Abstract

We report on an ultra-long range optical frequency domain reflectometry (OFDR) using a coherence-enhanced highly linear frequency-swept fiber laser source based on an optoelectronic phase-locked loop (OPLL). The frequency-swept fiber laser is locked to an all-fiber-based Mach-Zehnder interferometer (MZI) to suppress sweep nonlinearity and enhance the laser coherence, leading to a high coherence linear frequency sweep of 1 GHz in the duration time of 25 ms. This enables the OFDR to realize an ultra-long range measurement with a high spatial resolution. As a result, we obtain a 10 cm transform-limited spatial resolution at a 20 km fiber within 25 ms measurement time, and a 72 cm spatial resolution over an entire 200 km fiber link within 5 ms measurement time. The proposed reflectometry provides a high-performance solution with both high spatial resolution and ultra-long measurement range for field real-time fiber network monitoring and sensing applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter

Zhenyang Ding, X. Steve Yao, Tiegen Liu, Yang Du, Kun Liu, Junfeng Jiang, Zhuo Meng, and Hongxin Chen
Opt. Express 21(3) 3826-3834 (2013)

Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range

Qingwen Liu, Xinyu Fan, and Zuyuan He
Opt. Express 23(20) 25988-25995 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Zheng, “Optical frequency-modulated continuous-wave interferometers,” Appl. Opt. 45(12), 2723–2730 (2006).
    [Crossref] [PubMed]
  2. L. T. Wang, K. Iiyama, F. Tsukada, N. Yoshida, and K. Hayashi, “Loss measurement in optical waveguide devices by coherent frequency-modulated continuous-wave reflectometry,” Opt. Lett. 18(13), 1095–1097 (1993).
    [Crossref] [PubMed]
  3. P. C. Won, L. K. Seah, and A. K. Asundi, “FMCW reflectometric optical fiber strain sensor,” Proc. SPIE 4328, 54–62 (2001).
    [Crossref]
  4. J. Buck, A. Malm, A. Zakel, B. Krause, and B. Tiemann, “High-resolution 3D coherent laser radar imaging,” Proc. SPIE 6550, 655002 (2007).
    [Crossref]
  5. H. Pan, X. Qu, and F. Zhang, “Micron-precision measurement using a combined frequency-modulated continuous wave ladar autofocusing system at 60 meters standoff distance,” Opt. Express 26(12), 15186–15198 (2018).
    [Crossref] [PubMed]
  6. T. DiLazaro and G. Nehmetallah, “Large-volume, low-cost, high-precision FMCW tomography using stitched DFBs,” Opt. Express 26(3), 2891–2904 (2018).
    [Crossref] [PubMed]
  7. J. P. von der Weid, R. Passy, and N. Gisin, “Mid-Range Coherent Optical Frequency Domain Reflectometry with a DFB Laser Diode Coupled to an External Cavity,” J. Lightwave Technol. 13(5), 954–960 (1995).
    [Crossref]
  8. J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15(7), 1131–1141 (1997).
    [Crossref]
  9. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
    [Crossref] [PubMed]
  10. K. Yuksel, M. Wuilpart, and P. Mégret, “Analysis and suppression of nonlinear frequency modulation in an optical frequency-domain reflectometer,” Opt. Express 17(7), 5845–5851 (2009).
    [Crossref] [PubMed]
  11. J. Qin, Q. Zhou, W. Xie, Y. Xu, S. Yu, Z. Liu, Yt. Tong, Y. Dong, and W. Hu, “Coherence enhancement of a chirped DFB laser for frequency-modulated continuous-wave reflectometry using a composite feedback loop,” Opt. Lett. 40(19), 4500–4503 (2015).
    [Crossref] [PubMed]
  12. J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
    [Crossref]
  13. X. Fan, Y. Koshikiya, and F. Ito, “Centimeter-level spatial resolution over 40 km realized by bandwidth-division phase-noise-compensated OFDR,” Opt. Express 19(20), 19122–19128 (2011).
    [Crossref] [PubMed]
  14. Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, J. Jiang, Z. Meng, and H. Chen, “Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter,” Opt. Express 21(3), 3826–3834 (2013).
    [Crossref] [PubMed]
  15. Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
    [Crossref]
  16. Q. Liu, X. Fan, and Z. He, “Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range,” Opt. Express 23(20), 25988–25995 (2015).
    [Crossref] [PubMed]
  17. E. Leviatan and A. Eyal, “High resolution DAS via sinusoidal frequency scan OFDR (SFS-OFDR),” Opt. Express 23(26), 33318–33334 (2015).
    [Crossref] [PubMed]
  18. P. Oberson, B. Huttner, O. Guinnard, L. Guinnard, G. Ribordy, and N. Gisin, “Optical frequency domain reflectometry with a narrow linewidth fiber laser,” IEEE Photonics Technol. Lett. 12(7), 867–869 (2000).
    [Crossref]
  19. C. Li, S. Xu, S. Mo, B. Zhan, W. Zhang, C. Yang, Z. Feng, and Z. Yang, “A linearly frequency modulated narrow linewidth single-frequency fiber laser,” Laser Phys. Lett. 10(7), 075106 (2013).
    [Crossref]
  20. J. Li, J. Du, S. Wang, L. Li, L. Sun, X. Fan, Q. Liu, and Z. He, “Improving the spatial resolution of an OFDR based on recirculating frequency shifter,” IEEE Photonics J. 7(5), 6901310 (2015).
  21. T. DiLazaro and G. Nehmetallah, “Phase-noise model for actively linearized frequency-modulated continuous-wave ladar,” Appl. Opt. 57(21), 6260–6268 (2018).
    [Crossref] [PubMed]
  22. H. Jiang, F. Kéfélian, P. Lemonde, A. Clairon, and G. Santarelli, “An agile laser with ultra-low frequency noise and high sweep linearity,” Opt. Express 18(4), 3284–3297 (2010).
    [Crossref] [PubMed]
  23. G. Gorju, A. Jucha, A. Jain, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, F. Bretenaker, and M. Colice, “Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control,” Opt. Lett. 32(5), 484–486 (2007).
    [Crossref] [PubMed]
  24. Q. Zhou, J. Qin, W. Xie, Z. Liu, Y. Tong, Y. Dong, and W. Hu, “Dynamic frequency-noise spectrum measurement for a frequency-swept DFB laser with short-delayed self-heterodyne method,” Opt. Express 23(22), 29245–29257 (2015).
    [Crossref] [PubMed]
  25. Q. Zhou, J. Qin, W. Xie, Z. Liu, Y. Tong, Y. Dong, and W. Hu, “Power-area method to precisely estimate laser linewidth from its frequency-noise spectrum,” Appl. Opt. 54(28), 8282–8289 (2015).
    [Crossref] [PubMed]
  26. J.-F. Cliché, M. Allard, and M. Têtu, “High-power and ultranarrow DFB laser: the effect of linewidth reduction systems on coherence length and interferometer noise,” Proc. SPIE 6216, 62160C (2006).
    [Crossref]
  27. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49(25), 4801–4807 (2010).
    [Crossref] [PubMed]
  28. Y. Koshikiya, X. Fan, and F. Ito, “Influence of acoustic perturbation of fibers in phase-noise-compensated optical-frequency-domain reflectometry,” J. Lightwave Technol. 28(22), 3323–3328 (2010).
    [Crossref]
  29. O. Y. Sagiv, D. Arbel, and A. Eyal, “Correcting for spatial-resolution degradation mechanisms in OFDR via inline auxiliary points,” Opt. Express 20(25), 27465–27472 (2012).
    [Crossref] [PubMed]
  30. Z. W. Barber, W. R. Babbitt, B. Kaylor, R. R. Reibel, and P. A. Roos, “Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar,” Appl. Opt. 49(2), 213–219 (2010).
    [Crossref] [PubMed]
  31. T. DiLazaro and G. Nehmetallah, “Multi-terahertz frequency sweeps for high-resolution, frequency-modulated continuous wave ladar using a distributed feedback laser array,” Opt. Express 25(3), 2327–2340 (2017).
    [Crossref] [PubMed]

2018 (3)

2017 (1)

2015 (6)

2013 (3)

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, J. Jiang, Z. Meng, and H. Chen, “Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter,” Opt. Express 21(3), 3826–3834 (2013).
[Crossref] [PubMed]

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

C. Li, S. Xu, S. Mo, B. Zhan, W. Zhang, C. Yang, Z. Feng, and Z. Yang, “A linearly frequency modulated narrow linewidth single-frequency fiber laser,” Laser Phys. Lett. 10(7), 075106 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (4)

2009 (1)

2007 (2)

2006 (2)

J.-F. Cliché, M. Allard, and M. Têtu, “High-power and ultranarrow DFB laser: the effect of linewidth reduction systems on coherence length and interferometer noise,” Proc. SPIE 6216, 62160C (2006).
[Crossref]

J. Zheng, “Optical frequency-modulated continuous-wave interferometers,” Appl. Opt. 45(12), 2723–2730 (2006).
[Crossref] [PubMed]

2005 (2)

B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
[Crossref] [PubMed]

J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

2001 (1)

P. C. Won, L. K. Seah, and A. K. Asundi, “FMCW reflectometric optical fiber strain sensor,” Proc. SPIE 4328, 54–62 (2001).
[Crossref]

2000 (1)

P. Oberson, B. Huttner, O. Guinnard, L. Guinnard, G. Ribordy, and N. Gisin, “Optical frequency domain reflectometry with a narrow linewidth fiber laser,” IEEE Photonics Technol. Lett. 12(7), 867–869 (2000).
[Crossref]

1997 (1)

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15(7), 1131–1141 (1997).
[Crossref]

1995 (1)

J. P. von der Weid, R. Passy, and N. Gisin, “Mid-Range Coherent Optical Frequency Domain Reflectometry with a DFB Laser Diode Coupled to an External Cavity,” J. Lightwave Technol. 13(5), 954–960 (1995).
[Crossref]

1993 (1)

Allard, M.

J.-F. Cliché, M. Allard, and M. Têtu, “High-power and ultranarrow DFB laser: the effect of linewidth reduction systems on coherence length and interferometer noise,” Proc. SPIE 6216, 62160C (2006).
[Crossref]

Arbel, D.

Asundi, A. K.

P. C. Won, L. K. Seah, and A. K. Asundi, “FMCW reflectometric optical fiber strain sensor,” Proc. SPIE 4328, 54–62 (2001).
[Crossref]

Babbitt, W. R.

Barber, Z. W.

Bretenaker, F.

Buck, J.

J. Buck, A. Malm, A. Zakel, B. Krause, and B. Tiemann, “High-resolution 3D coherent laser radar imaging,” Proc. SPIE 6550, 655002 (2007).
[Crossref]

Chen, H.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, J. Jiang, Z. Meng, and H. Chen, “Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter,” Opt. Express 21(3), 3826–3834 (2013).
[Crossref] [PubMed]

Clairon, A.

Cliché, J.-F.

J.-F. Cliché, M. Allard, and M. Têtu, “High-power and ultranarrow DFB laser: the effect of linewidth reduction systems on coherence length and interferometer noise,” Proc. SPIE 6216, 62160C (2006).
[Crossref]

Colice, M.

Crozatier, V.

Di Domenico, G.

DiLazaro, T.

Ding, Z.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, J. Jiang, Z. Meng, and H. Chen, “Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter,” Opt. Express 21(3), 3826–3834 (2013).
[Crossref] [PubMed]

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

Dong, Y.

Du, J.

J. Li, J. Du, S. Wang, L. Li, L. Sun, X. Fan, Q. Liu, and Z. He, “Improving the spatial resolution of an OFDR based on recirculating frequency shifter,” IEEE Photonics J. 7(5), 6901310 (2015).

Du, Y.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, J. Jiang, Z. Meng, and H. Chen, “Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter,” Opt. Express 21(3), 3826–3834 (2013).
[Crossref] [PubMed]

Eyal, A.

Fan, X.

Feng, Z.

C. Li, S. Xu, S. Mo, B. Zhan, W. Zhang, C. Yang, Z. Feng, and Z. Yang, “A linearly frequency modulated narrow linewidth single-frequency fiber laser,” Laser Phys. Lett. 10(7), 075106 (2013).
[Crossref]

Froggatt, M.

Geng, J. H.

J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Gifford, D.

Gisin, N.

P. Oberson, B. Huttner, O. Guinnard, L. Guinnard, G. Ribordy, and N. Gisin, “Optical frequency domain reflectometry with a narrow linewidth fiber laser,” IEEE Photonics Technol. Lett. 12(7), 867–869 (2000).
[Crossref]

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15(7), 1131–1141 (1997).
[Crossref]

J. P. von der Weid, R. Passy, and N. Gisin, “Mid-Range Coherent Optical Frequency Domain Reflectometry with a DFB Laser Diode Coupled to an External Cavity,” J. Lightwave Technol. 13(5), 954–960 (1995).
[Crossref]

Gorju, G.

Guinnard, L.

P. Oberson, B. Huttner, O. Guinnard, L. Guinnard, G. Ribordy, and N. Gisin, “Optical frequency domain reflectometry with a narrow linewidth fiber laser,” IEEE Photonics Technol. Lett. 12(7), 867–869 (2000).
[Crossref]

Guinnard, O.

P. Oberson, B. Huttner, O. Guinnard, L. Guinnard, G. Ribordy, and N. Gisin, “Optical frequency domain reflectometry with a narrow linewidth fiber laser,” IEEE Photonics Technol. Lett. 12(7), 867–869 (2000).
[Crossref]

Han, Q.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

Hayashi, K.

He, Z.

J. Li, J. Du, S. Wang, L. Li, L. Sun, X. Fan, Q. Liu, and Z. He, “Improving the spatial resolution of an OFDR based on recirculating frequency shifter,” IEEE Photonics J. 7(5), 6901310 (2015).

Q. Liu, X. Fan, and Z. He, “Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range,” Opt. Express 23(20), 25988–25995 (2015).
[Crossref] [PubMed]

Hu, W.

Huttner, B.

P. Oberson, B. Huttner, O. Guinnard, L. Guinnard, G. Ribordy, and N. Gisin, “Optical frequency domain reflectometry with a narrow linewidth fiber laser,” IEEE Photonics Technol. Lett. 12(7), 867–869 (2000).
[Crossref]

Iiyama, K.

Ito, F.

Jain, A.

Jiang, H.

Jiang, J.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, J. Jiang, Z. Meng, and H. Chen, “Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter,” Opt. Express 21(3), 3826–3834 (2013).
[Crossref] [PubMed]

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

Jiang, S. B.

J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Jucha, A.

Kaylor, B.

Kéfélian, F.

Koshikiya, Y.

Krause, B.

J. Buck, A. Malm, A. Zakel, B. Krause, and B. Tiemann, “High-resolution 3D coherent laser radar imaging,” Proc. SPIE 6550, 655002 (2007).
[Crossref]

Le Gouët, J.-L.

Lemonde, P.

Leviatan, E.

Li, C.

C. Li, S. Xu, S. Mo, B. Zhan, W. Zhang, C. Yang, Z. Feng, and Z. Yang, “A linearly frequency modulated narrow linewidth single-frequency fiber laser,” Laser Phys. Lett. 10(7), 075106 (2013).
[Crossref]

Li, J.

J. Li, J. Du, S. Wang, L. Li, L. Sun, X. Fan, Q. Liu, and Z. He, “Improving the spatial resolution of an OFDR based on recirculating frequency shifter,” IEEE Photonics J. 7(5), 6901310 (2015).

Li, L.

J. Li, J. Du, S. Wang, L. Li, L. Sun, X. Fan, Q. Liu, and Z. He, “Improving the spatial resolution of an OFDR based on recirculating frequency shifter,” IEEE Photonics J. 7(5), 6901310 (2015).

Liu, K.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, J. Jiang, Z. Meng, and H. Chen, “Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter,” Opt. Express 21(3), 3826–3834 (2013).
[Crossref] [PubMed]

Liu, Q.

Q. Liu, X. Fan, and Z. He, “Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range,” Opt. Express 23(20), 25988–25995 (2015).
[Crossref] [PubMed]

J. Li, J. Du, S. Wang, L. Li, L. Sun, X. Fan, Q. Liu, and Z. He, “Improving the spatial resolution of an OFDR based on recirculating frequency shifter,” IEEE Photonics J. 7(5), 6901310 (2015).

Liu, T.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, J. Jiang, Z. Meng, and H. Chen, “Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter,” Opt. Express 21(3), 3826–3834 (2013).
[Crossref] [PubMed]

Liu, Z.

Lorgeré, I.

Malm, A.

J. Buck, A. Malm, A. Zakel, B. Krause, and B. Tiemann, “High-resolution 3D coherent laser radar imaging,” Proc. SPIE 6550, 655002 (2007).
[Crossref]

Mégret, P.

Meng, Z.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, J. Jiang, Z. Meng, and H. Chen, “Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter,” Opt. Express 21(3), 3826–3834 (2013).
[Crossref] [PubMed]

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

Mo, S.

C. Li, S. Xu, S. Mo, B. Zhan, W. Zhang, C. Yang, Z. Feng, and Z. Yang, “A linearly frequency modulated narrow linewidth single-frequency fiber laser,” Laser Phys. Lett. 10(7), 075106 (2013).
[Crossref]

Mussi, G.

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15(7), 1131–1141 (1997).
[Crossref]

Nehmetallah, G.

Oberson, P.

P. Oberson, B. Huttner, O. Guinnard, L. Guinnard, G. Ribordy, and N. Gisin, “Optical frequency domain reflectometry with a narrow linewidth fiber laser,” IEEE Photonics Technol. Lett. 12(7), 867–869 (2000).
[Crossref]

Pan, H.

Passy, R.

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15(7), 1131–1141 (1997).
[Crossref]

J. P. von der Weid, R. Passy, and N. Gisin, “Mid-Range Coherent Optical Frequency Domain Reflectometry with a DFB Laser Diode Coupled to an External Cavity,” J. Lightwave Technol. 13(5), 954–960 (1995).
[Crossref]

Qin, J.

Qu, X.

Reibel, R. R.

Ribordy, G.

P. Oberson, B. Huttner, O. Guinnard, L. Guinnard, G. Ribordy, and N. Gisin, “Optical frequency domain reflectometry with a narrow linewidth fiber laser,” IEEE Photonics Technol. Lett. 12(7), 867–869 (2000).
[Crossref]

Roos, P. A.

Sagiv, O. Y.

Santarelli, G.

Schilt, S.

Seah, L. K.

P. C. Won, L. K. Seah, and A. K. Asundi, “FMCW reflectometric optical fiber strain sensor,” Proc. SPIE 4328, 54–62 (2001).
[Crossref]

Soller, B.

Spiegelberg, C.

J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Sun, L.

J. Li, J. Du, S. Wang, L. Li, L. Sun, X. Fan, Q. Liu, and Z. He, “Improving the spatial resolution of an OFDR based on recirculating frequency shifter,” IEEE Photonics J. 7(5), 6901310 (2015).

Têtu, M.

J.-F. Cliché, M. Allard, and M. Têtu, “High-power and ultranarrow DFB laser: the effect of linewidth reduction systems on coherence length and interferometer noise,” Proc. SPIE 6216, 62160C (2006).
[Crossref]

Thomann, P.

Tiemann, B.

J. Buck, A. Malm, A. Zakel, B. Krause, and B. Tiemann, “High-resolution 3D coherent laser radar imaging,” Proc. SPIE 6550, 655002 (2007).
[Crossref]

Tong, Y.

Tong, Yt.

Tsukada, F.

von der Weid, J. P.

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15(7), 1131–1141 (1997).
[Crossref]

J. P. von der Weid, R. Passy, and N. Gisin, “Mid-Range Coherent Optical Frequency Domain Reflectometry with a DFB Laser Diode Coupled to an External Cavity,” J. Lightwave Technol. 13(5), 954–960 (1995).
[Crossref]

Wang, L. T.

Wang, S.

J. Li, J. Du, S. Wang, L. Li, L. Sun, X. Fan, Q. Liu, and Z. He, “Improving the spatial resolution of an OFDR based on recirculating frequency shifter,” IEEE Photonics J. 7(5), 6901310 (2015).

Wolfe, M.

Won, P. C.

P. C. Won, L. K. Seah, and A. K. Asundi, “FMCW reflectometric optical fiber strain sensor,” Proc. SPIE 4328, 54–62 (2001).
[Crossref]

Wuilpart, M.

Xie, W.

Xu, S.

C. Li, S. Xu, S. Mo, B. Zhan, W. Zhang, C. Yang, Z. Feng, and Z. Yang, “A linearly frequency modulated narrow linewidth single-frequency fiber laser,” Laser Phys. Lett. 10(7), 075106 (2013).
[Crossref]

Xu, Y.

Yang, C.

C. Li, S. Xu, S. Mo, B. Zhan, W. Zhang, C. Yang, Z. Feng, and Z. Yang, “A linearly frequency modulated narrow linewidth single-frequency fiber laser,” Laser Phys. Lett. 10(7), 075106 (2013).
[Crossref]

Yang, Z.

C. Li, S. Xu, S. Mo, B. Zhan, W. Zhang, C. Yang, Z. Feng, and Z. Yang, “A linearly frequency modulated narrow linewidth single-frequency fiber laser,” Laser Phys. Lett. 10(7), 075106 (2013).
[Crossref]

Yao, X. S.

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, J. Jiang, Z. Meng, and H. Chen, “Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter,” Opt. Express 21(3), 3826–3834 (2013).
[Crossref] [PubMed]

Yoshida, N.

Yu, S.

Yuksel, K.

Zakel, A.

J. Buck, A. Malm, A. Zakel, B. Krause, and B. Tiemann, “High-resolution 3D coherent laser radar imaging,” Proc. SPIE 6550, 655002 (2007).
[Crossref]

Zhan, B.

C. Li, S. Xu, S. Mo, B. Zhan, W. Zhang, C. Yang, Z. Feng, and Z. Yang, “A linearly frequency modulated narrow linewidth single-frequency fiber laser,” Laser Phys. Lett. 10(7), 075106 (2013).
[Crossref]

Zhang, F.

Zhang, W.

C. Li, S. Xu, S. Mo, B. Zhan, W. Zhang, C. Yang, Z. Feng, and Z. Yang, “A linearly frequency modulated narrow linewidth single-frequency fiber laser,” Laser Phys. Lett. 10(7), 075106 (2013).
[Crossref]

Zheng, J.

Zhou, Q.

Appl. Opt. (5)

IEEE Photonics J. (1)

J. Li, J. Du, S. Wang, L. Li, L. Sun, X. Fan, Q. Liu, and Z. He, “Improving the spatial resolution of an OFDR based on recirculating frequency shifter,” IEEE Photonics J. 7(5), 6901310 (2015).

IEEE Photonics Technol. Lett. (3)

J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, J. Jiang, and H. Chen, “Long measurement range OFDR beyond laser coherence length,” IEEE Photonics Technol. Lett. 25(2), 202–205 (2013).
[Crossref]

P. Oberson, B. Huttner, O. Guinnard, L. Guinnard, G. Ribordy, and N. Gisin, “Optical frequency domain reflectometry with a narrow linewidth fiber laser,” IEEE Photonics Technol. Lett. 12(7), 867–869 (2000).
[Crossref]

J. Lightwave Technol. (3)

J. P. von der Weid, R. Passy, and N. Gisin, “Mid-Range Coherent Optical Frequency Domain Reflectometry with a DFB Laser Diode Coupled to an External Cavity,” J. Lightwave Technol. 13(5), 954–960 (1995).
[Crossref]

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15(7), 1131–1141 (1997).
[Crossref]

Y. Koshikiya, X. Fan, and F. Ito, “Influence of acoustic perturbation of fibers in phase-noise-compensated optical-frequency-domain reflectometry,” J. Lightwave Technol. 28(22), 3323–3328 (2010).
[Crossref]

Laser Phys. Lett. (1)

C. Li, S. Xu, S. Mo, B. Zhan, W. Zhang, C. Yang, Z. Feng, and Z. Yang, “A linearly frequency modulated narrow linewidth single-frequency fiber laser,” Laser Phys. Lett. 10(7), 075106 (2013).
[Crossref]

Opt. Express (12)

Q. Liu, X. Fan, and Z. He, “Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range,” Opt. Express 23(20), 25988–25995 (2015).
[Crossref] [PubMed]

E. Leviatan and A. Eyal, “High resolution DAS via sinusoidal frequency scan OFDR (SFS-OFDR),” Opt. Express 23(26), 33318–33334 (2015).
[Crossref] [PubMed]

X. Fan, Y. Koshikiya, and F. Ito, “Centimeter-level spatial resolution over 40 km realized by bandwidth-division phase-noise-compensated OFDR,” Opt. Express 19(20), 19122–19128 (2011).
[Crossref] [PubMed]

Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, J. Jiang, Z. Meng, and H. Chen, “Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter,” Opt. Express 21(3), 3826–3834 (2013).
[Crossref] [PubMed]

H. Pan, X. Qu, and F. Zhang, “Micron-precision measurement using a combined frequency-modulated continuous wave ladar autofocusing system at 60 meters standoff distance,” Opt. Express 26(12), 15186–15198 (2018).
[Crossref] [PubMed]

T. DiLazaro and G. Nehmetallah, “Large-volume, low-cost, high-precision FMCW tomography using stitched DFBs,” Opt. Express 26(3), 2891–2904 (2018).
[Crossref] [PubMed]

B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
[Crossref] [PubMed]

K. Yuksel, M. Wuilpart, and P. Mégret, “Analysis and suppression of nonlinear frequency modulation in an optical frequency-domain reflectometer,” Opt. Express 17(7), 5845–5851 (2009).
[Crossref] [PubMed]

O. Y. Sagiv, D. Arbel, and A. Eyal, “Correcting for spatial-resolution degradation mechanisms in OFDR via inline auxiliary points,” Opt. Express 20(25), 27465–27472 (2012).
[Crossref] [PubMed]

Q. Zhou, J. Qin, W. Xie, Z. Liu, Y. Tong, Y. Dong, and W. Hu, “Dynamic frequency-noise spectrum measurement for a frequency-swept DFB laser with short-delayed self-heterodyne method,” Opt. Express 23(22), 29245–29257 (2015).
[Crossref] [PubMed]

H. Jiang, F. Kéfélian, P. Lemonde, A. Clairon, and G. Santarelli, “An agile laser with ultra-low frequency noise and high sweep linearity,” Opt. Express 18(4), 3284–3297 (2010).
[Crossref] [PubMed]

T. DiLazaro and G. Nehmetallah, “Multi-terahertz frequency sweeps for high-resolution, frequency-modulated continuous wave ladar using a distributed feedback laser array,” Opt. Express 25(3), 2327–2340 (2017).
[Crossref] [PubMed]

Opt. Lett. (3)

Proc. SPIE (3)

P. C. Won, L. K. Seah, and A. K. Asundi, “FMCW reflectometric optical fiber strain sensor,” Proc. SPIE 4328, 54–62 (2001).
[Crossref]

J. Buck, A. Malm, A. Zakel, B. Krause, and B. Tiemann, “High-resolution 3D coherent laser radar imaging,” Proc. SPIE 6550, 655002 (2007).
[Crossref]

J.-F. Cliché, M. Allard, and M. Têtu, “High-power and ultranarrow DFB laser: the effect of linewidth reduction systems on coherence length and interferometer noise,” Proc. SPIE 6216, 62160C (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 .Configuration of the OFDR system. The frequency-swept laser is a single mode DFB fiber laser, driven by a pre-distorted PZT voltage ramp. The reference interferometer, auxiliary interferometer, and measurement interferometer both are all-fiber-based MZI. The reference MZI is used for active linearized OPLL control; the auxiliary MZI is used for pre-distortion of the PZT drive voltage and dynamic frequency noise spectrum measurement; multiple reflection events of FUT are recorded by the measurement MZI and analyzed using the real-time spectrum analyzer. AWG, arbitrary wave generator; AOFS, acousto-optic frequency shifter for self-heterodyne detection; DPFD, digital phase frequency detector; PMC, polarization-maintaining coupler; PMF is 1 km polarization-maintaining delay fiber; BPD, balanced-photo detector; DAQ, data acquisition card; SMF, single mode fiber; PC, polarization controller.
Fig. 2
Fig. 2 Measured static frequency noise PSD. Red line, free running laser; blue line, closed-loop operation. The frequency noise is suppressed more than 40 dB between 0.1 Hz and 100 Hz, the frequency noise PSD is about 0.5 Hz2/Hz at 1 Hz and well below 1 Hz2/Hz between 1 Hz and 1 kHz. Purple line: beta-line used in power area method to estimate laser linewidth, the estimated laser linewidth is 1.4 Hz for 2 s observing time.
Fig. 3
Fig. 3 Dynamic frequency noise spectrum during 30 ms sweep time. In the beginning 5 ms of sweeping, the OPLL is losing lock, ascribing to the sudden change of sweep rate. After that, the loop gets into a stable state. Under locked state, the dynamic frequency noise PSD is efficiently suppressed within loop bandwidth. The frequency noise at 1 kHz is around 10 dB Hz2/Hz, while that before locked is 50 dB Hz2/Hz.
Fig. 4
Fig. 4 Beat note spectrum when the laser frequency is swept over 1 GHz in 25 ms. Green line, open-loop operation, the spectrum peak is blurred because of residual nonlinear sweep and phase noise. Red line, closed-loop operation, the broad noise component is efficiently suppressed within the loop bandwidth, and the beat signal spectrum characterizes a pure Fourier-transform-limited peak with a width of 40 Hz.
Fig. 5
Fig. 5 Measured Rayleigh backscattering and Fresnel reflections for a FUT length of 200 km fiber link, maximum measurement range for Rayleigh backscattering is 120 km. (a) Measurement using 25 ms sweep, the measured spatial resolution at 20 km, 40 km, 80 km, 150 km, and 200 km are 14.4 cm, 25 cm, 0.86 m, 1.17 m and 1.31 m, respectively. (b) Measurement using 5 ms sweep, the measured spatial resolution is 0.72 m over the whole 200 km fiber link.
Fig. 6
Fig. 6 Measured spatial resolution of Fresnel reflection peaks over the FUT link. Blue trace, measurement using 25ms sweep. Red trace, measurement using 5ms sweep.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δφ( f )/ δυ( f ) = ( 1 e i2πf τ 0 )/ if 2π τ 0 rad/ Hz , f1/ τ 0 ,
I i (t)=Icos(2π f b1 + φ 1 +δ φ 1 (t)) I q (t)=Isin(2π f b1 + φ 1 +δ φ 1 (t)),

Metrics