto, T. Mikami, D. Smith, M. L. Schattenburg, H. Kitamura, H. Matsuo, T. Kawasaki, K. Kondo, H. Shirage, Y. Nakata, H. Habara, K. Tsubakimoto, R. Kodama, K. A. Tanaka, N. Miyanga, and K. Mima, “Development of 91 cm size gratings and mirrors for LEFX laser system,” J. Phys. Conf. Ser. 112(3), 032002 (2008).
[Crossref]

Neefs, E.

Nevejans, D.

Nguyen, T.

Ning Liu, G.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Ning Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Niu, H.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Ning Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Okamoto, T.

T. Jitsuno, S. Motokoshi, T. Okamoto, T. Mikami, D. Smith, M. L. Schattenburg, H. Kitamura, H. Matsuo, T. Kawasaki, K. Kondo, H. Shirage, Y. Nakata, H. Habara, K. Tsubakimoto, R. Kodama, K. A. Tanaka, N. Miyanga, and K. Mima, “Development of 91 cm size gratings and mirrors for LEFX laser system,” J. Phys. Conf. Ser. 112(3), 032002 (2008).
[Crossref]

Okana, S.

T. Sakanoi, Y. Kasaba, M. Kagitani, H. Nakagawa, J. Kuhn, and S. Okana, “Development of infrared Echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary observation,” Proc. SPIE 9147, 91478D (2014).

Pestov, A. E.

M. V. Zorina, S. Y. Zuev, M. S. Mikhailenko, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, and N. I. Chkhalo, “The diffraction efficiency of echelle gratings increased by ion-beam polishing of groove surfaces,” Tech. Phys. Lett. 42(8), 844–847 (2016).
[Crossref]

Pichon, P.

Polkovnikov, V. N.

M. V. Zorina, S. Y. Zuev, M. S. Mikhailenko, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, and N. I. Chkhalo, “The diffraction efficiency of echelle gratings increased by ion-beam polishing of groove surfaces,” Tech. Phys. Lett. 42(8), 844–847 (2016).
[Crossref]

Qi, X.

Qiao, J.

Qiu, J.

Rahlves, M.

Rezem, M.

Roth, B.

Sakanoi, T.

T. Sakanoi, Y. Kasaba, M. Kagitani, H. Nakagawa, J. Kuhn, and S. Okana, “Development of infrared Echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary observation,” Proc. SPIE 9147, 91478D (2014).

Salashchenko, N. N.

M. V. Zorina, S. Y. Zuev, M. S. Mikhailenko, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, and N. I. Chkhalo, “The diffraction efficiency of echelle gratings increased by ion-beam polishing of groove surfaces,” Tech. Phys. Lett. 42(8), 844–847 (2016).
[Crossref]

Schattenburg, M. L.

C. H. Chang, Y. Zhao, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of 50 nm period gratings with multilevel interference lithography,” Opt. Lett. 33(14), 1572–1574 (2008).
[Crossref] [PubMed]

T. Jitsuno, S. Motokoshi, T. Okamoto, T. Mikami, D. Smith, M. L. Schattenburg, H. Kitamura, H. Matsuo, T. Kawasaki, K. Kondo, H. Shirage, Y. Nakata, H. Habara, K. Tsubakimoto, R. Kodama, K. A. Tanaka, N. Miyanga, and K. Mima, “Development of 91 cm size gratings and mirrors for LEFX laser system,” J. Phys. Conf. Ser. 112(3), 032002 (2008).
[Crossref]

Schmid, A. W.

Schneider, C.

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Geng, “Zero-dimensional polariton laser in a subwavelengh grating-based vertical microcavity,” Light Sci. Appl. 3(1), e135 (2014).
[Crossref]

Seely, J. F.

Sharma, B.

Shi, Y.

Shirage, H.

T. Jitsuno, S. Motokoshi, T. Okamoto, T. Mikami, D. Smith, M. L. Schattenburg, H. Kitamura, H. Matsuo, T. Kawasaki, K. Kondo, H. Shirage, Y. Nakata, H. Habara, K. Tsubakimoto, R. Kodama, K. A. Tanaka, N. Miyanga, and K. Mima, “Development of 91 cm size gratings and mirrors for LEFX laser system,” J. Phys. Conf. Ser. 112(3), 032002 (2008).
[Crossref]

Smith, D.

T. Jitsuno, S. Motokoshi, T. Okamoto, T. Mikami, D. Smith, M. L. Schattenburg, H. Kitamura, H. Matsuo, T. Kawasaki, K. Kondo, H. Shirage, Y. Nakata, H. Habara, K. Tsubakimoto, R. Kodama, K. A. Tanaka, N. Miyanga, and K. Mima, “Development of 91 cm size gratings and mirrors for LEFX laser system,” J. Phys. Conf. Ser. 112(3), 032002 (2008).
[Crossref]

Stiff, G. M.

Tanaka, K. A.

T. Jitsuno, S. Motokoshi, T. Okamoto, T. Mikami, D. Smith, M. L. Schattenburg, H. Kitamura, H. Matsuo, T. Kawasaki, K. Kondo, H. Shirage, Y. Nakata, H. Habara, K. Tsubakimoto, R. Kodama, K. A. Tanaka, N. Miyanga, and K. Mima, “Development of 91 cm size gratings and mirrors for LEFX laser system,” J. Phys. Conf. Ser. 112(3), 032002 (2008).
[Crossref]

Tang, Y.

Thompson, S. W.

Tsubakimoto, K.

T. Jitsuno, S. Motokoshi, T. Okamoto, T. Mikami, D. Smith, M. L. Schattenburg, H. Kitamura, H. Matsuo, T. Kawasaki, K. Kondo, H. Shirage, Y. Nakata, H. Habara, K. Tsubakimoto, R. Kodama, K. A. Tanaka, N. Miyanga, and K. Mima, “Development of 91 cm size gratings and mirrors for LEFX laser system,” J. Phys. Conf. Ser. 112(3), 032002 (2008).
[Crossref]

Van Ransbeeck, E.

Villard, E.

Vinogradov, I.

Wan, Q.

Wang, D. B.

F. M. Cheng, J. C. Zhang, D. B. Wang, Z. H. Gu, N. Zhuo, S. Q. Zhai, L. J. Wang, J. Q. Liu, S. M. Liu, F. Q. Liu, and Z. G. Wang, “Demonstration of High-Power and Stable Single-Mode in a Quantum Cascade Laser Using Buried Sampled Grating,” Nanoscale Res. Lett. 14(1), 123 (2019).
[Crossref] [PubMed]

Wang, L. J.

F. M. Cheng, J. C. Zhang, D. B. Wang, Z. H. Gu, N. Zhuo, S. Q. Zhai, L. J. Wang, J. Q. Liu, S. M. Liu, F. Q. Liu, and Z. G. Wang, “Demonstration of High-Power and Stable Single-Mode in a Quantum Cascade Laser Using Buried Sampled Grating,” Nanoscale Res. Lett. 14(1), 123 (2019).
[Crossref] [PubMed]

Wang, Z.

K. Yang, T. Liu, Z. Wang, G. Li, Y. Han, H. Zhang, and J. Yu, “Five-wavelength –swithable all-fiber erbium-doped laser based on few-mode titled fiber Bragg grating,” Opt. Laser Technol. 108, 273–278 (2018).
[Crossref]

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Geng, “Zero-dimensional polariton laser in a subwavelengh grating-based vertical microcavity,” Light Sci. Appl. 3(1), e135 (2014).
[Crossref]

Wang, Z. G.

F. M. Cheng, J. C. Zhang, D. B. Wang, Z. H. Gu, N. Zhuo, S. Q. Zhai, L. J. Wang, J. Q. Liu, S. M. Liu, F. Q. Liu, and Z. G. Wang, “Demonstration of High-Power and Stable Single-Mode in a Quantum Cascade Laser Using Buried Sampled Grating,” Nanoscale Res. Lett. 14(1), 123 (2019).
[Crossref] [PubMed]

Waxer, L. J.

Weiner, D.

Xu, H.

Xu, X.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Ning Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Yang, C.

Yang, K.

K. Yang, T. Liu, Z. Wang, G. Li, Y. Han, H. Zhang, and J. Yu, “Five-wavelength –swithable all-fiber erbium-doped laser based on few-mode titled fiber Bragg grating,” Opt. Laser Technol. 108, 273–278 (2018).
[Crossref]

Yao, X.

Yu, C.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Ning Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Yu, H.

X. Mi, S. Zhang, H. Yu, H. Yu, M. Cong, and X. Qi, “Using a unique mirror to minimize the effect of ruling engine cosine error on grating performance,” Appl. Opt. 57(35), 10146–10151 (2018).
[Crossref] [PubMed]

X. Mi, S. Zhang, H. Yu, H. Yu, M. Cong, and X. Qi, “Using a unique mirror to minimize the effect of ruling engine cosine error on grating performance,” Appl. Opt. 57(35), 10146–10151 (2018).
[Crossref] [PubMed]

X. Mi, H. Yu, H. Yu, S. Zhang, X. Li, X. Yao, X. Qi, Bayinhedhig, and Q. Wan, “Correcting groove error in gratings ruled on a 500-mm ruling engine using interferometric control,” Appl. Opt. 56(21), 5857–5864 (2017).
[Crossref] [PubMed]

X. Mi, H. Yu, H. Yu, S. Zhang, X. Li, X. Yao, X. Qi, Bayinhedhig, and Q. Wan, “Correcting groove error in gratings ruled on a 500-mm ruling engine using interferometric control,” Appl. Opt. 56(21), 5857–5864 (2017).
[Crossref] [PubMed]

S. Zhang, X. Mi, Q. Zhang, S. Jirigalantu, S. Feng, H. Yu, and X. Qi, “Groove shape characteristics of echelle gratings with high diffraction efficiency,” Opt. Commun. 387, 401–404 (2017).
[Crossref]

X. Li, H. Yu, X. Qi, S. Feng, J. Chui, S. Z. Jirigalantu, and Y. Tang, “300 mm ruling engine producing gratings and echelles under interferometric control in China,” Appl. Opt. 54(7), 1819–1826 (2015).
[Crossref]

C. Yang, X. Li, H. Yu, H. Yu, J. Zhu, S. Zhang, J. Gao Bayanheshig, and Y. Tang, “Practical method study on correcting yaw error of 500 mm grating blank carriage in real time,” Appl. Opt. 54(13), 4084–4088 (2015).
[Crossref]

C. Yang, X. Li, H. Yu, H. Yu, J. Zhu, S. Zhang, J. Gao Bayanheshig, and Y. Tang, “Practical method study on correcting yaw error of 500 mm grating blank carriage in real time,” Appl. Opt. 54(13), 4084–4088 (2015).
[Crossref]

Yu, J.

K. Yang, T. Liu, Z. Wang, G. Li, Y. Han, H. Zhang, and J. Yu, “Five-wavelength –swithable all-fiber erbium-doped laser based on few-mode titled fiber Bragg grating,” Opt. Laser Technol. 108, 273–278 (2018).
[Crossref]

Yuan, X.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Ning Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Zhai, S. Q.

F. M. Cheng, J. C. Zhang, D. B. Wang, Z. H. Gu, N. Zhuo, S. Q. Zhai, L. J. Wang, J. Q. Liu, S. M. Liu, F. Q. Liu, and Z. G. Wang, “Demonstration of High-Power and Stable Single-Mode in a Quantum Cascade Laser Using Buried Sampled Grating,” Nanoscale Res. Lett. 14(1), 123 (2019).
[Crossref] [PubMed]

Zhang, B.

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Geng, “Zero-dimensional polariton laser in a subwavelengh grating-based vertical microcavity,” Light Sci. Appl. 3(1), e135 (2014).
[Crossref]

Zhang, H.

K. Yang, T. Liu, Z. Wang, G. Li, Y. Han, H. Zhang, and J. Yu, “Five-wavelength –swithable all-fiber erbium-doped laser based on few-mode titled fiber Bragg grating,” Opt. Laser Technol. 108, 273–278 (2018).
[Crossref]

Zhang, J. C.

F. M. Cheng, J. C. Zhang, D. B. Wang, Z. H. Gu, N. Zhuo, S. Q. Zhai, L. J. Wang, J. Q. Liu, S. M. Liu, F. Q. Liu, and Z. G. Wang, “Demonstration of High-Power and Stable Single-Mode in a Quantum Cascade Laser Using Buried Sampled Grating,” Nanoscale Res. Lett. 14(1), 123 (2019).
[Crossref] [PubMed]

Zhang, M.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Ning Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Zhang, Q.

S. Zhang, X. Mi, Q. Zhang, S. Jirigalantu, S. Feng, H. Yu, and X. Qi, “Groove shape characteristics of echelle gratings with high diffraction efficiency,” Opt. Commun. 387, 401–404 (2017).
[Crossref]

Zhang, R.

Zhang, S.

Zhao, Y.

Zheng, X.

Zhu, J.

Zhuo, N.

F. M. Cheng, J. C. Zhang, D. B. Wang, Z. H. Gu, N. Zhuo, S. Q. Zhai, L. J. Wang, J. Q. Liu, S. M. Liu, F. Q. Liu, and Z. G. Wang, “Demonstration of High-Power and Stable Single-Mode in a Quantum Cascade Laser Using Buried Sampled Grating,” Nanoscale Res. Lett. 14(1), 123 (2019).
[Crossref] [PubMed]

Zorina, M. V.

M. V. Zorina, S. Y. Zuev, M. S. Mikhailenko, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, and N. I. Chkhalo, “The diffraction efficiency of echelle gratings increased by ion-beam polishing of groove surfaces,” Tech. Phys. Lett. 42(8), 844–847 (2016).
[Crossref]

Zuev, S. Y.

M. V. Zorina, S. Y. Zuev, M. S. Mikhailenko, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, and N. I. Chkhalo, “The diffraction efficiency of echelle gratings increased by ion-beam polishing of groove surfaces,” Tech. Phys. Lett. 42(8), 844–847 (2016).
[Crossref]

Appl. Opt. (10)

D. Nevejans, E. Neefs, E. Van Ransbeeck, S. Berkenbosch, R. Clairquin, L. De Vos, W. Moelans, S. Glorieux, A. Baeke, O. Korablev, I. Vinogradov, Y. Kalinnikov, B. Bach, J.-P. Dubois, and E. Villard, “Compact high-resolution spaceborne echelle grating spectrometer with acousto-optical tunable filter based order sorting for the infrared domain from 2.2 to 4.3 microm,” Appl. Opt. 45(21), 5191–5206 (2006).
[Crossref] [PubMed]

C. Yang, X. Li, H. Yu, H. Yu, J. Zhu, S. Zhang, J. Gao Bayanheshig, and Y. Tang, “Practical method study on correcting yaw error of 500 mm grating blank carriage in real time,” Appl. Opt. 54(13), 4084–4088 (2015).
[Crossref]

X. Mi, H. Yu, H. Yu, S. Zhang, X. Li, X. Yao, X. Qi, Bayinhedhig, and Q. Wan, “Correcting groove error in gratings ruled on a 500-mm ruling engine using interferometric control,” Appl. Opt. 56(21), 5857–5864 (2017).
[Crossref] [PubMed]

X. Li, H. Yu, X. Qi, S. Feng, J. Chui, S. Z. Jirigalantu, and Y. Tang, “300 mm ruling engine producing gratings and echelles under interferometric control in China,” Appl. Opt. 54(7), 1819–1826 (2015).
[Crossref]

X. Mi, S. Zhang, H. Yu, H. Yu, M. Cong, and X. Qi, “Using a unique mirror to minimize the effect of ruling engine cosine error on grating performance,” Appl. Opt. 57(35), 10146–10151 (2018).
[Crossref] [PubMed]

D. A. Davies and G. M. Stiff, “Diffraction Grating Ruling in Australia,” Appl. Opt. 8(7), 1379–1384 (1969).
[Crossref] [PubMed]

W. R. Horsfield, “Ruling Engine with Hydraulic Drive,” Appl. Opt. 4(2), 189–193 (1965).
[Crossref]

H. W. Babcock, “Control of a ruling engine by a modulated interferometer,” Appl. Opt. 1(4), 415–420 (1962).
[Crossref]

C. R. Englert, C. M. Brown, B. Bach, E. Bach, K. Bach, J. M. Harlander, J. F. Seely, K. D. Marr, and I. Miller, “High-efficiency echelle gratings for MIGHTI, the spatial heterodyne interferometers for the ICON mission,” Appl. Opt. 56(8), 2090–2098 (2017).
[Crossref] [PubMed]

T. Kita and T. Harada, “Ruling engine using a piezoelectric device for large and high-groove density gratings,” Appl. Opt. 31(10), 1399–1406 (1992).
[Crossref] [PubMed]

Appl. Spectrosc. (1)

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (3)

J. Phys. Conf. Ser. (1)

T. Jitsuno, S. Motokoshi, T. Okamoto, T. Mikami, D. Smith, M. L. Schattenburg, H. Kitamura, H. Matsuo, T. Kawasaki, K. Kondo, H. Shirage, Y. Nakata, H. Habara, K. Tsubakimoto, R. Kodama, K. A. Tanaka, N. Miyanga, and K. Mima, “Development of 91 cm size gratings and mirrors for LEFX laser system,” J. Phys. Conf. Ser. 112(3), 032002 (2008).
[Crossref]

Light Sci. Appl. (2)

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Geng, “Zero-dimensional polariton laser in a subwavelengh grating-based vertical microcavity,” Light Sci. Appl. 3(1), e135 (2014).
[Crossref]

T. Lei, M. Zhang, Y. Li, P. Jia, G. Ning Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Nanoscale Res. Lett. (1)

F. M. Cheng, J. C. Zhang, D. B. Wang, Z. H. Gu, N. Zhuo, S. Q. Zhai, L. J. Wang, J. Q. Liu, S. M. Liu, F. Q. Liu, and Z. G. Wang, “Demonstration of High-Power and Stable Single-Mode in a Quantum Cascade Laser Using Buried Sampled Grating,” Nanoscale Res. Lett. 14(1), 123 (2019).
[Crossref] [PubMed]

Opt. Commun. (1)

S. Zhang, X. Mi, Q. Zhang, S. Jirigalantu, S. Feng, H. Yu, and X. Qi, “Groove shape characteristics of echelle gratings with high diffraction efficiency,” Opt. Commun. 387, 401–404 (2017).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

K. Yang, T. Liu, Z. Wang, G. Li, Y. Han, H. Zhang, and J. Yu, “Five-wavelength –swithable all-fiber erbium-doped laser based on few-mode titled fiber Bragg grating,” Opt. Laser Technol. 108, 273–278 (2018).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (1)

T. Sakanoi, Y. Kasaba, M. Kagitani, H. Nakagawa, J. Kuhn, and S. Okana, “Development of infrared Echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary observation,” Proc. SPIE 9147, 91478D (2014).

Spectrochim. Acta B At. Spectrosc. (1)

C. Mitchell, “Diffraction grating fabrication in Australia,” Spectrochim. Acta B At. Spectrosc. 54(14), 2041–2049 (1999).
[Crossref]

Tech. Phys. Lett. (1)

M. V. Zorina, S. Y. Zuev, M. S. Mikhailenko, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, and N. I. Chkhalo, “The diffraction efficiency of echelle gratings increased by ion-beam polishing of groove surfaces,” Tech. Phys. Lett. 42(8), 844–847 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Schematic diagram of the ruling engine.
Fig. 2
Fig. 2 Photograph of the ruling engine.
Fig. 3
Fig. 3 Schematic diagram of blank carriage of CIOMP-6 ruling engine.
Fig. 4
Fig. 4 Ability of the blank carriage to correct groove errors.
Fig. 5
Fig. 5 Schematic diagram of the improved mechanical structure.
Fig. 6
Fig. 6 New optical measurement system. (a) Top view; (b) side view.
Fig. 7
Fig. 7 Block diagram of the CIOMP-6 ruling engine control system.
Fig. 8
Fig. 8 Test efficiency and design efficiency of the gratings. (a) 500 grooves/mm; (b) 768 grooves/mm; and (c) 1520 grooves/mm.
Fig. 9
Fig. 9 Wavefront quality of the grating. (a) 500 grooves/mm; (b) 768 grooves/mm; and (c) 1520 grooves/mm.
Fig. 10
Fig. 10 Atomic force microscope test results for a grating with 64.285 grooves/mm.
Fig. 11
Fig. 11 Wavefront quality of the 64.285-grooves/mm grating.
Fig. 12
Fig. 12 Photograph of the 300 mm × 500 mm grating.
Fig. 13
Fig. 13 Wavefront quality of the grating. (a) fringes oriented perpendicular to the grooves; (2) fringes oriented parallel to the grooves;(c) PV and RMS values of the grating; and (d) point spread function (PSF) of the grating.
Fig. 14
Fig. 14 AFM test results for grating grooves. (a) 6000 grooves/mm. (b) 8000 grooves/mm.

Tables (1)

Tables Icon

Table 1 Design values and test values of 64.285 grooves/mm grating.

Metrics